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Because structures may be subject to unknown loads and may simultaneously involve unknown parameters and because simple
load identification or parameter identification algorithms cannot be applied under such conditions, it is necessary to seek al-
gorithms that can simultaneously identify unknown parameters and external loads of structures. *e sensitivity method is one of
them, and this paper extends this method to nonlinear structures. In addition, the key issues associated with the sensitivity method
are systematically studied, and suggestions for improvement are put forward, including the use of the difference method instead of
the derivative method to calculate the sensitivity, the use of a fixed regularization parameter instead of the traditional regu-
larization parameter calculation methods, and measures for guarantee of iterative convergence. *e improved sensitivity method
is applied to two types of nonlinear structures, and the effects of the regularization parameter, distribution of measured points,
response types, noise levels, and the magnitude of the perturbation on the identified results are discussed.

1. Introduction

Structural health monitoring [1] is widely used to assess
whether a structure is damaged and to estimate damage
location and degree. *erefore, structural health monitoring
often relies on damage identification algorithms [2]. In
general, the quantification of damage is often characterized
by the changes in structural parameters before and after the
damage occurs; thus, many damage identification algo-
rithms [3] first identify structural parameters and then
determine the damage degree by comparing the identified
value and design value.

*e inverse problem in structural dynamics involves two
main types: load identification [4] and parameter identifi-
cation [5], where the identification of one often requires the
other to be known. For engineering structures, because of
the limitations imposed by technical conditions, dynamic
loads are often very difficult to measure directly. Moreover,
many parameters cannot be accurately obtained through
simple tests, such as damping parameters, particularly when

the structure is damaged. *erefore, unknown parameters
and unknown loads often exist in a structure at the same
time.

Some early structural parameter identification theories
were developed without considering input information. For
example, Ibrahim [6] directly used the free vibration re-
sponse to identify structural parameters, and Toki et al. [7]
assumed that the end of the response under earthquake
excitation is free vibration. In addition, in the field of modal
parameter identification [8], it is usually assumed that the
input follows a Gaussian distribution, such as in the time
series analysis [9], natural excitation technique (NExT) [10],
and stochastic subspace identification (SSI) [11].

For the abovementioned reasons, algorithms for si-
multaneously identifying structural parameters and loads
have been developed. Maruyama and Hoshiya et al. [12, 13]
described a moving load by several parameters, such as the
moving speed and the load size, and introduced these pa-
rameters into the structural state equation; subsequently, the
extended Kalman filter (EKF) was used for the identification
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of loads and parameters. Yang et al. [14] proposed a -
recursive least-squares estimation with unknown input
(RLSE-UI) algorithm to identify unknown parameters and
input. Later, Yang and Huang [15] proposed a refined al-
gorithm referred to as adaptive sequential nonlinear least-
squares estimation with unknown input (ASNLSE-UI) for
real-time identification of damage and input, and a series of
experiments are performed to verify the applicability of this
algorithm [16]. Zhu and Law [17] proposed a two-step in-
version method to identify the moving loads and damage of
an Euler–Bernoulli beam. In that work, the Dirac function
was adopted to simulate cracks in a beam. Lu and Law [18]
proposed a composite algorithm based on response sensi-
tivity with respect to external loads and unknown param-
eters, referred to as the sensitivity method in this paper.
Zhang et al. [19, 20] identified loads and damage based on
the difference in responses between the undamaged and
damaged structure via the virtual deformation method
(VDM). Xu et al. [21] proposed an identification algorithm
referred to as weighted adaptive iterative least-squares es-
timation with incomplete measured excitations (WAILSE-
IME) to identify unknown parameters and unknown ex-
ternal loads. A learning coefficient and a weighted positive
definite matrix were introduced to improve the convergence
speed and accuracy.

Based on the basic idea of the sensitivity method proposed
in [18], this paper extends this method to nonlinear structures
and describes studies of three key issues associated with this
method, including the calculation of the sensitivity, the de-
termination of the regularization parameter, and iterative
convergence. *e improved sensitivity method is applied to
two types of nonlinear structures. In addition, the effects of
the regularization parameter, distribution of measured points,
response types, noise levels, and the magnitude of the per-
turbation on the identified results are discussed.

