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An improved Fourier series method (IFSM) is applied to study the free and forced vibration characteristics of the moderately
thick laminated composite rectangular plates on the elastic Winkler or Pasternak foundations which have elastic uniform supports
and multipoints supports. The formulation is based on the first-order shear deformation theory (FSDT) and combined with
artificial virtual spring technology and the plate-foundation interaction by establishing the two-parameter foundation model.
Under the framework of this paper, the displacement and rotation functions are expressed as a double Fourier cosine series and
two supplementary functions which have no relations to boundary conditions. The Rayleigh-Ritz technique is applied to solve
all the series expansion coefficients. The accuracy of the results obtained by the present method is validated by being compared
with the results of literatures and Finite Element Method (FEM). In this paper, some results are obtained by analyzing the varying
parameters, such as different boundary conditions, the number of layers and points, the spring stiffness parameters, and foundation
parameters, which can provide a benchmark for the future research.

1. Introduction

A variety of composite plates on the elastic foundations are
widely used in civil engineering, like rigid road plate, airport
pavement, building foundations, dock platform, and so on.
It is of great significance for design, use, and maintenance
to study the mechanical properties of composite plates on
elastic foundation. Therefore, the study on the vibration
characteristics of laminated plates on the elastic foundations
has been one of the hot spots in recent years. According to
the existing research, the elastic foundational plate models
can be divided into two categories which are Winkler-type
foundation and two-parameter foundation.

Winkler foundation is the first proposed linear elastic
theoretical model. Laura et al. [1] solved the free vibrations
of a circular thin plate on Winkler foundation with varying
thickness by using linear analysis and the Rayleigh-Schmidt
method. Liew et al. [2] extended an approximate analysis of

rectangular Mindlin plates resting on Winkler foundations
based on the differential quadrature method (DQM). The
plates were subject to arbitrary combination of free, simply
supported, and clamped boundary conditions. Gupta et al. [3]
discussed the effect of Winkler foundation on axisymmetric
vibrations of polar orthotropic circular plates with variable
thickness based on the classical plate theory. Xiang [4]
investigated the effect of multisegment Winkler foundations
on the rectangular Mindlin plates. They divided the four
sides into two groups, in which the two parallel edges
were one group. A set of edges were simply supported and
another group was the combinations of uniform and clas-
sical boundary conditions. Younesian et al. studied strongly
nonlinear generalized duffing oscillators [5] by using He’s
frequency–amplitude formulation and He’s energy balance
method and then proposed a closed form expression for the
dynamic response of an elastic plate rested on a nonlinear
elastic Winkler foundation [6]. Ansari et al. investigated
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the forced vibration of microbeam structures supported by
nonlinear viscoelastic-type foundation [7], Kelvin–Voight
foundation [8], and Winkler and Pasternak foundations [9]
based on the Galerkin approach and multiple time-scales
method. There are many related researches on the Winkler
foundation, and we can refer to the relevant refs. [10–12].
The calculated results of the Winkler-type foundation plate
model are very different from the actual results. In some
special conditions, especially, the results could not meet the
requirements any more by using the Winkler foundation
model.

With the deepening of the research, the two-parameter
elastic foundation model is proposed. Two independent
parameters are used to represent the compressive strength
and shear strength of the soil, which can overcome the inher-
ent defects of the Winkler foundation model and effectively
eliminate the discontinuity. In the two-parameter model,
the Pasternak foundation is widely used. Nedri et al. [13]
studied the free vibration analysis of simply supported thick
laminated rectangular composite plates resting on elastic
Pasternak-type foundations based on refined hyperbolic
shear deformation theory. Baltacıoğlu et al. [14] used the
discrete singular convolution method to realize nonlinear
static analysis of a thick laminated rectangular composite
plate on nonlinear foundation by using the FSDT. Singh et
al. [15] dealt with the postbuckling shear deformation of the
laminated composite plates on the Pasternak-type foundation
on the basis of HSDT and random system properties. It is the
first time that a perturbation technique has been successfully
combined with direct iterative technique by neglecting the
changes in nonlinear stiffnessmatrix due to randomvariation
of transverse displacements during iteration. Malekzadeh et
al. [16] investigated the effect of nonideal simple supports
and initial stresses on the vibration of laminated rectangular
plates on Pasternak foundation based on the Lindstedt-
Poincare perturbation technique. Kutlu et al. [17] derived a
mixed-type finite element formulation to study the dynamic
response of the Mindlin plate–arbitrarily orthotropic Paster-
nak foundation interaction by applying the Gâteaux differen-
tial. Tornabene et al. [18] considered the static and dynamic
analyses of laminated doubly curved and degenerate shells
and panels on the Winkler and Pasternak foundations by
using the generalized differential quadrature (GDQ) method
and FSDT. Jahromi et al. [19] studied free vibration of
moderately thick rectangular plate partially resting on Paster-
nak foundation based on GDQ and FSDT. The boundary
conditions of plate were considered as combinations of free,
simple, or clamped support. Li and Zhang [20] investi-
gated free vibration analysis of magnetoelectroelastic plate
resting on a Pasternak-type foundation based on Mindlin
plate theory. Khalili et al. [21] used the Lindstedt-Poincare
perturbation technique to study the buckling of nonideal
rectangular laminated plate on Pasternak foundation. One
edge of the plate was allowed a small nonzero deflection
and movement. Dehghany and Farajpour [22] dealt with
exact solution for free vibration analysis of simply supported
rectangular plates on Pasternak foundation on the basis
of three-dimensional elasticity theory. Briscoe et al. [23]
presented a solution for the buckling strength of simply

supported plates on the Pasternak-type foundation under in-
plane bending loads by using the minimum potential energy
principle. Thai et al. [24] proposed a simple refined theory
for studying bending, buckling, and vibration of thick plates
resting on Pasternak foundation. The boundary conditions
of rectangular plates were expressed as two opposite edges
with simply supported plates and the other two edges with
arbitrary boundary conditions. Idowu et al. [25] proposed
a fourth-order partial differential equation to study the
dynamic effects of viscous damping on isotropic rectangular
plates resting on Pasternak foundation subjected to moving
loads. Bahmyari and Khedmati [26] used shear deformable
plate theory and Element-Free Galerkin Method to study
the free vibration analysis of nonhomogeneous moderately
thick plates with point supports resting on Pasternak elastic
foundation. Kiani et al. [27] considered instability of simply
supported sandwich plates with functionally graded material
(FGM) face sheets resting on the Pasternak foundations
based on FSDT. There have been a lot of literatures of the
plate resting on the Pasternak-type foundation. We can also
check the relevant references, such as [28, 29]. However,
these literatures have great limitations for the moderately
thick or thick laminated rectangular plates resting on the
elastic foundation which have arbitrary and special boundary
conditions. It is necessary to study the effects of boundary
conditions on the free and forced vibration characteristics of
plate resting on the elastic foundation.

Stimulated by the restriction of the plate boundary
conditions in the existing researches, the free and forced
vibration characteristics of the moderately thick laminated
rectangular plates are analyzed which rest on the Winkler
or Pasternak foundations and have various uniform sup-
ported and multipoints supported boundary conditions. It
should be pointed out that the free vibration analysis of
the moderately thick laminated composite rectangular plate
with nonuniform boundary conditions [30] has been done
previously. However, it only discussed the free vibration
analysis of the laminated plate with partial supports and
multipoints supports. In this proposition, the free and forced
vibration analyses of uniform and multipoints supported
laminated rectangular plate resting on the Winkler and
Pasternak foundations are studied in this paper. As we all
know, there are many structural forms of plate in engineering
applications, like stiffened plates [31–34], cracked rectangular
plates [35–38], corroded plates [39–43], and so on. As the
most common basic model, the rectangular plate structure
is widely studied. An IFSM is extended to study the free
and forced vibration of rectangular plates on the elastic
Winkler-type and Pasternak-type foundation. This method
is previously studied by Zhang and Li [44, 45]. According
to the FSDT, the five displacement functions can be written
as feasible period superposition functions. Their specific
expressions are a double Fourier cosine series and two sup-
plementary functions by ignoring the influence of boundary
conditions. On the basis of the traditional Fourier series,
these supplementary functions are added to eliminate the
discontinuous or jumping phenomenon in the boundaries
which are regarded as a periodic function and defined within
the entire coordinates of laminate plate. These unknown
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Figure 1: Rectangular plate resting on elastic foundations.

coefficients are defined in the generalized coordinates which
can be solved by Rayleigh-Ritz procedure. It is very easy
to realize the change of different boundary conditions by
changing the stiffness value of the five springs on the four
edges. The results obtained by this method are compared
with those results obtained by literatures and FEM, which
show good agreement. The work mainly deals with the
consequences of the practical and significant constraints
such as various uniform supports, multipoints supports, and
various values of the foundation parameters.

2. Theoretical Analysis

A combination technique is used to get the vibration char-
acteristics of orthotropic laminated plate structure based on
artificial spring technique and Rayleigh-Ritz method. This
plate under uniform supports or multipoints supports is
rested on elastic Winkler-type and Pasternak-type founda-
tion.

2.1. Establishment of the Model. As shown in Figure 1, a
laminated rectangular plate model is established to analyze
vibration characteristics. For the plate, the length, width, and
thickness are 𝑎, 𝑏, and ℎ. Establish a coordinate system in
the plate mid-surface. In this coordinate system, the 𝑥, 𝑦,
and 𝑧 represent the length, width, and thickness directions
of the studied plate. Symbol 𝜃 is the laying angle between
the layer fiber direction and the 𝑥-axis. For the sake of
brevity, it is supposed that every lamina has the same
material properties and thickness. For the elastic foundation,𝐾𝑤 and 𝐾𝑠 are defined as linear Winkler foundation and
linear Pasternak foundation parameters. Five types of spring
are used to describe the boundary conditions of laminated
foundation plate, which are linear springs (𝑘𝑢, 𝑘V, and 𝑘𝑤)
and rotational springs (𝐾𝑥, 𝐾𝑦), respectively. The arbitrary
boundary conditions can be realized by setting the stiffness
values of the five different springs [46–50]. For instance, the
free boundary condition can be easily gainedwhen the spring
stiffness values on the four edges are zero. All the stiffness
values are set to a large value to achieve the clampedboundary
conditions in the numerical calculation.

2.2. Relationship betweenKinematics and Stress. According to
the displacements and rotations of the middle surface for the
established plate model, the displacements can be expressed
based on FSDT [51–53].

𝑈 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢 (𝑥, 𝑦, 𝑧, 𝑡) + 𝑧𝜙𝑥 (𝑥, 𝑦, 𝑡) ,
𝑉 (𝑥, 𝑦, 𝑧, 𝑡) = V (𝑥, 𝑦, 𝑧, 𝑡) + 𝑧𝜙𝑦 (𝑥, 𝑦, 𝑡) ,
𝑊 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑤 (𝑥, 𝑦, 𝑧, 𝑡) ,

(1)

where 𝑢, V, and𝑤 represent themiddle surface displacements
of the plate in the 𝑥, 𝑦, and 𝑧 directions and 𝜙𝑥 and 𝜙𝑦 are the
rotations of transverse normal for 𝑥- and 𝑦-axes, respectively.
Then 𝑡 is the time variable.