2. The Basic Idea of the Sensitivity Method for
a Nonlinear Structure

2.1. Calculation of the Sensitivity. For a multi-degree-of-
freedom nonlinear structure, the vibration equation can
be expressed as

M€y(t) + F[ _y(t), y(t), p] � Bff(t), (1)

where M is the mass matrix; €y(t), _y(t), and y(t) are the
acceleration, velocity, and displacement vectors, respec-
tively; p is the vector of unknown parameters; F is a non-
linear function of the displacement, velocity, and unknown
structural parameters; f(t) is the external load vector; andBf

is the allocation matrix associated with f(t).
*e i-th external load fi(t) can be orthogonally ex-

panded by the Legendre polynomials:

f
i
(t) � 􏽘

Nm

m�1
c

i
mLm(t), i � 1, 2, . . . , Nf􏼐 􏼑, (2)

where ci
m is the m-th orthogonal expansion coefficient of

fi(t); Lm(t) is the m-th Legendre polynomial; Nm is the
number of items of fi(t) expanded by the Legendre

polynomials; and Nf is the number of external loads. *e
Legendre polynomials can be written as
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where T indicates that the defined interval of the Legendre
polynomials is [0, T].

Substituting (2) into (1) yields

M€y(t) + F[ _y(t), y(t), p]
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(4)

where the superscript “()′” represents matrix transposition.
Because the mass is generally easy to measure and there

is no significant change in mass when a structure is dam-
aged, the following calculation assumes that the mass is
known. Meanwhile, suppose that the structure involves Nl

unknown parameters, denoted by pl(l � 1, 2, . . . , Nl). By
calculating the partial derivative of (4) with respect to ci

m and
pl, respectively, the following two equations can be obtained:
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(6)

After initial values are assumed for the unknown pa-
rameters and orthogonal expansion coefficients of loads,
€y(t), _y(t), and y(t) can be obtained by solving (4); then, the
sensitivity of the response with respect to orthogonal ex-
pansion coefficients of loads and unknown parameters can
be obtained by solving (5) and (6), respectively.

2.2. #e Establishment of and Solution to the Governing
Equation. First, the response is submitted to Taylor ex-
pansion at the initial values, and only the first-order items
are retained. Taking the acceleration as an example, the
following equation can be obtained:

€ya � L €yc( 􏼁 + 􏽘

Nf

i�1
􏽘

Nm

m�1

z€yc(t)

zci
m

Δci
m + 􏽘

Nl

l�1

z€yc(t)

zpl

Δpl, (7)

where €ya is the measured acceleration treated as a known
quantity; €yc is the acceleration calculated by (4); L is

2 Shock and Vibration



a mapping matrix selecting the response from €yc with the
same degrees of freedom as €ya; and Δci

m(m � 1, 2, . . . , Nm,

i � 1, 2, . . . , Nf) and Δpl(l � 1, 2, . . . , Nl) are the pertur-
bations of unknown parameters and orthogonal expansion
coefficients of loads, respectively.

*us, the governing equation for solving the unknown
parameters and loads can be established:

€ya − L €yc( 􏼁 � SfSp􏽨 􏽩
Δc

Δp
􏼨 􏼩, (8)

where Sf � [(z€yc(t)/zc11)(z€yc(t)/zc12) · · · (z€yc(t)/zc1Nm
)

(z€yc(t)/zc21) · · · (z€yc(t)/zc
Nf

Nm
)] and Sp � [(z€yc(t)/zp1)

(z€yc(t)/zp2) · · · (z€yc(t)/pNl
)] are the sensitivity matrices,

Δc � [Δc11Δc12 · · · Δc1Nm
Δc21 · · · ΔcNf

Nm
]′, and Δp � [Δp1

Δp2 · · · ΔpNl
]′.

*e above equation can be simplified as

Δ€y � S(Δα). (9)

Subsequently, (9) can be solved by the Tikhonov regu-
larization method [22]:

Δα � S′S + λE( 􏼁
−1S′(Δ€y), (10)

where λ> 0, which is the regularization parameter, and E is
an identity matrix. *e regularization parameter can be
calculated by the L-curve criterion [23] or the generalized
cross-validation (GCV) criterion [24].

Finally, the calculated Δα is added to the initial values of
the unknown parameters and orthogonal expansion co-
efficients of loads as the identified values at this iteration step
and the initial values at the next iteration step, and the next
iteration step is performed until the identified results meet
the convergence condition tolerance:

αk
i − αk−1

i( 􏼁

αk
i

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
< tolerance, (i � 1, 2, . . .), (11)

where αk
i and αk−1

i are the identified values of a certain
unknown quantity αi at the k-th and (k− 1)-th iteration
steps, respectively.