For rectangular laminated plates, the linear strains-
displacement relations of 𝑘’th layer can be got according to
the strain–stress relationship of elasticity theory

𝜀𝑥𝑥 = 𝜀0𝑥𝑥 + 𝑧𝑘𝜒𝑥𝑥,
𝜀𝑦𝑦 = 𝜀0𝑦𝑦 + 𝑧𝑘𝜒𝑦𝑦,
𝛾𝑦𝑧 = 𝛾0𝑦𝑧,
𝛾𝑥𝑧 = 𝛾0𝑥𝑧,
𝛾𝑥𝑦 = 𝛾0𝑥𝑦 + 𝑧𝑘𝜒𝑥𝑦.

(2)

According to the above formulas, 𝜀0𝑥𝑥, 𝜀0𝑦𝑦, and 𝛾0𝑥𝑦 express
the normal and shear strains in the 𝑜-𝑥𝑦𝑧 coordinate system.
The symbols of transverse shear strains are marked as 𝛾𝑥𝑧
and 𝛾𝑦𝑧 which can be regarded as constant and ignore the
thickness change. 𝜒𝑥𝑥, 𝜒𝑦𝑦, and 𝜒𝑥𝑦 represent the correspond-
ing curvature and twist changes. Besides, 𝑧𝑘 expresses the
thickness variable range of 𝑘’th layer. Expressions for strain
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and generalized displacement relations can be established
as

𝜀0𝑥𝑥 = 𝜕𝑢𝜕𝑥 ,
𝛾0𝑥𝑧 = 𝜕𝑤𝜕𝑥 + 𝜙𝑥,
𝜒𝑥𝑥 = 𝜕𝜙𝑥𝜕𝑥 ,
𝜀0𝑦𝑦 = 𝜕V𝜕𝑦 ,
𝛾0𝑦𝑧 = 𝜕𝑤𝜕𝑦 + 𝜙𝑦,

𝜒𝑦𝑦 = 𝜕𝜙𝑦𝜕𝑦 ,
𝛾0𝑥𝑦 = 𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥 ,

𝜒𝑥𝑦 = 𝜕𝜙𝑥𝜕𝑦 +
𝜕𝜙𝑦𝜕𝑥 .

(3)

According to the generalized Hooke’s law, the relation
between stress and strain can be expressed as

{{{{{{{{{{{{{{{{{

𝜎𝑥𝑥𝜎𝑦𝑦𝜏𝑥𝑦𝜏𝑦𝑧𝜏𝑥𝑧

}}}}}}}}}}}}}}}}}
=
[[[[[[[[[[[
[

𝑄𝑘
11 𝑄𝑘

12 𝑄𝑘
16 0 0

𝑄𝑘
12 𝑄𝑘

22 𝑄𝑘
26 0 0

𝑄𝑘
16 𝑄𝑘

26 𝑄𝑘
66 0 0

0 0 0 𝑄𝑘
44 𝑄𝑘

45

0 0 0 𝑄𝑘
45 𝑄𝑘

55

]]]]]]]]]]]
]

[[[[[[[[
[

𝜀𝑥𝑥𝜀𝑦𝑦𝛾𝑥𝑦𝛾𝑦𝑧𝛾𝑥𝑧

]]]]]]]]
]

(4)

in which 𝜎𝑥𝑥 and 𝜎𝑦𝑦 are the normal stresses and 𝜏𝑦𝑧, 𝜏𝑥𝑧, and𝜏𝑥𝑦 are shear stresses in the 𝑜-𝑥𝑦𝑧 coordinate system. Besides,
the specific expression of 𝑘’th layered stiffness coefficients
𝑄𝑘

𝑝𝑙
(𝑝, 𝑙 = 1, 2, 4, 5, 6) [54, 55] can be written as

𝑄𝑘
11 = 𝑄𝑘

11cos
4𝜃𝑘 + 2 (𝑄𝑘

12 + 2𝑄𝑘
66) cos2𝜃𝑘sin2𝜃𝑘

+ 𝑄𝑘
22sin

4𝜃𝑘,
𝑄𝑘

12 = (𝑄𝑘
11 + 𝑄𝑘

22 − 4𝑄𝑘
66) cos2𝜃𝑘sin2𝜃𝑘

+ 𝑄𝑘
12 (sin4𝜃𝑘 + cos4𝜃𝑘) ,

𝑄𝑘
22 = 𝑄𝑘

11sin
4𝜃𝑘 + 2 (𝑄𝑘

12 + 2𝑄𝑘
66) cos2𝜃𝑘sin2𝜃𝑘

+ 𝑄𝑘
22cos

4𝜃𝑘,
𝑄𝑘

16 = (𝑄𝑘
11 − 𝑄𝑘

12 − 2𝑄𝑘
66) cos3𝜃𝑘 sin 𝜃𝑘

+ (𝑄𝑘
12 − 𝑄𝑘

22 + 2𝑄𝑘
66) cos 𝜃𝑘sin3𝜃𝑘,

𝑄𝑘
26 = (𝑄𝑘

11 − 𝑄𝑘
12 − 2𝑄𝑘

66) cos 𝜃𝑘sin3𝜃𝑘
+ (𝑄𝑘

12 − 𝑄𝑘
22 + 2𝑄𝑘

66) cos3𝜃𝑘 sin 𝜃𝑘,
𝑄𝑘

66 = (𝑄𝑘
11 + 𝑄𝑘

22 − 2𝑄𝑘
12 − 2𝑄𝑘

66) cos2𝜃𝑘sin2𝜃𝑘
+ 𝑄𝑘

66 (sin4𝜃𝑘 + cos4𝜃𝑘) ,
𝑄𝑘

44 = 𝑄𝑘
44cos

2𝜃𝑘 + 𝑄𝑘
55sin

2𝜃𝑘,
𝑄𝑘

45 = (𝑄𝑘
55 − 𝑄𝑘

44) cos 𝜃𝑘 sin 𝜃𝑘,
𝑄𝑘

55 = 𝑄𝑘
55cos

2𝜃𝑘 + 𝑄𝑘
44sin

2𝜃𝑘,
(5)

where 𝜃 is the laying angle and 𝑄𝑘
𝑝𝑙 represents the material

coefficients of the 𝑘’th layer which can be obtained by
building the relationships with longitudinal modulus 𝐸𝑘

1 , the
transversemodulus𝐸𝑘

2 , Poisson’s ratios 𝜇𝑘
12 and 𝜇𝑘

21, and shear
moduli 𝐺𝑘

12, 𝐺𝑘
13, and 𝐺𝑘

23.

𝑄𝑘
11 = 𝐸𝑘

11 − 𝜇𝑘
12𝜇𝑘

21

,
𝑄𝑘

12 = 𝜇𝑘
21𝑄𝑘

11,
𝑄𝑘

22 = 𝐸𝑘
21 − 𝜇𝑘
12𝜇𝑘

21

,
𝑄𝑘

44 = 𝐺𝑘
23,

𝑄𝑘
55 = 𝐺𝑘

13,
𝑄𝑘

66 = 𝐺𝑘
12.

(6)

In order to seek simplicity, the material constants of each
layer are the same, which can be expressed as 𝐸𝑘

𝑖 = 𝐸𝑖, 𝐺𝑘
12 =𝐺𝑖,𝑗, and 𝜇𝑘

𝑖,𝑗 = 𝜇𝑖,𝑗 (𝑖, 𝑗 = 1, 2, 3). In addition, the relationship
of 𝜇12 and 𝜇21 is 𝜇12𝐸2 = 𝜇21𝐸1. It should be pointed out that
the isotropic plate resting on the elastic foundations can be
easily analyzed by letting 𝐸1 = 𝐸2, 𝐺12 = 𝐺13 = 𝐺23 =𝐸1/(2 + 2𝜇12). By introducing the shear correction factor 𝜅,
the relation between the generalized forces and strains can be
finally obtained [51, 52]. The specific expressions are shown
as follows:

[[[[[[[[[[[
[

𝑁𝑥𝑁𝑦𝑁𝑥𝑦𝑀𝑥𝑀𝑦𝑀𝑥𝑦

]]]]]]]]]]]
]

=
[[[[[[[[[[[
[

𝐴11 𝐴12 𝐴16 𝐵11 𝐵12 𝐵16𝐴12 𝐴22 𝐴26 𝐵12 𝐵22 𝐵26𝐴16 𝐴26 𝐴66 𝐵16 𝐵26 𝐵66𝐵11 𝐵12 𝐵16 𝐷11 𝐷12 𝐷16𝐵12 𝐵22 𝐵26 𝐷12 𝐷22 𝐷26𝐵16 𝐵26 𝐵66 𝐷16 𝐷26 𝐷66

]]]]]]]]]]]
]

[[[[[[[[[[[
[

𝜀0𝑥𝑥
𝜀0𝑦𝑦
𝛾0𝑥𝑦𝜒𝑥𝑥𝜒𝑦𝑦𝜒𝑥𝑦

]]]]]]]]]]]
]

,

[𝑄𝑥𝑄𝑦

] = 𝜅[𝐴55 𝐴45𝐴45 𝐴55

][𝛾𝑥𝑧𝛾𝑦𝑧

]

(7)
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in which the generalized forces include normal forces (𝑁𝑥,𝑁𝑦), shear force (𝑁𝑥𝑦), bendingmoments (𝑀𝑥,𝑀𝑦), twisting
moment (𝑀𝑥𝑦), and transverse shear forces (𝑄𝑥,𝑄𝑦). In addi-
tion, 𝐴 𝑖𝑗, 𝐵𝑖𝑗, and 𝐷𝑖𝑗 are extensional, extensional-bending,
and bending stiffness coefficients, whose expressions are
written as

𝐴 𝑖𝑗 = 𝑁∑
𝑘=1

𝑄𝑘
𝑖𝑗 (𝑍𝑘+1 − 𝑍𝑘) ,

𝐵𝑖𝑗 = 12
𝑁∑
𝑘=1

𝑄𝑘
𝑖𝑗 (𝑍2

𝑘+1 − 𝑍2
𝑘) ,

𝐷𝑖𝑗 = 13
𝑁∑
𝑘=1

𝑄𝑘
𝑖𝑗 (𝑍3

𝑘+1 − 𝑍3
𝑘)

(8)

in which 𝑁 donates the total number of layers. Moreover,
when we study the vibration characteristics of the isotropic
plate, the extensional-bending stiffness coefficients 𝐵𝑖𝑗 are
zero and 𝐴 𝑖𝑗 and𝐷𝑖𝑗 are independent.

2.3. Energy Equation. The main work of this paper is to
investigate the vibration characteristics of the moderately
thick laminated composite rectangular plate with uniform
and multipoints supports which is rested on the elastic
foundations. Rayleigh-Ritz energy method is extended to
study the free and forced vibration of plate on the Winkler
and Pasternak foundations. The Lagrangian energy function
for the laminated plate can be written as

𝐿𝑃 = 𝑇𝑃 − 𝑈𝑃 − 𝑈𝑓 − 𝑉springs −𝑊ext. (9)

𝑇𝑃 expresses the total kinetic energy of laminated plate
whose expression is

𝑇𝑝 = 12 ∫
𝑎

0
∫𝑏

0
[𝐼0 (𝜕𝑢𝜕𝑡 )

2 + 𝐼0 (𝜕V𝜕𝑡 )
2 + 𝐼0 (𝜕𝑤𝜕𝑡 )

2

+ 𝐼2 (𝜕𝜙𝑥𝜕𝑡 )
2 + 𝐼2 (𝜕𝜙𝑦𝜕𝑡 )

2 + 2𝐼1 (𝜕𝑢𝜕𝑡 )(𝜕𝜙𝑥𝜕𝑡 )

+ 2𝐼1 (𝜕V𝜕𝑡 )(
𝜕𝜙𝑦𝜕𝑡 )]𝑑𝑦𝑑𝑥,

𝐼0 = 𝑁∑
𝑘=1

∫𝑍𝑘+1

𝑍𝑘

𝜌𝑘𝑑𝑧,

𝐼1 = 𝑁∑
𝑘=1

∫𝑍𝑘+1

𝑍𝑘

𝜌𝑘𝑧 𝑑𝑧,

𝐼2 = 𝑁∑
𝑘=1

∫𝑍𝑘+1

𝑍𝑘

𝜌𝑘𝑧2𝑑𝑧

(10)

in which 𝐼0, 𝐼1, and 𝐼2 are the inertia terms of the plate, and𝜌𝑘 is area density of the 𝑘’th layer.