3. Key Issues Associated with the
Sensitivity Method

Even if the sensitivity method is extended to nonlinear
structures, the governing equation is still very simple, making
this method highly suitable for engineering applications.
However, certain key issues still deserve further study.

Based on the governing equation of the sensitivity
method, it can be observed that the most important step is
naturally the calculation of the sensitivity. From the per-
spective of solving the governing equation, the key issue is
the selection of the regularization method and de-
termination of the regularization parameter. In addition,
because the sensitivity method itself is an iterative algorithm,
it is necessary to study the iterative convergence.

3.1. Calculation of the Sensitivity. *e derivative method is
used to calculate sensitivity in [18], but the derivative

method is not always suitable. For example, for a single-
degree-of-freedom Bouc–Wen model structure, the vibra-
tion equation can be expressed as

m €y(t) + c _y(t) + kz(t) � f(t), (12)

where m, c, and k are the structural mass, damping, and
stiffness, respectively; €y(t) and _y(t) are the acceleration and
velocity, respectively; z(t) is the structural hysteretic dis-
placement and _z(t) � _y(t)− β| _y(t) || z(t)|n−1z(t)− c _y(t)

|z(t)|n; and β, c, and n are the Bouc–Wen model parameters.
Because the vibration equation of the Bouc–Wen model

structure contains absolute value terms, in calculating the
derivative of (12) with respect to unknown parameters and
orthogonal expansion coefficients of loads, it is necessary to
judge the positive and negative properties of the absolute
terms, which will bring great inconvenience.

*erefore, to make the sensitivity method more general,
the sensitivity is calculated using the difference method in
this paper. First, the initial values are assumed for the un-
known quantities in (4), and the response is calculated; then,
each unknown quantity is allowed to have a perturbation at
the initial value, and the response is calculated again; finally,
the difference between the two responses is treated as the
sensitivity of the response with respect to this unknown
quantity.

3.2. Selectionof theRegularizationMethodandDetermination
of theRegularizationParameter. Because of the inevitable ill-
condition of the matrix, many inverse problems are ill-
posed. In the field of dynamic load identification, the
most common way to solve ill-posed problems is via reg-
ularization methods, such as the Tikhonov regularization
method or truncated singular value decomposition (TSVD)
method [25]. However, regardless of which regularization
method is used, the most important step is the de-
termination of the regularization parameter; in this regard,
the most common methods are the GCV criterion and
L-curve criterion, as previously mentioned.

*e fundamental purpose of introducing regularization
is to suppress the effect of the noise contained in the re-
sponse. In the sensitivity method, as the iteration proceeds,
the identified values of unknown quantities gradually ap-
proach the true values; meanwhile, the calculated response
gradually approaches the measured response, which causes
Δ€y in (9) to contain less useful information, and noise
gradually becomes a major component, which is different
from the conventional load identification problem. A de-
tailed study of the regularization parameter is performed in
the examples herein provided.

3.3. Iterative Convergence. Under normal circumstances,
because there is no prior knowledge of certain structural
parameters and external loads, the assumed initial values
may include large errors compared with the true values, and
such large errors may lead to significant changes in struc-
tural parameters within initial few iteration steps, which may
cause the structural parameters to lose physical meaning.
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To solve this problem, it is necessary to introduce
a constraint on the identified parameters, that is, to de-
termine a constraint interval for the identified value of pl:

p
low
l <pl <p

up
l , l � 1, 2, . . . , Nl( 􏼁, (13)

where p
up
l and plow

l are the upper and lower bounds of the
identified value of pl, respectively. When the identified value
of pl in a certain iteration step exceeds the constraint in-
terval, this parameter is assigned the value identified in the
previous iteration step.

However, the constraint method cannot be applied to the
orthogonal expansion coefficients of loads. In addition, for
some structural parameters, such as damping and nonlinear
parameters, it is difficult to define a relatively small constraint
interval, causing the constraint method to lose some signifi-
cance. *e problem of iterative convergence is discussed in the
examples herein provided.