𝑈𝑃 expresses the strain energy for the moderately thick
plates:

𝑈𝑃 = 12 ∫
𝑎

0
∫𝑏

0
{𝑁𝑥𝜀0𝑥𝑥 + 𝑁𝑦𝜀0𝑦𝑦 + 𝑁𝑥𝑦𝜀0𝑥𝑦 +𝑀𝑥𝜒𝑥𝑥

+𝑀𝑦𝜒𝑦𝑦 +𝑀𝑥𝑦𝜒𝑥𝑦 + 𝑄𝑥𝛾𝑥𝑧 + 𝑄𝑦𝛾𝑦𝑧} 𝑑𝑥 𝑑𝑦.
(11)

Substituting (3), (7), and (8) into (11) can obtain the
relations between strain energy and displacements in mid-
surface of plate.Then, strain energy expression can be written
as a superposition of three components, which are stretching
energy (𝑈𝑆), bending energy (𝑈𝐵), and bending–stretching
coupling energy (𝑈𝐵𝑆).

𝑈𝑆 = 12 ∫
𝑎

0
∫𝑏

0
{𝐴11 (𝜕𝑢𝜕𝑥)

2 + 𝐴22 (𝜕V𝜕𝑦)
2

+ 2𝐴12 (𝜕𝑢𝜕𝑥)(𝜕V𝜕𝑦) + 𝐴66 (𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥)
2

+ 2𝐴16 (𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥)(𝜕𝑢𝜕𝑥) + 2𝐴26 (𝜕𝑢𝜕𝑦 + 𝜕V𝜕𝑥)

⋅ (𝜕V𝜕𝑦) + 𝜅𝑐𝐴44 (𝜕𝑤𝜕𝑦 + 𝜙𝑦)
2

+ 𝜅𝑐𝐴55 (𝜕𝑤𝜕𝑥 + 𝜙𝑥)
2 + 2𝜅𝑐𝐴45 (𝜕𝑤𝜕𝑥 + 𝜙𝑥)

⋅ (𝜕𝑤𝜕𝑦 + 𝜙𝑦)}𝑑𝑥𝑑𝑦,

(12a)

𝑈𝐵 = 12 ∫
𝑎

0
∫𝑏

0
{𝐷11 (𝜕𝜙𝑥𝜕𝑥 )

2 + 𝐷22 (𝜕𝜙𝑦𝜕𝑦 )
2

+ 2𝐷12 (𝜕𝜙𝑥𝜕𝑥 )(
𝜕𝜙𝑦𝜕𝑦 ) + 𝐷66 (𝜕𝜙𝑥𝜕𝑦 +

𝜕𝜙𝑦𝜕𝑥 )
2

+ 2𝐷16 (𝜕𝜙𝑥𝜕𝑦 +
𝜕𝜙𝑦𝜕𝑥 )(𝜕𝜙𝑥𝜕𝑥 )

+ 2𝐷26 (𝜕𝜙𝑥𝜕𝑦 +
𝜕𝜙𝑦𝜕𝑥 )(

𝜕𝜙𝑦𝜕𝑦 )}𝑑𝑥𝑑𝑦,

(12b)

𝑈𝐵𝑆 = ∫𝑎

0
∫𝑏

0
{𝐵11 (𝜕𝑢𝜕𝑥)(𝜕𝜙𝑥𝜕𝑥 )

+ 𝐵12 [(𝜕𝑢𝜕𝑥)(
𝜕𝜙𝑦𝜕𝑦 ) + (𝜕V𝜕𝑦)(𝜕𝜙𝑥𝜕𝑥 )]

+ 𝐵22 (𝜕V𝜕𝑦)(
𝜕𝜙𝑦𝜕𝑦 ) + 𝐵66 ( 𝜕V𝜕𝑥 + 𝜕𝑢𝜕𝑦)

⋅ (𝜕𝜙𝑥𝜕𝑦 +
𝜕𝜙𝑦𝜕𝑥 ) + [𝐵16 (𝜕𝑢𝜕𝑥) + 𝐵26 (𝜕V𝜕𝑦)]
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⋅ (𝜕𝜙𝑥𝜕𝑦 +
𝜕𝜙𝑦𝜕𝑥 ) + [𝐵16 (𝜕𝜙𝑥𝜕𝑥 ) + 𝐵26 (𝜕𝜙𝑦𝜕𝑦 )]

⋅ ( 𝜕V𝜕𝑥 + 𝜕𝑢𝜕𝑦)}𝑑𝑥𝑑𝑦.
(12c)

The strain energy due to the Winkler and Pasternak
foundations is given by

𝑈𝑓 = 12 ∫
𝑎

0
∫𝑏

0
{𝐾𝑊𝑤2

+ 𝐾𝑆 [(𝜕𝑤𝜕𝑥 )
2 + (𝜕𝑤𝜕𝑦 )

2]}𝑑𝑥𝑑𝑦.
(13)

For the elastic Winkler foundation, we just need to set
the Pasternak foundation parameter KS to zero. Then, the
influence of the free vibration for the plate which is on
the Winkler-type elastic foundation can be studied with the
change of the Winkler foundation parameter KW. In this
paper, the main interests are studying the special boundary
constraints and variation of Winkler and Pasternak foun-
dations by introducing artificial virtual spring technology,
which can be found in [56–58]. So the cases of uniform
supported and multipoints supported boundary conditions
whose plates are rested on the Winkler and Pasternak
foundations will be considered here.𝑉uniform

springs is the potential energy on the four edges of
the plate with elastic uniform boundary conditions. It is
simulatedwith five kinds of springs evenly distributed on four
edges.

𝑉uniform
springs = 12 ∫

𝑏

0
∫ℎ/2

−ℎ/2
{[𝑘𝑢𝑥0𝑢 (𝑥, 𝑦)2 + 𝑘V𝑥0V (𝑥, 𝑦)2 + 𝑘𝑤𝑥0𝑤 (𝑥, 𝑦)2 + 𝐾𝑥

𝑥0𝜙𝑥 (𝑥, 𝑦)2 + 𝐾𝑦
𝑥0𝜙𝑦 (𝑥, 𝑦)2]𝑥=0

+ [𝑘𝑢𝑥𝑎𝑢 (𝑥, 𝑦)2 + 𝑘V𝑥𝑎V (𝑥, 𝑦)2 + 𝑘𝑤𝑥𝑎𝑤 (𝑥, 𝑦)2 + 𝐾𝑥
𝑥𝑎𝜙𝑥 (𝑥, 𝑦)2 + 𝐾𝑦

𝑥𝑎𝜙𝑦 (𝑥, 𝑦)2]𝑥=𝑎
} 𝑑𝑧 𝑑𝑦 + 12

⋅ ∫𝑎

0
∫ℎ/2

−ℎ/2
{[𝑘𝑢𝑦0𝑢 (𝑥, 𝑦)2 + 𝑘V𝑦0V (𝑥, 𝑦)2 + 𝑘𝑤𝑦0𝑤 (𝑥, 𝑦)2 + 𝐾𝑥

𝑦0𝜙𝑥 (𝑥, 𝑦)2 + 𝐾𝑦
𝑦0𝜙𝑦 (𝑥, 𝑦)2]𝑦=0

+ [𝑘𝑢𝑦𝑏𝑢 (𝑥, 𝑦)2 + 𝑘V𝑦𝑏V (𝑥, 𝑦)2 + 𝑘𝑤𝑦𝑏𝑤 (𝑥, 𝑦)2 + 𝐾𝑥
𝑦𝑏𝜙𝑥 (𝑥, 𝑦)2 + 𝐾𝑦

𝑦𝑏
𝜙𝑦 (𝑥, 𝑦)2]

𝑦=𝑏
} 𝑑𝑧 𝑑𝑥.

(14)

For the cases of multipoints supports, the supported
points are evenly distributed on the four edges. For intuitive
understanding, Figure 2 gives the distributions of 4-point,
8-point, and 16-point supported boundary conditions. They

can be regarded as the discretization of uniform support.
Therefore, the potential energy 𝑉points

springs for the plate with
multipoints supports can be written as

𝑉points
springs = 12

𝑁𝑅∑
𝑟=0

[𝑘𝑢𝑥0𝑢 (𝑥𝑟, 𝑦𝑟)2 + 𝑘V𝑥0V (𝑥𝑟, 𝑦𝑟)2 + 𝑘𝑤𝑥0𝑤 (𝑥𝑟, 𝑦𝑟)2 + 𝐾𝑥
𝑥0𝜙𝑥 (𝑥𝑟, 𝑦𝑟)2 + 𝐾𝑦

𝑥0𝜙𝑦 (𝑥𝑟, 𝑦𝑟)2]
𝑥𝑟=0

+ 12

⋅ 𝑁𝑅∑
𝑟=0

[𝑘𝑢𝑥𝑎𝑢 (𝑥𝑟, 𝑦𝑟)2 + 𝑘V𝑥𝑎V (𝑥𝑟, 𝑦𝑟)2 + 𝑘𝑤𝑥𝑎𝑤 (𝑥𝑟, 𝑦𝑟)2 + 𝐾𝑥
𝑥𝑎𝜙𝑥 (𝑥𝑟, 𝑦𝑟)2 + 𝐾𝑦

𝑥𝑎𝜙𝑦 (𝑥𝑟, 𝑦𝑟)2]
𝑥𝑟=𝑎

+ 12

⋅ 𝑁𝑆∑
𝑠=0

[𝑘𝑢𝑦0𝑢 (𝑥𝑠, 𝑦𝑠)2 + 𝑘V𝑦0V (𝑥𝑠, 𝑦𝑠)2 + 𝑘𝑤𝑦0𝑤 (𝑥𝑠, 𝑦𝑠)2 + 𝐾𝑥
𝑦0𝜙𝑥 (𝑥𝑠, 𝑦𝑠)2 + 𝐾𝑦

𝑦0𝜙𝑦 (𝑥𝑠, 𝑦𝑠)2]
𝑦𝑠=0

+ 12

⋅ 𝑁𝑆∑
𝑠=0

[𝑘𝑢𝑦𝑏𝑢 (𝑥𝑠, 𝑦𝑠)2 + 𝑘V𝑦𝑏V (𝑥𝑠, 𝑦𝑠)2 + 𝑘𝑤𝑦𝑏𝑤 (𝑥𝑠, 𝑦𝑠)2 + 𝐾𝑥
𝑦𝑏𝜙𝑥 (𝑥𝑠, 𝑦𝑠)2 + 𝐾𝑦

𝑦𝑏
𝜙𝑦 (𝑥𝑠, 𝑦𝑠)2]

𝑦𝑠=𝑏

.

(15)
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(a) 4-point support (b) 8-point support (c) 16-point support

Figure 2: Laminated plate with various multipoints supported boundary conditions.