4. Evaluation of the Identified Results

Because the measured response in practical engineering
necessarily contains random noise, the presence of noise will
inevitably affect the identified results; that is, even if the
response contains the same level of noise, the identified
results are definitely not the same. *erefore, a single cal-
culation cannot accurately reflect the stability and accuracy
of a method.

*erefore, this paper first incorporates many sets of
noise with the same level but different time histories into
the response; then, all sets of the response are then used to
identify the unknown parameters and loads; finally,
the following equation is used to define the identified error
of pl

errpl
�

1
Nc

􏽘

Nc

i�1

ipiden
l −ptrue

l

ptrue
l

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, l � 1, 2, . . . , Nl( 􏼁, (14)

where ipiden
l and ptrue

l are, respectively, the identified value of
the i-th calculation and the true value of pl, and Nc is the
calculation times.

Similarly, the identified error of fj is defined by
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�����

�����2

ftrue
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�����

�����2

, j � 1, 2, . . . , Nf􏼐 􏼑,

(15)

where ifiden
j and ftrue

j are the identified value of the i-th
calculation and the true value of fj, respectively, and ‖ · ‖2
represents the 2 norms of a vector.

5. Nonlinear Model Examples

5.1. A Hard-Spring Model Structure. In this section, a ten-
storey shear frame structure is used as the calculation model,
as shown in Figure 1, and the numbers in Figure 1 are the
number of degrees of freedom.

By assembling the equilibrium equation at each degree of
freedom, the vibration equation of this hard-spring model
structure can be expressed as
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(16)

where αi(i � 1, 2, . . . , 10) is the stiffness hardening
coefficient.

In this paper, the solution to the structural positive
problem is calculated using the Runge–Kutta method [26].

Suppose that the mass mi � 100kg, the stiffness ki �

4000N/m, the damping ci � 60Ns/m, and the stiffness
hardening coefficient αi � 4m−2(i � 1, 2, . . . , 10). An un-
known load f(t) is applied to the top of the structure, and
f(t) � 1000 sin(1.5πt)N.

Suppose that the initial value of ki(i � 1, 2, . . . , 10) is
5000N/m, that of ci(i � 1, 2, . . . , 10) is 10Ns/m, that of
αi(i � 1, 2, . . . , 10) is 1m−2, and that of each orthogonal
expansion coefficient of the load is 1.

Without loss of generality, a larger constraint interval is
adopted for all unknown parameters. *e upper bound of

10

9

2

1

Figure 1: A ten-storey shear frame structure.
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the stiffness is 1.5 times its true value, and the lower bound is
0.5 times its true value; the upper bounds of the damping
and stiffness hardening coefficient are both 3 times their true
values, and the lower bounds are 0.

5.1.1. Study of the Regularization Parameter. For the dy-
namic load identification problem, the regularization pa-
rameter is crucial because it determines the accuracy of the
identified load. Because the sensitivity method itself is an
iterative algorithm, the regularization parameter not only
affects the accuracy but also determines the convergence
speed. *erefore, this section examines how the regulari-
zation parameter is determined for the sensitivity method.

*e Tikhonov regularization method is used, and the
regularization parameter is calculated by the GCV criterion.
*e acceleration of all degrees of freedom is used for the
calculation, the convergence condition is 1e-10, and 5%
noise is added to €y to simulate the measured response by the
following equation:

€yn � €y + level · std(€y) · rand, (17)

where €yn is the noise-polluted acceleration, level is the noise
level, std(·) represents the standard deviation of a vector,
and rand represents a Gaussian white noise sequence with
a mean value of zero and a standard deviation of one.

*e identified results converge after eight iteration steps,
and the regularization parameters of all iteration steps are
listed in Table 1. *e convergence processes of k1, c1 and α1
and a comparison of the identified load with the true load are
shown in Figure 2.

As shown in Table 1, for the sensitivity method, when
calculated using the GCV criterion, the regularization pa-
rameter varies greatly and the largest regularization pa-
rameter differs from the smallest regularization parameter
by approximately 20 orders of magnitude. At the last iter-
ation step, the regularization parameter is so large that the
identified results directly converge.

*erefore, this paper attempts to use a small fixed
regularization parameter to carry out the calculation and
takes 1e − 7 as the fixed regularization parameter. *e
convergence processes of k1, c1, and α1 and a comparison of
the identified load with the true load using the fixed reg-
ularization parameter are shown in Figure 3. In addition,
multiple calculations are performed using the GCV criterion
and the fixed regularization parameter, respectively, and the
identified errors are calculated through the evaluation
method defined in Section 4. Figure 4 compares the iden-
tified errors of all stiffness in two cases.