𝑊ext expresses the work done by the external excitation
force on the moderately thick plates:

𝑊ext

= ∬
𝑆
(𝑓𝑢𝑢 + 𝑓VV + 𝑓𝑤𝑤 + 𝑓𝜙𝑥𝜙𝑥 + 𝑓𝜙𝑦𝜙𝑦) 𝑑𝑥 𝑑𝑦, (16)

where 𝑓𝑖 (𝑖 = 𝑢, V, 𝑤, 𝜙𝑥, 𝜙𝑦) is the external load distribution
function on the plate. In this paper, the normal harmonic
point force 𝐹𝑖 on the plate is applied to study the flexural
vibration behavior of the composite plate.Therefore, the load
distribution function 𝑓𝑖 can be expressed as

𝑓𝑖 = 𝐹𝑖𝛿 (𝑥 − 𝑥𝑒) 𝛿 (𝑦 − 𝑦𝑒) , (17)

where (𝑥𝑒, 𝑦𝑒) is the position of point force. 𝛿 is the 2D Dirac
function.

2.4. Kinematics Balance Equation. The kinematics balance
equations for the moderately thick plate can be obtained by
Hamilton’s principle [51, 52].

𝜕𝑁𝑥𝜕𝑥 +
𝜕𝑁𝑥𝑦𝜕𝑦 = 𝐼0 𝜕2𝑢𝜕𝑡2 + 𝐼1 𝜕

2𝜙𝑥𝜕𝑡2 ,
𝜕𝑁𝑥𝑦𝜕𝑥 + 𝜕𝑁𝑦𝜕𝑦 = 𝐼0 𝜕2V𝜕𝑡2 + 𝐼1

𝜕2𝜙𝑦𝜕𝑡2 ,
𝜕𝑀𝑥𝜕𝑥 + 𝜕𝑀𝑥𝑦𝜕𝑦 − 𝑄𝑥 = 𝐼1 𝜕2𝑢𝜕𝑡2 + 𝐼2 𝜕

2𝜙𝑥𝜕𝑡2 ,
𝜕𝑄𝑥𝜕𝑥 +

𝜕𝑄𝑦𝜕𝑦 = 𝐼0 𝜕2𝑤𝜕𝑡2 ,
𝜕𝑀𝑥𝑦𝜕𝑥 + 𝜕𝑀𝑦𝜕𝑦 − 𝑄𝑦 = 𝐼1 𝜕2V𝜕𝑡2 + 𝐼2

𝜕2𝜙𝑦𝜕𝑡2 .

(18)

As we can see from (18), the displacement functions
required second-order derivatives. The kinematics balance

equations can be rewritten as a matrix form by combining
(3), (7), and (18) simultaneously.

{{{{{{{{{{{{{{{{{

[[[[[[[[
[

𝐿11 𝐿12 0 𝐿14 𝐿15𝐿12 𝐿22 0 𝐿24 𝐿250 0 𝐿33 𝐿34 𝐿35𝐿14 𝐿24 𝐿34 𝐿44 𝐿45𝐿15 𝐿25 𝐿35 𝐿45 𝐿55

]]]]]]]]
]

−
[[[[[[[[
[

𝑀11 0 0 𝑀14 0
0 𝑀22 0 0 𝑀250 0 𝑀33 0 0
𝑀14 0 0 𝑀44 0
0 𝑀25 0 0 𝑀55

]]]]]]]]
]

}}}}}}}}}}}}}}}}}

[[[[[[[[
[

𝑢
V

𝑤
𝜙𝑥𝜙𝑦

]]]]]]]]
]

=
[[[[[[[[
[

𝐹𝑢𝐹V𝐹𝑤𝐹𝜙𝑥𝐹𝜙𝑦

]]]]]]]]
]
,

(19)

where linear differential operators are expressed as 𝐿 𝑖𝑗 and𝑀𝑖𝑗. The specific expressions are given below:

𝐿11 = 𝐴11

𝜕2𝜕𝑥2
+ 2𝐴16

𝜕2𝜕𝑥𝜕𝑦 + 𝐴66

𝜕2𝜕𝑦2
,

𝐿12 = 𝐴16

𝜕2𝜕𝑥2
+ (𝐴12 + 𝐴66) 𝜕2𝜕𝑥𝜕𝑦 + 𝐴26

𝜕2𝜕𝑦2
,

𝐿14 = 𝐵11

𝜕2𝜕𝑥2
+ 2𝐵16

𝜕2𝜕𝑥𝜕𝑦 + 𝐵66

𝜕2𝜕𝑦2
,

𝐿15 = 𝐵16

𝜕2𝜕𝑥2
+ (𝐵12 + 𝐵66) 𝜕2𝜕𝑥𝜕𝑦 + 𝐵26

𝜕2𝜕𝑦2
,

𝐿22 = 𝐴66

𝜕2𝜕𝑥2
+ 2𝐴26

𝜕2𝜕𝑥𝜕𝑦 + 𝐴22

𝜕2𝜕𝑦2
,
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𝐿24 = 𝐵16

𝜕2𝜕𝑥2
+ (𝐵12 + 𝐵66) 𝜕2𝜕𝑥𝜕𝑦 + 𝐵26

𝜕2𝜕𝑦2
,

𝐿25 = 𝐵66

𝜕2𝜕𝑥2
+ 2𝐵26

𝜕2𝜕𝑥𝜕𝑦 + 𝐵22

𝜕2𝜕𝑦2
,

𝐿33 = −𝐴55

𝜕2𝜕𝑥2
− 2𝐴45

𝜕2𝜕𝑥𝜕𝑦 − 𝐴44

𝜕2𝜕𝑦2
,

𝐿34 = −𝐴55

𝜕𝜕𝑥 − 𝐴45

𝜕𝜕𝑦 ,
𝐿44 = 𝐷11

𝜕2𝜕𝑥2
+ 2𝐷16

𝜕2𝜕𝑥𝜕𝑦 + 𝐷66

𝜕2𝜕𝑦2
− 𝐴55,

𝐿35 = −𝐴45

𝜕𝜕𝑥 − 𝐴44

𝜕𝜕𝑦 ,
𝐿45 = 𝐷16

𝜕2𝜕𝑥2
+ (𝐷12 + 𝐷66) 𝜕2𝜕𝑥𝜕𝑦 + 𝐷26

𝜕2𝜕𝑦2

− 𝐴45,
𝐿55 = 𝐷66

𝜕2𝜕𝑥2
+ 2𝐷26

𝜕2𝜕𝑥𝜕𝑦 + 𝐷22

𝜕2𝜕𝑦2
− 𝐴44,

𝑀11 = 𝑀22 = 𝑀33 = −𝐼0 𝜕2𝜕𝑡 ,
𝑀14 = 𝑀25 = −𝐼1 𝜕2𝜕𝑡 ,
𝑀44 = 𝑀55 = −𝐼2 𝜕2𝜕𝑡 .

(20)

2.5. Displacement Expression. An IFSM is applied to express
the displacements of the moderately thick laminated rectan-
gular plate on the elastic foundations.The expressions ignore
the boundary conditions and eliminate the discontinuous
or jumping phenomenon in the boundaries. They can be
regarded as a periodic function which is defined within the
entire coordinates [59].The specific displacement expressions
of the plate are given below:

[[[[[[[[
[

𝑢
V

𝑤
𝜙𝑥𝜙𝑦

]]]]]]]]
]
=
[[[[[[[[
[

P 0 0 0 0
0 P 0 0 0
0 0 P 0 0
0 0 0 P 0
0 0 0 0 P

]]]]]]]]
]

[[[[[[[[
[

A𝑚𝑛

B𝑚𝑛

C𝑚𝑛

D𝑚𝑛

E𝑚𝑛

]]]]]]]]
]
, (21)

P = {cos (𝜆0𝑥) cos (𝜆0𝑦) , . . . , cos (𝜆0𝑥) cos (𝜆𝑛𝑦) ,
. . . , cos (𝜆𝑚𝑥) cos (𝜆𝑛𝑦) , . . . , cos (𝜆𝑀𝑥) cos (𝜆𝑁𝑦) ,
sin (𝜆−2𝑥) cos (𝜆0𝑦) , . . . , sin (𝜆−2𝑥) cos (𝜆𝑛𝑦) , . . . ,
sin (𝜆−2𝑥) cos (𝜆𝑁𝑦) , . . . , sin (𝜆−1𝑥) cos (𝜆𝑁𝑦) ,

cos (𝜆0𝑥) sin (𝜆−2𝑦) , cos (𝜆0𝑥) sin (𝜆−1𝑦) , . . . ,
cos (𝜆𝑚𝑥) sin (𝜆−2𝑦) , . . . , cos (𝜆𝑀𝑥) sin (𝜆−1𝑦)} ,

(22)

A𝑚𝑛 = {𝐴1
0,0, . . . , 𝐴1

0,𝑛, . . . , 𝐴1
𝑚,𝑛, . . . , 𝐴1

𝑀,𝑁, 𝐴2
−2,0, . . . ,

𝐴2
−2,𝑛, . . . , 𝐴2

−2,𝑁, . . . , 𝐴2
−1,𝑁, 𝐴3

0,−2, 𝐴3
0,−1, . . . , 𝐴3

𝑚,−2,
. . . , 𝐴3

𝑀,−1}𝑇 ,
(23a)

B𝑚𝑛 = {𝐵1
0,0, . . . , 𝐵1

0,𝑛, . . . , 𝐵1
𝑚,𝑛, . . . , 𝐵1

𝑀,𝑁, 𝐵2
−2,0, . . . , 𝐵2

−2,𝑛,
. . . , 𝐵2

−2,𝑁, . . . , 𝐵2
−1,𝑁, 𝐵3

0,−2, 𝐵3
0,−1, . . . , 𝐵3

𝑚,−2, . . . ,
𝐵3

𝑀,−1}𝑇 ,
(23b)

C𝑚𝑛 = {𝐶1
0,0, . . . , 𝐶1

0,𝑛, . . . , 𝐶1
𝑚,𝑛, . . . , 𝐶1

𝑀,𝑁, 𝐶2
−2,0, . . . ,

𝐶2
−2,𝑛, . . . , 𝐶2

−2,𝑁, . . . , 𝐶2
−1,𝑁, 𝐶3

0,−2, 𝐶3
0,−1, . . . , 𝐶3

𝑚,−2, . . . ,
𝐶3

𝑀,−1}𝑇 ,
(23c)

D𝑚𝑛 = {𝐷1
0,0, . . . , 𝐷1

0,𝑛, . . . , 𝐷1
𝑚,𝑛, . . . , 𝐷1

𝑀,𝑁, 𝐷2
−2,0, . . . ,

𝐷2
−2,𝑛, . . . , 𝐷2

−2,𝑁, . . . , 𝐷2
−1,𝑁, 𝐷3

0,−2, 𝐷3
0,−1, . . . , 𝐷3

𝑚,−2,
. . . , 𝐷3

𝑀,−1}𝑇 ,
(23d)

E𝑚𝑛 = {𝐸1
0,0, . . . , 𝐸1

0,𝑛, . . . , 𝐸1
𝑚,𝑛, . . . , 𝐸1

𝑀,𝑁, 𝐸2
−2,0, . . . , 𝐸2

−2,𝑛,
. . . , 𝐸2

−2,𝑁, . . . , 𝐸2
−1,𝑁, 𝐸3

0,−2, 𝐸3
0,−1, . . . , 𝐸3

𝑚,−2, . . . ,
𝐸3

𝑀,−1}𝑇 ,
(23e)

where 𝜆𝑚 = 𝑚𝜋/𝑎 and 𝜆𝑛 = 𝑛𝜋/𝑏. Besides, A𝑚𝑛, B𝑚𝑛, C𝑚𝑛,
D𝑚𝑛, and E𝑚𝑛 are 2D Fourier coefficients vector, which are
composed by 𝐴𝑖

𝑚𝑛, 𝐵𝑖
𝑚𝑛, 𝐶𝑖

𝑚𝑛, 𝐷𝑖
𝑚𝑛, and 𝐸𝑖

𝑚𝑛 (𝑖 = 1, 2, 3),
respectively.