As shown in Figure 4, when a fixed regularization pa-
rameter is used for the calculation, the identified errors of all
stiffness are obviously smaller than those obtained when the
GCV criterion is used.*erefore, it can be concluded that for
the sensitivity method, there is no requirement to calculate
the regularization parameter in each iteration step.

To further verify the previous conclusion, different fixed
regularization parameters are selected, and the identified
errors are listed in Table 2. Because an excessive number of
structural parameters are identified in this example, to

reduce the amount of data, only the average values of the
identified errors of all stiffness, damping, and stiffness
hardening coefficients are listed.

With different fixed regularization parameters, the
identified errors are the same, indicating that for the sen-
sitivity method, the value of the regularization parameter
does not seriously affect the identified results.

Regarding convergence speed, when the value of the
fixed regularization parameter varies from 1e − 11 to 1e − 5,
each calculation requires only 14 iteration steps, but when
the fixed regularization parameter is 1e − 4, the average
number of iteration steps required increases by a factor of
approximately two.When the fixed regularization parameter
is 1e − 3, the average number of iteration steps required
increases to 296, illustrating that the fixed regularization
parameter should not be very large.

In addition, some references [27, 28] have also made
studies on the regularization parameter of the sensitivity
method, but the structures adopted are all linear. Moreover,
some studies [29, 30] show that, when the acceleration is used
to identify the load of a linear structure, a low-frequency drift
may appear in the identified load and a larger regularization
parameter can suppress the drift to some extent. In the ex-
amples using nonlinear structures in this paper, there is no
obvious low-frequency drift. To get a more general conclu-
sion, further studies are needed on the effect of the regula-
rization parameter on the sensitivity method.

5.1.2. Effect of Response Types. In most cases, the dis-
placement or acceleration is used to solve inverse problems
in structural dynamics. To the best of the authors’ knowl-
edge, no quantitative comparison of the effect of these two
types of response in the field of composite identification has
been reported. *erefore, this paper also examines this
problem.

In this section, the acceleration and displacement of all
degrees of freedom are selected, and 5% noise is added to the
response. Multiple calculations are performed to obtain the
identified errors, as listed in Table 3.

It is worth noting that when the displacement is used, the
identified error of the load is very large at both ends, as
shown in Figure 5, but most of the identified load is very
close to the true load. *e reason is that the orthogonal
expansion has poor fitting results at the two ends of a se-
quence.*erefore, data for 0.5 s at both ends of the identified
load are first cut off; then, the identified error of the load is
calculated using the remaining part.

When the acceleration is used, the identified errors are
much smaller than those obtained when the displacement is
used.*emain reason is that the displacement is obtained by
integrating the acceleration twice, which causes the dis-
placement to become very smooth but lose much useful
information. However, as mentioned earlier, when the ac-
celeration is used to identify the load of a linear structure,
a low-frequency drift may appear, which will make the
identified results worse. *erefore, further studies are also
needed on the effect of response types on the inverse
problems in structural dynamics.
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5.1.3. Effect of the Measured Points. To study the effect of the
response of each degree of freedom, nine out of ten degrees
of freedom are chosen as the measured points, expressed as
lack of a certain degree of freedom, and the corresponding
identified errors are listed in Table 4.

Moreover, the 2 norms of the acceleration of all degrees
of freedom are calculated, and the ratios of the 2 norms of
the acceleration of all degrees of freedom to that of degree of
freedom 1 are listed in Table 5.

Table 5 shows that the responses of degrees of freedom 1,
2, 6, 7, and 10 are relatively small, illustrating that degrees of
freedom with smaller response selected as measured points
have a greater effect on the identified results than do those
with larger response. *e main reason is that, when the
measured points are not placed at degrees of freedom with
small response, the identified errors of structural parameters
at these degrees of freedomwill increase a lot, which also leads
to a corresponding increase in the average error. However, for
a practical engineering structure, the smaller the response, the
smaller the signal-to-noise ratio (SNR) of the response, which
is also a problem worth considering.

5.1.4. Effects of Noise Levels. *is section examines the effect
of noise levels on the identified results. Based on the con-
clusion drawn in the previous section, degrees of freedom 1,
2, 6, 7, and 10 are selected as the measured points. *e
identified errors are listed in Table 6.

In the case of five measured points, the identified errors
increase with the noise level, but the identified errors are all
very small. Even at a high noise level of 20%, the identified
error of the damping is less than 6.5% and that of the
stiffness is only approximately 1.2%, illustrating that the
sensitivity method is highly accurate.

5.1.5. Effect of the Magnitude of the Perturbation. As
mentioned in Section 3.1, the difference method is used to
calculate the sensitivity of the structural response with re-
spect to unknown parameters and orthogonal expansion
coefficients of loads. Because each unknown quantity has
a different effect on the structure, the magnitude of the
perturbation is also different to ensure that the sensitivity of
the response with respect to each unknown quantity is in the
same order of magnitude.

Table 1: *e regularization parameters of all iteration steps.

Iteration step 1 2 3 4 5 6 7 8
Regularization parameter 7.60e − 12 1.06e − 6 1.67e − 7 8.75e − 7 1.90e − 5 1.10e − 3 0.408 3.85e9
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Figure 2:*e convergence processes of (a) k1, (b) c1, and (c) α1 and (d) a comparison of the identified load with the true load using the GCV
criterion.
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*emagnitude of the perturbation is defined by the ratio
of the perturbation value of an unknown quantity to its true
value. With different magnitudes of the perturbation of the
stiffness, the identified errors are listed in Table 7, and the
magnitudes of the perturbation of other unknown quantities
are adjusted accordingly. *e noise level is 5%, and other
parameters are the same as those in Section 5.1.4.

As shown in Table 7, the identified errors are basically
the same with different magnitudes of the perturbation of
the stiffness, illustrating that the magnitude of the pertur-
bation has a little effect on the identified results. Moreover, it
is not that the smaller the magnitude of the perturbation, the
smaller the identified errors.

5.2. A Bouc–Wen Model Structure. *is section further ex-
amines the applicability and accuracy of the sensitivity
method. For a Bouc–Wen model structure, the vibration
equation can be expressed as

M€y(t) + C _y(t) + Kz(t) � Bff(t), (18)
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Figure 3: *e convergence processes of (a) k1, (b) c1, and (c) α1 and (d) a comparison of the identified load with the true load using a fixed
regularization parameter.

k
1 2 3 4 5 6 7 8 9 10

Er
ro

r (
%

)
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0.5

1
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Fixed regularization parameter

Figure 4: A comparison of identified errors of all stiffness between
the GCV criterion and a fixed regularization parameter.

Table 2: Identified errors and average number of iteration steps
with different fixed regularization parameters.

Fixed
regularization
parameter

k (%) c (%) α (%) f (%)
Average

number of
iteration steps

1e − 11 0.213 1.417 0.843 0.625 14
1e − 9 0.213 1.417 0.843 0.625 14
1e − 7 0.213 1.417 0.843 0.625 14
1e − 5 0.213 1.417 0.843 0.625 14
1e − 4 0.213 1.417 0.843 0.625 43
1e − 3 0.213 1.417 0.843 0.625 296
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where C and K are the damping and stiffness matrices of the
structure, respectively; z(t) � z1(t) z2(t) · · · zN(t)􏼂 􏼃′,
which is the hysteresis displacement vector; and N is the
number of degrees of freedom. _zi(t) is expressed as

_zi(t) � _yi(t)− βi _yi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 zi(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌
ni−1zi(t)− ci _yi(t) zi(t)

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌
ni ,

(i � 1, 2, . . . , N),

(19)

where βi, ci, and ni(i � 1, 2, . . . , 10) are Bouc–Wen model
parameters.

In this section, a ten-storey shear frame structure is
selected as the calculation model, as shown in Figure 1.
Suppose that mi � 100 kg, ki � 4000N/m, ci � 60Ns/m,
βi � 2, ci � 4, and ni � 2(i � 1, 2, . . . , 10). An unknown load
f(t) is applied to the top of the structure, and
f(t) � 1000 sin(1.5πt)N.

Suppose that the initial value of ki(i � 1, 2, . . . , 10) is
5000N/m, that of ci(i � 1, 2, . . . , 10) is 10Ns/m, that of
βi(i � 1, 2, . . . , 10) is 1, that of ci(i � 1, 2, . . . , 10) is 1, that of

ni � (i � 1, 2, . . . , 10) is 1.1, and that of each orthogonal
expansion coefficient of the load is 1. Unless stated other-
wise, 5% noise is added to the acceleration in the following
calculations.