There have been a lot of references about the Rayleigh-
Ritz technology, such as [60–62], and Ritz like methods,
such as [63–65]. In this paper, based on the Rayleigh-Ritz
technology, a set of linear algebraic equations directed against
Fourier unknown coefficients on displacement equations can
be got by combining (18)–(23e) simultaneously. A matrix
form can be obtained by transformation

(Κ − 𝜔2M)G = F. (24)

When we study the free vibration of the plate, we only
need to ignore the external force vector F. K, M, and G
are stiffness matrix, mass matrix, and unknown Fourier
coefficients vector, separately. The specified expressions of K,
M, and F are listed in the Appendix. It should be pointed out
that G is a combination of the five 2D Fourier coefficients
vectors, whose form is

G = [A𝑚𝑛 B𝑚𝑛 C𝑚𝑛 D𝑚𝑛 E𝑚𝑛]𝑇 . (25)

Form (24), we can easily find that the circular frequency𝜔 is the square root of eigenvalues and G is the eigenvec-
tors. When we study the vibration response of the elastic
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Figure 3: The flowchart about the solution for the laminated plate on the elastic foundation.

supported plates resting on the elastic Winkler or Pasternak
foundations, 𝐺 can be obtained by giving a frequency value.
Then, the exact displacements expressions of plate can be
got by putting 𝐺 into (21)–(23e). In order to explain the
innovation of this paper more intuitively, a brief illustration
is given in Figure 3. Compared with [30, 66], this paper
has three main original ideas. Firstly, this paper focuses on
the effect of elastic foundation on the plate. Secondly, the
displacement expressions of the plate are improved. Thirdly,
forced vibration response of plate on the elastic foundation is
studied by introducing a harmonic point force. In addition,
the corresponding results are also given in the next section.

3. Results and Discussions

In this section, some calculation cases involving symmet-
rically and antisymmetrically laminated plates resting on
the elastic Winkler and Pasternak foundations are consid-
ered, which have various uniform or multipoints supported
boundary conditions. Comparisons are made with the avail-
able results of literatures and FEM. For the sake of brevity, the
letters F, S, andC are used to represent completely free, simply
supported, and clamped edges. In addition, a simplified
combination of letters (in Table 3) is used to characterize
the boundary condition of the antisymmetrically laminated
plates. For example, the SCSC shows that the laminated plates
have S, C, S, and C at the four edges of 𝑥0, 𝑦0, 𝑥𝑎, and 𝑦𝑏,

respectively. Besides, material properties of the elastic lamina
are supposed as

Material I: 𝐸1/𝐸2 = 10; 𝐺12 = 𝐺13 = 0.5𝐸2; 𝐺23 =0.2𝐸2; 𝜇12 = 0.25; 𝜇12𝐸1 = 𝜇21𝐸2

Material II: 𝐸1/𝐸2 = 40; 𝐺12 = 𝐺13 = 0.6𝐸2; 𝐺23 =0.5𝐸2; 𝜇12 = 0.25; 𝜇12𝐸1 = 𝜇21𝐸2

3.1. Convergence Analysis. For the displacement admissible
functions constructed in (21)–(23e), the appropriate trunca-
tion value should be set in numerical evaluation. The size
of the values of𝑀 and 𝑁 is the direct representation of the
convergence of the method. Table 1 shows the convergence
of the first eight frequency parameters Ω of the angle-ply
(0/90∘) rectangular laminated plates on the elastic Winkler
foundation. The geometrical dimensions are 𝑎/𝑏 = 1, ℎ/𝑎 =0.1, the material type is Material I, and the foundation
parameters are 𝑘𝑊 = 10 and 𝑘𝑆 = 0.

From Table 1, we can find that the present method shows
good convergence. For example, for the free plate on the
Winkler foundation, the biggest difference for the worst case
which is made is the contrast of 8 × 8 and 18 × 18 being less
than 0.13%, while the biggest difference for the worst case
which is made is the contrast of 14 × 14 and 22 × 22 being
less than 0.018%. It is not difficult to find that the biggest
difference for the worst case which is made is the contrast of
18 × 18 and 22 × 22 being zero. In order to make the results
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Table 1: Convergence of frequency parameterΩ for angle-ply (0/90∘) rectangular laminate plates with free and CCCC boundary constraints
(Material I).

BC 𝑀×𝑁 Mode number
1 2 3 4 5 6 7 8

FFFF

8 × 8 3.147 3.147 3.162 5.392 10.299 10.563 13.076 13.07610 × 10 3.147 3.147 3.162 5.388 10.299 10.563 13.071 13.07112 × 12 3.147 3.147 3.162 5.386 10.299 10.563 13.069 13.06914 × 14 3.147 3.147 3.162 5.386 10.299 10.563 13.068 13.06816 × 16 3.147 3.147 3.162 5.385 10.299 10.563 13.068 13.06818 × 18 3.147 3.147 3.162 5.385 10.299 10.563 13.067 13.06720 × 20 3.147 3.147 3.162 5.385 10.299 10.563 13.067 13.06722 × 22 3.147 3.147 3.162 5.385 10.299 10.563 13.067 13.067

CCCC

8 × 8 13.581 24.121 24.121 31.944 38.209 38.448 44.141 44.14110 × 10 13.580 24.119 24.119 31.942 38.205 38.444 44.137 44.13712 × 12 13.580 24.119 24.119 31.941 38.204 38.443 44.135 44.13514 × 14 13.580 24.119 24.119 31.940 38.203 38.443 44.134 44.13416 × 16 13.580 24.118 24.118 31.940 38.203 38.443 44.134 44.13418 × 18 13.580 24.118 24.118 31.940 38.203 38.442 44.133 44.13320 × 20 13.580 24.118 24.118 31.940 38.203 38.442 44.133 44.13322 × 22 13.580 24.118 24.118 31.940 38.203 38.442 44.133 44.133

Table 2: Frequency parametersΩ for angle-ply (0/90∘/0) square plate with simply supported boundary constraints and different foundation
parameters and length-thickness ratios (Material II).

𝑘𝑊 𝑘𝑆 Method 𝑎/ℎ
50 20 10 5

0 0
Shen et al. [67] 18.689 17.483 14.702 10.263

Present 18.645 17.501 14.730 10.247
Error (%) 0.239 0.101 0.193 0.154

100 0
Shen et al. [67] 21.152 20.132 17.753 14.244

Present 21.155 20.148 17.776 14.233
Error (%) 0.016 0.078 0.129 0.078

100 10
Shen et al. [67] 25.390 24.536 22.596 19.879

Present 25.393 24.549 22.614 19.870
Error (%) 0.013 0.052 0.080 0.047

more accurate, all the truncated values of𝑀 and𝑁 are 18 in
the next calculations.

3.2. The Uniform Supported Plate on Elastic Foundations. In
this section, free and forced vibration characteristics of the
thin and moderately thick plate are discussed. The accuracy
of the present method is verified by being compared with the
results of Shen et al. [67].The first frequency parametersΩ of
a three-layered square plate which are simply supported and
rest on different elastic foundations are displayed in Table 2.
From the table, we can see that the first frequency increases
when the two kinds of foundation parameters and the length-
thickness ratios 𝑎/ℎ increase. In addition, this method is also
applicable to the analysis of thin plates. In Table 3, the first six
frequency parametersΩ of the two angle-ply (0/90∘) clamped
square thin plates on the Winkler foundation are given.
The geometry parameters of the plate layers are 𝑎/𝑏 = 1,

ℎ/𝑏 = 0.002, and the material type is Material II. The results
obtained by the presented method are in good agreement
with the FEM results.

For laminated plate on elastic Pasternak foundation, it is
significant to study the change of natural frequency under
various boundary conditions. Table 4 shows the first three
frequency parameters Ω for the two-layered [+45∘/−45∘]
rectangular plate. It lists the change of Ω of the plate which
rests on the elastic Pasternak-type foundation. There are six
kinds of boundary constraints, that is, FFFF, FSFS, FCFC,
SSSS, and CCCC. Five kinds of anisotropic ratios 𝐸1/𝐸2

are given, which are 10, 20, 30, 40, and 50. In addition,
two foundation parameters are 𝑘𝑊 = 100 and 𝑘𝑆 = 10,
respectively. An interesting phenomenon is that the increase
of anisotropic ratio has little effect on the natural frequency.
But the frequency parameters increase in general with the
binding force of the BC increasing as exhibited in Table 4.
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Table 3: Frequency parameterΩ for angle-ply (0/90∘) square thin plate on theWinkler foundationwith CCCCboundary condition (Material
II).

𝑘𝑊 Method Mode shape
1 2 3 4 5 6

0 Present 24.138 49.879 49.879 68.085 92.529 92.703
FEM 24.281 50.210 50.210 68.589 93.418 93.503

10 Present 24.344 49.979 49.979 68.159 92.583 92.757
FEM 24.488 50.412 50.412 68.664 93.502 93.658

100 Present 26.127 50.871 50.871 68.816 93.068 93.240
FEM 26.085 51.311 51.311 69.362 93.938 94.081

Table 4: Frequency parameters Ω for angle-ply (+45∘/−45∘) rectangular plate with different BC and anisotropic degrees.

𝐸1/𝐸2 Mode number Boundary condition
FFFF FSFS FCFC SSSS SCSC CCCC

10
1 10.000 15.642 17.433 32.963 35.789 39.335
2 14.289 24.010 25.816 44.438 46.692 49.321
3 22.965 34.155 36.133 59.647 61.544 63.734

20
1 10.000 15.947 17.864 35.833 38.249 41.351
2 14.315 25.272 26.912 48.419 50.112 52.108
3 23.021 36.639 39.319 64.457 65.724 67.269

30
1 10.000 16.194 18.225 37.841 40.020 42.822
2 14.334 26.253 27.782 51.054 52.433 54.058
3 23.058 38.118 40.927 67.556 68.497 69.683

40
1 10.000 16.409 18.542 39.381 41.388 43.956
2 14.348 27.069 28.510 52.985 54.153 55.523
3 23.085 39.216 42.035 69.768 70.511 71.466

50
1 10.000 16.604 18.825 40.616 42.485 44.862
2 14.359 27.770 29.137 54.476 55.488 56.671
3 23.105 40.097 42.891 71.438 72.050 72.846

The effects of the boundary spring stiffness on free vibra-
tion behaviors of the laminated plate are investigated based
on parametric study, which can deepen the understanding.
Five elastic boundary restraint ratios are Γ𝛽 (𝛽 = 𝑢, V, 𝑤,𝜙𝑥, and 𝜙𝑦), that is, Γ𝑢 = 𝑘𝑢/𝐷; ΓV = 𝑘V/𝐷; Γ𝑤 =𝑘𝑤/𝐷; Γ𝑥 = 𝐾𝑥/𝐷; Γ𝑦 = 𝐾𝑦/𝐷. 𝐷 is the structural
stiffness coefficient, whose expression is 𝐷 = 𝐸2ℎ3/12(1 −𝜇122). Figure 4 exhibits the curves of lowest three frequency
parameters Ω with the change of restraint parameters for
the laminated composite rectangular plates resting on the
elastic foundation. The unsymmetrical lamination scheme
[45∘/−45∘/45∘/−45∘] of the composite plate is brought. The
laminated plates are supported by a set of spring component
on the four edges with stiffness values varying from 10−8𝐷
to 1012𝐷. The geometry constants of the plate layers are𝑎/𝑏 = 2, ℎ/𝑏 = 0.2, and the material type is Material II.
Two foundation parameters are 𝑘𝑊 = 10 and 𝑘𝑆 = 10,
respectively. From the figures, it can be seen clearly that when
the boundary spring stiffness parameter is less than 10−2𝐷,
the change of the spring stiffness values has little effect on
the natural frequency of the laminated plate. The laminated

plate frequency will increase quickly with the increase of the
stiffness when the value changes between 10−2𝐷 and 103𝐷.
But when the value is more than 103𝐷, the natural frequency
of the plate is almost constant. In addition, we can also
find that the greatest impact on the frequency is the spring
parameters Γ𝑢 and ΓV. For Γ𝑥 and Γ𝑦, they almost have no
effect on the frequency. The interesting thing is that Γ𝑤 has
no effect on the first two frequencies, while the effect on the
third frequency is greater than the elastic spring parameters
of Γ𝑢 and ΓV.

As mentioned earlier, the isotropic plates can be easily
obtained by letting 𝐸1 = 𝐸2 and 𝐺12 = 𝐺13 = 𝐺23 = 𝐸1/(2 +2𝜇12). Figure 5 gives the transverse vibration displacement
level on 𝑧 direction of isotropic plates in the frequency range
of 0–800Hz by exerting a harmonic point force on the simple
supported plate. The amplitude of the point force is 1 N. It
will be applied to the following cases of forced vibrations.
The position of point force is at (𝑎/10, 𝑏/10). The positions of
the two observation points are at (𝑎/2, 𝑏/2) and (7𝑎/8, 7𝑏/8).
Material parameters of plate are 𝐸1 = 𝐸2 = 1.85𝑒11N/m2,𝜇12 = 0.3, and 𝜌 = 1600 kg/m2. The geometry parameters of
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Figure 4: Frequency parameters Ω versus elastic spring stiffness parameter Γ for the plate with uniform boundary.
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Figure 5: Vibration displacement response of the simple support isotropic plate with varying thickness.

the plate are 𝑎/𝑏 = 1, ℎ1/𝑏 = 0.01, and ℎ2/𝑏 = 0.005. The
results obtained by the present method are compared with
those obtained by FEMwhich show good agreement. It shows
that this method is also applicable to the thin plate structures.
As we can see from Figure 5, the thickness of the plate has
a great effect on the displacement response. The vibration
displacement level increases with the decrease of the plate
thickness.

In order to further study the effect of elastic support on
the transverse vibration response of the four-layered [0/90∘/
0/90∘] rectangular plate, three elastic boundary conditions
are proposed according to Figure 4. They are 𝐸1 = 10−1𝐷,𝐸2 = 101𝐷, and 𝐸3 = 102𝐷. The geometry constants of
the plate layers are 𝑎/𝑏 = 2, ℎ/𝑏 = 0.2, and the material
type isMaterial II. Two foundation parameters are 𝑘𝑊 = 100
and 𝑘𝑆 = 100, respectively. The position of point force is at

(𝑎/8, 𝑏/8). The positions of the two observation points are at
(𝑎/4, 𝑏/4) and (7𝑎/8, 7𝑏/8). It can be seen from Figure 6 that
the values of natural frequencies increase in the frequency
range of 0–1000Hz with the increase of the boundary springs
stiffness. Moreover, the vibration displacements decrease
with the increase of the boundary springs stiffness.

3.3. The Multipoints Supported Plate on Elastic Foundations.
In this section, the free and forced vibrations of laminated
plates on elastic foundation with various multipoints sup-
ported boundary constraints are investigated. For this plate
model, the geometrical dimensions are 𝑎 = 𝑏 = 1m, ℎ =0.2m, and thematerial type isMaterial II. In order to simplify,
various constraint values of multipoints supports are set. For
example, K7 expresses that the stiffness value of five kinds
of spring is 107. As shown in Table 5, the first six of Ω for
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Table 5: Frequency parameter Ω for angle-ply (0/90∘) square plate with 8-point elastic supported boundary constraints and different
foundation parameters (Material II).

𝑘𝑊 𝑘𝑆 Method Mode shape
1 2 3 4 5 6

0 0 Present 1.185 1.218 1.218 1.923 2.944 2.944
FEM 1.202 1.219 1.219 1.856 2.962 2.962

10 0 Present 1.218 1.218 1.923 3.377 4.280 4.280
FEM 1.219 1.219 1.856 3.374 4.388 4.388

100 0 Present 1.218 1.218 1.924 10.070 10.254 10.254
FEM 1.219 1.219 1.856 10.006 10.625 10.625
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Figure 6: Vibration displacement response of the laminated foundation plate with various elastic supports.

the plate model under consideration with 8-point support,
resting on the Winkler foundations, by using the method
proposed in this paper are compared with the results of
numerical calculation which use the ABAQUS model. The
results of the two solutions are in good agreement with
K7 elastic supported boundary conditions. Besides, there is
a cognitive phenomenon that the frequency parameters Ω
increase gradually, especially after the fourth frequency, when
the Winkler parameter 𝑘𝑊 increases.

Based on the conclusions drawn from Table 5, we have
proved the accuracy of the presentmethod. Sowewill directly
give some frequency values of the antisymmetric laminated
plate with the 8-point K7 elastic supports under the elastic
Pasternak foundation. Table 6 shows some of the frequency
parameters of the two kinds of cross-ply square plates, that
is, angle-ply [0/90∘] and [0/90∘/0/90∘]. This plate model is
the same as the model considered in Table 4. It is not hard
to find that the natural frequency increases when foundation
parameters increase, and the effect of the Winkler parameter𝑘𝑊 on the plate frequency is much larger than the Pasternak
foundation parameter 𝑘𝑠. In addition, the frequency of the
four-layered plate is a little bigger than the frequency of the

two-layered plate. In the following research, we will give the
frequency of the plate on the elastic foundation changingwith
the increase of the number of layers.

In this part, we discuss the effect of boundary spring
stiffness on the plate vibration. Here, we set up five kinds
of elastic boundary restraint parameters Γ𝛽 (𝛽 = 𝑢, V, 𝑤,𝜙𝑥, and 𝜙𝑦) of multipoints supports, just like the param-
eters in Figure 4. Figure 7 exhibits the curves of lowest
three frequency parameters Ω with the change of restraint
parameters of the laminated composite rectangular plates
resting on the elastic foundation.The symmetrical lamination
scheme [0/90∘/0/90∘/0] of the composite plate is studied.This
laminated plate is supported by a set of spring components
on the 8 points with stiffness values varying from 10−8𝐷
to 1012𝐷. The geometry constants of the plate layers are𝑎/𝑏 = 1, ℎ/𝑏 = 0.2. The material properties and the
nondimensional foundation parameters are same as the
parameters in Figure 4. From the figures, we can clearly see
that the growth trend of the five parameters curves is the same
as the growth trend in Figure 4. But the different place is that
the effect of Γ𝑤 on the third frequency is same as the elastic
spring parameters Γ𝑢 and ΓV in Figure 7. Besides, frequencies
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Table 6: Frequency parameterΩ for two cross-ply square plates with 8-point elastic supported boundary constraints and different foundation
parameters (Material II).

𝑘𝑊 𝑘𝑆 0/90∘ 0/90∘/0/90∘

2 4 6 2 4 6

0
0 1.217 1.923 2.944 1.219 1.926 3.146
10 1.218 1.924 10.531 1.219 1.926 10.648
100 1.218 1.924 22.804 1.219 1.926 23.149

10
0 1.218 3.377 4.280 1.219 3.379 4.423
10 1.218 3.385 10.982 1.219 3.385 11.094
100 1.218 3.390 22.804 1.219 3.390 23.149

100
0 1.218 10.070 10.254 1.219 10.071 10.316
10 1.218 10.073 14.414 1.219 10.073 14.501
100 1.218 10.074 22.804 1.219 10.074 23.149
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Figure 7: Frequency parameters Ω versus elastic parameter Γ for the plate with 8-point supported boundary conditions.

are different. It shows that the different supports have a great
influence on the frequency.

As we all know, the bearing capacity of the composite
lamina is directly influenced by the fibers direction and the
layer’s number. Therefore, it is of great significance to study
the effect of layer’s number and angles on the vibration
characteristics of laminated plates on the elastic foundations.
Figure 8 depicts the first three-order frequency parametersΩ of the laminated plate on the Pasternak-type foundation.
The schemes of layer’s number and angles are [0/𝜃]𝑛, where𝑛 stands for the half of the layer’s number and 𝜃 is the angle.
In this figure, there are four kinds of angle schemes which are𝜃 = 30∘, 45∘, 60∘, and 90∘. According to Figure 7, the clamped
boundary constraint is simulated by setting the values of
five parameters to greater than 103𝐷. Therefore, the elastic
boundary restraint parameter Γ𝛽 (𝛽 = 𝑢, V, 𝑤, 𝜙𝑥, and 𝜙𝑦)
is 106. The layers of the plate have equal thickness and the
material type is Material II. The geometric parameters are𝑎/𝑏 = 2, ℎ/𝑏 = 0.2. In addition, two linear foundation
parameters are 𝑘𝑊 = 100 and 𝑘𝑆 = 10. Initially, the
frequencies begin to increase rapidly with the increase of
layer’s number. Then, the frequencies tend to be stable until

the number of layers exceeds 12. For the first and second
frequencies, the values increase when the angles increase.
However, this phenomenon does not apply to the third-order
frequency.

The laminated plates on the elastic foundation with
various multipoints supports extensively exist in engineering
applications, like point supported glass curtain wall, spot-
welded plate, and so on. This requires us to understand
the vibration characteristics of multipoint supported plate.
Figure 9 considers the multipoints supported plate resting on
the Pasternak foundation.These points are evenly distributed
on the four edges. The boundary restraint parameter Γ𝛽 (𝛽 =𝑢, V, 𝑤, 𝜙𝑥, and 𝜙𝑦) is 106 and the two foundation parameters
are 𝑘𝑊 = 100 and 𝑘𝑆 = 10. The geometrical dimensions
and material properties are the same as Figure 8. Based
on the conclusions drawn from Figure 8, the lowest four
frequency parameters Ω of the [0/45∘]6 layered plate which
is rested on Pasternak-type foundation against the number of
points 𝑞 are depicted in Figure 9. In addition, we also give
the Ω of the same plate model with the equivalent uniform
support as the contrast data.The number of supported points
on the four edges gradually increases from 8 to 70. When
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Figure 8: Frequency parameters Ω versus number of layers 𝑛 for a [0/𝜃]𝑛 layered plate with middle-points supported boundary conditions.
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Figure 9: Frequency parameters Ω versus points number 𝑞 for layered plate with multipoints supported boundary conditions.

the number of supported points increases, the first four
frequency parameters increase firstly. Then, they tend to
be stable and are similar to the frequencies of the same
plate with uniform support when the number of points
exceeds 48. The biggest difference of the worst case which
is made is the contrast of 44 points and uniform support
one being less than 0.182%. Then the biggest difference of
the worst case which is made is the contrast of 48 points
and uniform support one being about 0.069%. So, the natural
frequencies of these point supports are finally converged
to the ones of the corresponding uniform supported plate.
Therefore, the multipoints support can be used to replace the
uniform boundary conditions. For example, multiple bolts

are tightened to simulate the uniform clamped boundary
conditions in the experiment.