*e upper bound of the stiffness is 1.5 times its true
value, and the lower bound is 0.5 times its true value; the
upper bounds of ci, βi and ci(i � 1, 2, . . . , 10) are 3 times
their true values, and the lower bounds are all 0; and the
upper bound of ni � (i � 1, 2, . . . , 10) is 3 times its true
value, and the lower bound is 1.

5.2.1. Selection of the Regularization Parameter. *e study
outlined in Section 5.1.1 illustrates that, for a hard-spring
model structure, the identified results can always converge
within a very large range of the fixed regularization parameter.
However, because a Bouc–Wen model structure contains
a large number of nonlinear parameters, not only does each
iteration step require more time to complete but the con-
vergence processes of the unknown quantities are also much
slower. In addition, although the previously mentioned
constraint method can play a certain role, the phenomenon of
nonconvergence frequently arises.*emain reason is that the
identified values of structural parameters and loads vary
greatly within initial few iteration steps, and in many cases,
the response cannot be calculated, resulting in the termination
of iteration. *erefore, limiting the magnitude of changes in
the identified values of the structural parameters and loads
within initial few iteration steps is the fundamental method
for solving the problem of nonconvergence.

*erefore, this paper proposes the following method:
within initial few iteration steps, a larger regularization
parameter is selected; and when the identified values of
unknown quantities become relatively stable, the regulari-
zation parameter is reduced to ensure that the iteration
process converges as quickly as possible.

Based on the method proposed above, the unknown
parameters and the load are identified using the acceleration
of all degrees of freedom and the convergence condition is 1e
− 10. *e convergence processes of k1, c1, β1, c1, and n1 and
a comparison of the identified load with the true load are
shown in Figure 6.

To date, some studies have addressed the composite
identification problem for a Bouc–Wenmodel structure. For
example, Lei et al. [31] used the EKF to identify unknown
parameters and external loads for a Bouc–Wen model
structure, but the parameter n was not identified. Wu and
Smyth [32] compared the identified results between the EKF
and unscented Kalman filter (UKF) for a single-degree-of-
freedom Bouc–Wen model structure under the premise that
the load is known. *e results show that when EKF is used,
the identified errors are very large. Ding et al. [33] used the
UKF to identify the unknown parameters and loads of a 3-
degree-of-freedom Bouc–Wen model structure. For the case
in which the response contains no noise, this paper has
addressed the example in [33], and the identified errors of
unknown parameters are listed in Table 8. It should be noted
that the identified results of UKF are obtained from the
convergence curves in [33].

Table 3: Identified errors using the acceleration and displacement.

Response type k (%) c (%) α (%) f (%)
Acceleration 0.213 1.417 0.843 0.625
Displacement 0.653 4.611 3.682 1.592

t (s)
0 2 4 6 8 10

f (
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)

–1000

0

1000

2000

Identified load
True load

Figure 5: A comparison of the identified load with the true load
using the displacement.

Table 4: Identified errors with different sets of nine measured
points.

Lack of degree of freedom k (%) c (%) α (%) f (%)
1 0.244 1.556 0.902 9.607
2 0.261 1.612 0.963 0.760
3 0.234 1.544 0.911 0.681
4 0.221 1.439 0.856 0.640
5 0.222 1.465 0.880 0.637
6 0.240 1.581 0.922 0.646
7 0.237 1.583 0.916 0.648
8 0.230 1.486 0.891 0.637
9 0.224 1.511 0.863 0.627
10 0.253 1.557 1.076 0.641
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Table 5: *e ratios of the 2 norms of the acceleration of all degrees of freedom to that of degree of freedom 1.

Degree of freedom 1 2 3 4 5 6 7 8 9 10
Ratio 1.000 0.624 1.043 1.419 1.247 0.653 0.664 1.262 1.416 0.984

Table 6: Identified errors with different noise levels.

Noise level (%) k (%) c (%) α (%) f (%)
1 0.056 0.326 0.202 0.142
5 0.272 1.701 1.027 0.730
10 0.578 3.230 1.961 1.483
20 1.136 6.483 4.063 2.879

Table 7: Identified errors with different magnitudes of the perturbation of the stiffness.