Figure 10 gives the transverse vibration displacement
level on 𝑧 direction of isotropic plates in the frequency
range of 0–400Hz. The plate with simple support on the
four endpoints is encouraged by a harmonic point force.
The geometry parameters and material parameters of plate
are same as Figure 5. The position of point force is at
(𝑎/10, 𝑏/10), and the two observation points are at (𝑎/2,𝑏/2) and (7𝑎/8, 7𝑏/8), respectively. The results obtained by
FEM are given here in order to verify the accuracy of the
present method. The vibration response curves at different
observation points are very different.These rules are the same
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(b) Displacement response at (7𝑎/8, 7𝑏/8)

Figure 10: Vibration displacement response of the simple supported isotropic plate on endpoints with varying thickness.

as those in Figure 5. It should be pointed out that the number
of resonant peaks obviously increases at the observation point
which is far from the position of point force.

Figure 11 studies the effect of elastic foundation parame-
ters on the vibration response of the plate with 8-point elastic
support. The five kinds of combinations are 𝑘𝑊 = 10 and𝑘𝑆 = 0, 𝑘𝑊 = 10 and 𝑘𝑆 = 10, 𝑘𝑊 = 10 and 𝑘𝑆 = 50,𝑘𝑊 = 50 and 𝑘𝑆 = 0, and 𝑘𝑊 = 100 and 𝑘𝑆 = 0. The
boundary condition of plate is 𝐸2𝐸2𝐸2𝐸2. The geometry
constants of the plate layers are 𝑎/𝑏 = 1, ℎ/𝑏 = 0.2,
and the material type is Material II. The position of point
force is at (𝑎/5, 𝑏/5). The positions of the two observation
points are at (2𝑎/5, 2𝑏/5) and (7𝑎/10, 7𝑏/10). Four groups
of comparison curves of vibration displacement levels in
the frequency range of 0–1500Hz are given in Figure 11. It
shows the vibration responsewith the change ofWinkler-type
foundation parameters 𝑘𝑊 in (a) and (b).With the increase of
the Winkler parameter 𝑘𝑊, the natural frequency increases,
the displacement response wave moves back in the frequency
domain, and the wave crest is attenuated. In (c) and (d) of
Figure 11, the effect of Pasternak parameter 𝑘𝑆 on the vibration
response of plate is studied. As we can see, the displacement
wave moves back in the frequency domain with the increase
of 𝑘𝑆. Moreover, there is an interesting finding that the peak
value is largest when the foundation combination is 𝑘𝑊 = 10
and 𝑘𝑆 = 50.

At the end of this paper, the three-dimensional view
models are adopted to understand the vibration characteris-
tics of multipoints supported laminated plates on the elastic
Pasternak foundations. The geometric dimensions of these
moderately thick [0/45∘]6 layered plates are 𝑎 = 𝑏 = 1m, ℎ =0.2m, and thematerial properties are the same as thematerial
I. Five boundary restraint parameters are Γ𝛽 = 106 (𝛽 = 𝑢, V,𝑤, 𝜙𝑥, and 𝜙𝑦). In addition, two linear foundation parameters
are 𝑘𝑊 = 10 and 𝑘𝑆 = 10, respectively. For comparison,

mode shapes of the uniform supported plate on the Pasternak
foundation and uniform supported plate without foundation
are also given in Figure 12. As shown in Figure 12, the mode
shapes tend to approach uniform boundary conditions when
the number of points increases gradually. In addition, we can
intuitively see the effect of the elastic foundation on themode
shapes of plate.

4. Conclusions

This paper extends an improved Fourier series solution to
solve the free and forced vibration analysis of the moderately
thick laminated rectangular plate on the elastic Winkler
and Pasternak foundations which has various uniform and
multipoints supported boundary constraints. The five dis-
placement functions are all expressed as a series of two-
dimensional Fourier series which can ignore the influence of
boundary conditions.The introduction of two supplementary
polynomials of the displacement functions can effectively
eliminate the discontinuous or jumping phenomenon on
the boundaries. The formulations are based on FSDT and
the interaction of plate-foundation model and the artificial
spring technique. The different boundary constraints can be
easily realized by setting different elastic restraint stiffness. It
can effectively simulate the boundary conditions of the plate
structures in real world. The results of the present method
show good agreement with the results of existing literatures
andFEM.The results of free vibration for thin andmoderately
thick plates with various foundation parameters, different
uniform boundary conditions, and multipoint supports are
examined in this investigation. In addition, the lamination
schemes and geometric parameters have shown a great
influence on the vibration frequency of the plate. The effects
of the increase of layer’s number, changes of the laying angle,
and increase of the number of supported points on natural
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(a) Displacement response at (2𝑎/5, 2𝑏/5)
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(b) Displacement response at (7𝑎/10, 7𝑏/10)
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(c) Displacement response at (2𝑎/5, 2𝑏/5)
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(d) Displacement response at (7𝑎/10, 7𝑏/10)

Figure 11: Vibration displacement response of the 8-point elastic supported laminated plate on the various elastic foundations.

frequency of the plates are presented. The forced vibration
response of plate is studied by applying an external harmonic
point force. Vibration displacement response of the plate with
various thicknesses, elastic boundary constraints, and elastic
foundation parameters is investigated, which can provide a
benchmark for the future research.

Appendix

Detailed Expressions of Matrices K, M, and F

The specific expressions of stiffness matrix K can be written
as follows:

K = K𝑆 + K𝐵 + K𝐵𝐶 + K𝑈𝑓
+ K𝑆𝑃

=
[[[[[[[[[
[

K𝑆
𝑢,𝑢 K𝑆

𝑢,V 0 0 0
(K𝑆

𝑢,V)𝑇 K𝑆
V,V 0 0 0

0 0 K𝑆
𝑤,𝑤 K𝑆

𝑤,𝜙𝑥
K𝑆

𝑤,𝜙𝑦

0 0 (K𝑆
𝑤,𝜙𝑥
)𝑇 K𝑆

𝜙𝑥,𝜙𝑥
K𝑆

𝜙𝑥,𝜙𝑦

0 0 (K𝑆
𝑢,V)𝑇 (K𝑆

𝜙𝑥,𝜙𝑦
)𝑇 K𝑆

𝜙𝑦 ,𝜙𝑦

]]]]]]]]]
]

+
[[[[[[[
[

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 K𝐵

𝜙𝑥 ,𝜙𝑥
K𝐵

𝜙𝑥,𝜙𝑦

0 0 0 (K𝐵
𝜙𝑥,𝜙𝑦

)𝑇 K𝐵
𝜙𝑦,𝜙𝑦

]]]]]]]
]
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Figure 12: Mode shapes of multipoints supported laminated plate on the Pasternak foundation.
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+
[[[[[[[[[[[
[

0 0 0 K𝐵𝑆
𝑢,𝜙𝑥

K𝐵𝑆
𝑢,𝜙𝑦

0 0 0 K𝐵𝑆
V,𝜙𝑥 K𝐵𝑆

V,𝜙𝑦

0 0 0 0 0

(K𝐵𝑆
𝑢,𝜙𝑥
)𝑇 (K𝐵𝑆

𝑢,𝜙𝑦
)𝑇 0 0 0

(K𝐵𝑆
V,𝜙𝑥)𝑇 (K𝐵𝑆

V,𝜙𝑦)𝑇 0 0 0

]]]]]]]]]]]
]

+
[[[[[[[[[[
[

K𝑆𝑃
𝑢,𝑢 0 0 0 0

0 K𝑆𝑃
V,V 0 0 0

0 0 K𝑈𝑓
𝑤,𝑤 + K𝑆𝑃

𝑤,𝑤 0 0

0 0 0 K𝑆𝑃
𝜙𝑥,𝜙𝑥

0

0 0 0 0 K𝑆𝑃
𝜙𝑦 ,𝜙𝑦

]]]]]]]]]]
]

K𝑆
𝑢,𝑢 ∫𝑎

0
∫𝑏

0
{𝐴11 (𝜕P𝜕𝑥)

2 + 𝐴66 (𝜕P𝜕𝑦 )
2

+ 2𝐴16 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 )}𝑑𝑥𝑑𝑦,
K𝑆

𝑢,V ∫𝑎

0
∫𝑏

0
{𝐴16 (𝜕P𝜕𝑥)

2 + 𝐴26 (𝜕P𝜕𝑦 )
2

+ 𝐴12 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 ) + 𝐴66 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 )}𝑑𝑥𝑑𝑦,

K𝑆
V,V = ∫𝑎

0
∫𝑏

0
{𝐴66 (𝜕P𝜕𝑥)

2 + 𝐴22 (𝜕P𝜕𝑦 )
2

+ 2𝐴26 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 )}𝑑𝑥𝑑𝑦,

K𝑆
𝑤,𝑤 = ∫𝑎

0
∫𝑏

0
{𝜅𝐴44 (𝜕P𝜕𝑦 )

2 + 𝜅𝐴55 (𝜕P𝜕𝑥)
2

+ 2𝜅𝐴45 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 )}𝑑𝑥𝑑𝑦,
K𝑆

𝑤,𝜙𝑥
= ∫𝑎

0
∫𝑏

0
{𝜅𝐴55P(𝜕P𝜕𝑥)

+ 𝜅𝐴45P(𝜕P𝜕𝑦 )}𝑑𝑥𝑑𝑦,
K𝑆

𝑤,𝜙𝑦
= ∫𝑎

0
∫𝑏

0
{𝜅𝐴44P(𝜕P𝜕𝑦 )

+ 𝜅𝐴45P(𝜕P𝜕𝑥)}𝑑𝑥𝑑𝑦,

K𝑆
𝜙𝑥 ,𝜙𝑥

= ∫𝑎

0
∫𝑏

0
{𝜅𝐴55P

2} 𝑑𝑥 𝑑𝑦,
K𝑆

𝜙𝑥 ,𝜙𝑦
= ∫𝑎

0
∫𝑏

0
{𝜅𝐴45P

2} 𝑑𝑥 𝑑𝑦,

K𝑆
𝜙𝑦,𝜙𝑦

= ∫𝑎

0
∫𝑏

0
{𝜅𝐴44P

2} 𝑑𝑥 𝑑𝑦,
K𝐵

𝜙𝑥,𝜙𝑥
= ∫𝑎

0
∫𝑏

0
{𝐷11 (𝜕P𝜕𝑥)

2 + 𝐷66 (𝜕P𝜕𝑦 )
2

+ 2𝐷16 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 )}𝑑𝑥𝑑𝑦,
K𝐵

𝜙𝑥,𝜙𝑦
= ∫𝑎

0
∫𝑏

0
{𝐷16 (𝜕P𝜕𝑥)

2 + 𝐷26 (𝜕P𝜕𝑦 )
2

+ 𝐷12 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 ) + 𝐷66 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 )}𝑑𝑥𝑑𝑦,
K𝐵

𝜙𝑦,𝜙𝑦
= ∫𝑎

0
∫𝑏

0
{𝐷66 (𝜕P𝜕𝑥)

2 + 𝐷22 (𝜕P𝜕𝑦 )
2

+ 2𝐷26 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 )}𝑑𝑥𝑑𝑦,
K𝐵𝑆

𝑢,𝜙𝑥
= ∫𝑎

0
∫𝑏

0
{𝐵11 (𝜕P𝜕𝑥)

2 + 𝐵66 (𝜕P𝜕𝑦 )
2

+ 2𝐵16 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 )}𝑑𝑥𝑑𝑦,
K𝐵𝑆

𝑢,𝜙𝑦
= ∫𝑎

0
∫𝑏

0
{𝐵16 (𝜕P𝜕𝑥)

2 + 𝐵26 (𝜕P𝜕𝑦 )
2

+ 𝐵12 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 ) + 𝐵66 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 )}𝑑𝑥𝑑𝑦,
K𝐵𝑆

V,𝜙𝑥 = ∫
𝑎

0
∫𝑏

0
{𝐵16 (𝜕P𝜕𝑥)

2 + 𝐵26 (𝜕P𝜕𝑦 )
2

+ 𝐵12 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 ) + 𝐵66 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 )}𝑑𝑥𝑑𝑦,
K𝐵𝑆

V,𝜙𝑦 = ∫
𝑎

0
∫𝑏

0
{𝐵66 (𝜕P𝜕𝑥)

2 + 𝐵22 (𝜕P𝜕𝑦 )
2

+ 2𝐵26 (𝜕P𝜕𝑥)(𝜕P𝜕𝑦 )}𝑑𝑥𝑑𝑦,
K𝑈𝑓

𝑤,𝑤 = ∫𝑎

0
∫𝑏

0
{𝐾𝑊P2 + 𝐾𝑆 (𝜕P𝜕𝑥)

2

+ 𝐾𝑆 (𝜕P𝜕𝑦 )
2}𝑑𝑥𝑑𝑦.