Magnitude of the perturbation (%) k (%) c (%) α (%) f (%)
0.01 0.272 1.701 1.027 0.730
0.1 0.272 1.701 1.027 0.730
1 0.272 1.701 1.026 0.729
10 0.280 1.740 1.048 0.736
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Figure 6: Continued.
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It can be observed that even if the noise is not con-
sidered, the identified errors using the UKF are large, but the
sensitivity method exhibits good accuracy. In addition, the
convergence processes of the unknown parameters in [33]
fluctuate so much that it is difficult to judge whether the
identified values converge.

5.2.2. Effect of the Distribution of Measured Points.
Based on the conclusion drawn in Section 5.1.3, the ratios of
the 2 norms of the acceleration of all degrees of freedom to
that of degree of freedom 1 are listed in Table 9. It can be
observed that the acceleration of degrees of freedom 3, 7, 8,
and 10 is relatively small.

In addition, several sets of five measured points with
better identified results and the corresponding identified
errors are listed in Table 10, arranged in descending order of
the identified errors.

Many sets in Table 10 contain degrees of freedom 1, 3, 7,
and 10, illustrating that the acceleration of these degrees of
freedom has a strong effect on the identified results, which is
consistent with the conclusion drawn previously. However,
the identified error of Set 5 is not the smallest, and the
identified error of Set 2 is relatively large. *e reason is that
the distribution of measured points in Sets 2 and 5 is more
concentrated such that the information contained in the
response involves greater repetition. When the measured

points are relatively dispersed, the identified results will not
be excessively unfavourable, such as in Sets 1, 3, and 4.

In fact, the identified errors of all sets in Table 10 do not
vary greatly. In addition, considering that this example uses
five measured points to identify fifty unknown parameters
and an unknown load, the identified errors listed in Table 10
and some unlisted results are completely acceptable, illus-
trating that the sensitivity method has extremely high
accuracy.

6. Conclusion

Because the governing equation of the sensitivity method
does not depend on the structural vibration equation, when
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Figure 6: *e convergence processes of (a) k1, (b) c1, (c) β1, (d) c1, and (e) n1 and (f) a comparison of the identified load with the true load.

Table 8: Identified errors using the sensitivity method and UKF [33].

Degree of freedom
Sensitivity method UKF [33]

k (%) c (%) β (%) c (%) n (%) k (%) c (%) β (%) c (%) n (%)
1 0 0.02 0.07 0.07 0.07 0.6 1.4 6.9 0.8 2.9
2 0.01 0.08 0.15 0.17 0.06 0.3 1.3 3.9 0 1.6
3 0.05 0.01 0.21 0.02 0.06 0.5 0 5.9 3.1 2.9

Table 9: *e ratios of the 2 norms of the acceleration of all degrees of freedom to that of degree of freedom 1.

Degree of freedom 1 2 3 4 5 6 7 8 9 10
Ratio 1.000 0.874 0.654 0.748 0.928 0.705 0.365 0.624 0.831 0.623

Table 10: Identified errors of several sets of five measured points.

Set Degrees of
freedom k (%) c (%) β (%) c (%) n (%) f (%)

1 1, 3, 6, 8, 10 0.402 2.721 6.807 6.170 2.395 1.057
2 1, 2, 3, 7, 10 0.417 2.966 6.752 5.982 2.290 0.868
3 1, 2, 5, 7, 10 0.421 2.916 6.821 5.758 2.240 0.985
4 1, 2, 4, 7, 10 0.383 2.772 6.487 5.701 2.249 0.901
5 1, 3, 7, 8, 10 0.418 2.708 6.249 5.853 2.274 1.070
6 1, 3, 4, 7, 10 0.360 2.530 6.156 5.585 2.194 0.953
7 1, 3, 5, 7, 10 0.395 2.719 6.104 5.358 2.074 1.042
8 1, 3, 6, 7, 10 0.383 2.583 6.100 5.434 2.116 1.032
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the sensitivity method is applied to a more complex prob-
lem, the establishment of and the solution to the governing
equation do not become very difficult, which represents the
greatest advantage of this method. In this paper, the key
issues associated with the sensitivity method are systemat-
ically discussed, and suggestions for improvement are
proposed and verified by two nonlinear model examples.
Moreover, the discussion of the response types, distribution
of measured points, and the magnitude of the perturbation
can provide some guidance for engineering applications.
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