(A.1)
For the elastic uniform boundary conditions of the plate,

the stiffness matrix K𝑆𝑃1 can be expressed as

K𝑆𝑃1
𝑢,𝑢 = ∫+ℎ/2

−ℎ/2

{{{{{
∫𝑏

0
𝑘𝑢𝑥0P2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=0

𝑑𝑦 + ∫𝑏

0
𝑘𝑢𝑥𝑎P2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑎

𝑑𝑦

+ ∫𝑎

0
𝑘𝑢𝑦0P

2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑦=0

𝑑𝑥 + ∫𝑎

0
𝑘𝑢𝑦𝑏P

2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑦=𝑏

𝑑𝑥}}}}}
𝑑𝑧,
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K𝑆𝑃1
V,V = ∫+ℎ/2

−ℎ/2

{{{{{
∫𝑏

0
𝑘V𝑥0P2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=0

𝑑𝑦 + ∫𝑏

0
𝑘V𝑥𝑎P2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑎

𝑑𝑦

+ ∫𝑎

0
𝑘V𝑦0P

2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑦=0

𝑑𝑥 + ∫𝑎

0
𝑘V𝑦𝑏P

2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑦=𝑏

𝑑𝑥}}}}}
𝑑𝑧,

K𝑆𝑃1
𝑤,𝑤 = ∫+ℎ/2

−ℎ/2

{{{{{
∫𝑏

0
𝑘𝑤𝑥0P2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=0

𝑑𝑦 + ∫𝑏

0
𝑘𝑤𝑥𝑎P2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑎

𝑑𝑦

+ ∫𝑎

0
𝑘𝑤𝑦0P

2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑦=0

𝑑𝑥 + ∫𝑎

0
𝑘𝑤𝑦𝑏P

2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑦=𝑏

𝑑𝑥}}}}}
𝑑𝑧,

K𝑆𝑃1
𝜙𝑥,𝜙𝑥

= ∫+ℎ/2

−ℎ/2

{{{{{
∫𝑏

0
𝐾𝜙𝑥

𝑥0P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=0

𝑑𝑦 + ∫𝑏

0
𝐾𝜙𝑥

𝑥𝑎P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑎

𝑑𝑦

+ ∫𝑎

0
𝐾𝜙𝑥

𝑦0P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑦=0

𝑑𝑥 + ∫𝑎

0
𝐾𝜙𝑥

𝑦𝑏
P2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑦=𝑏

𝑑𝑥}}}}}
𝑑𝑧,

K𝑆𝑃1
𝜙𝑦,𝜙𝑦

= ∫+ℎ/2

−ℎ/2

{{{{{
∫𝑏

0
𝐾𝜙𝑦

𝑥0P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=0

𝑑𝑦 + ∫𝑏

0
𝐾𝜙𝑦

𝑥𝑎P2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥=𝑎

𝑑𝑦

+ ∫𝑎

0
𝐾𝜙𝑦

𝑦0P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑦=0

𝑑𝑥 + ∫𝑎

0
𝐾𝜙𝑦

𝑦𝑏
P2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑦=𝑏

𝑑𝑥}}}}}
𝑑𝑧.

(A.2)

For the elastic multipoints supported boundary condi-
tions of the plate, the stiffness matrix K𝑆𝑃2 can be expressed
as

K𝑆𝑃2
𝑢,𝑢

= 𝑁𝑅∑
𝑟=0

{{{{{
𝑘𝑢𝑥0P2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥=0,𝑦=𝑦𝑟

+ 𝑘𝑢𝑥𝑎P2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥=𝑎,𝑦=𝑦𝑟

+ 𝑘𝑢𝑦0P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑥𝑟 ,𝑦=0

+ 𝑘𝑢𝑦𝑏P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑥𝑟 ,𝑦=𝑏

}}}}}
,

K𝑆𝑃2
V,V

= 𝑁𝑅∑
𝑟=0

{{{{{
𝑘V𝑥0P2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥=0,𝑦=𝑦𝑟

+ 𝑘V𝑥𝑎P2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥=𝑎,𝑦=𝑦𝑟

+ 𝑘V𝑦0P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑥𝑟 ,𝑦=0

+ 𝑘V𝑦𝑏P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑥𝑟 ,𝑦=𝑏

}}}}}
,

K𝑆𝑃2
𝑤,𝑤

= 𝑁𝑅∑
𝑟=0

{{{{{
𝑘𝑤𝑥0P2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥=0,𝑦=𝑦𝑟

+ 𝑘𝑤𝑥𝑎P2⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥=𝑎,𝑦=𝑦𝑟

+ 𝑘𝑤𝑦0P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑥𝑟 ,𝑦=0

+ 𝑘𝑤𝑦𝑏P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑥𝑟 ,𝑦=𝑏

}}}}}
,

K𝑆𝑃2
𝜙𝑥,𝜙𝑥

= 𝑁𝑅∑
𝑟=0

{{{{{
𝐾𝜙𝑥

𝑥0P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=0,𝑦=𝑦𝑟

+ 𝐾𝜙𝑥
𝑥𝑎P

2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥=𝑎,𝑦=𝑦𝑟

+ 𝐾𝜙𝑥
𝑦0P

2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥=𝑥𝑟 ,𝑦=0

+ 𝐾𝜙𝑥
𝑦𝑏
P2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑥𝑟 ,𝑦=𝑏

}}}}}
,

K𝑆𝑃2
𝜙𝑦,𝜙𝑦

= 𝑁𝑅∑
𝑟=0

{{{{{
𝐾𝜙𝑦

𝑥0P
2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=0,𝑦=𝑦𝑟

+ 𝐾𝜙𝑦
𝑥𝑎P2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑎,𝑦=𝑦𝑟

+ 𝐾𝜙𝑦
𝑦0P

2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑥=𝑥𝑟 ,𝑦=0

+ 𝐾𝜙𝑦
𝑦𝑏
P2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑥=𝑥𝑟 ,𝑦=𝑏

}}}}}
.
(A.3)

The specific expressions of mass matrixM can be written
as follows:

M =
[[[[[[[[[
[

M𝑢,𝑢 0 0 M𝑢,𝜙𝑥
0

0 MV,V 0 0 MV,𝜙𝑦

0 0 M𝑤,𝑤 0 0

M𝑇
𝑢,𝜙𝑥

0 0 M𝜙𝑥,𝜙𝑥
0

0 M𝑇
V,𝜙𝑦 0 0 M𝜙𝑦 ,𝜙𝑦

]]]]]]]]]
]

=
[[[[[[[[[[
[

𝐼0P2 0 0 𝐼1P2 0
0 𝐼0P2 0 0 𝐼1P2

0 0 𝐼0P2 0 0

(𝐼1P2)𝑇 0 0 𝐼2P2 0

0 (𝐼1P2)𝑇 0 0 𝐼2P2

]]]]]]]]]]
]

.

(A.4)

The specific expressions of mass matrix F can be written
as follows:

F = [𝑓𝑢P 𝑓VP 𝑓𝑤P 𝑓𝜙𝑥P 𝑓𝜙𝑦P] . (A.5)

Nomenclature

𝑎, 𝑏, ℎ: Rectangular plate dimensions𝑘𝑢, 𝑘V, 𝑘𝑤: Linear springs stiffness𝑥, 𝑦, 𝑧: Plate coordinate variables𝐾𝑥, 𝐾𝑦: Rotational springs stiffness𝑢, V, 𝑤: Middle surface displacements𝜙𝑥, 𝜙𝑦: Rotations of transverse normal𝜀0𝑥𝑥, 𝜀0𝑦𝑦, 𝛾0𝑥𝑦: Normal and shear strains𝛾𝑥𝑧, 𝛾𝑦𝑧: Transverse shear strains𝜒𝑥𝑥, 𝜒𝑦𝑦, 𝜒𝑥𝑦: Curvature and twist changes𝜎𝑥𝑥, 𝜎𝑦𝑦: Normal stresses𝜏𝑦𝑧, 𝜏𝑥𝑧, 𝜏𝑥𝑦: Shear stresses𝐸1, 𝐸2: Young’s moduli with respect to
principle axes of lamina
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𝐺12, 𝐺13, 𝐺23: Shear moduli𝜇12, 𝜇21: Poisson’s ratios𝑁𝑥,𝑁𝑦,𝑁𝑥𝑦: Normal and shear force result-
ants𝜃: Fiber laying angle𝑀𝑥,𝑀𝑦,𝑀𝑥𝑦: Bending and twisting moment
resultants𝑄𝑥, 𝑄𝑦: Transverse shear force𝐴 𝑖𝑗,𝐷𝑖𝑗, 𝐵𝑖𝑗: Extensional, bending, and exten-
sional-bending stiffness coeffi-
cients

𝑄𝑘
𝑖𝑗: Lamina stiffness coefficients
𝐴𝑖

𝑚𝑛, 𝐵𝑖
𝑚𝑛, 𝐶𝑖

𝑚𝑛, 𝐷𝑖
𝑚𝑛, 𝐸𝑖

𝑚𝑛: Fourier coefficients expansions𝑄𝑘
𝑝𝑙: Material coefficients

A𝑚𝑛,B𝑚𝑛,C𝑚𝑛,D𝑚𝑛,E𝑚𝑛: Fourier coefficients vectors
P: Fourier series expansions vector
K,M, G, F: Stiffness, mass, coefficient, and

force matrices𝜅: Shear correction factor𝑘𝑊 = 𝐾𝑊𝑎4/𝐸2ℎ3: Nondimensional Winkler foun-
dation parameter𝐿 𝑖𝑗: Linear differential operator𝑘𝑆 = 𝐾𝑆𝑎4/𝐸2ℎ3: Nondimensional Pasternak foun-
dation parameter𝐹: Normal harmonic point force

Ω = 𝜔𝑎2√𝜌/𝐸2ℎ2: Nondimensional frequency pa-
rameter𝐾𝑤, 𝐾𝑠: Linear Winkler and Pasternak
foundation parameters.
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