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A method based on wavelet and deep neural network for rolling-element bearing fault data automatic clustering is proposed.
-e method can achieve intelligent signal classification without human knowledge. -e time-domain vibration signals are
decomposed by wavelet packet transform (WPT) to obtain eigenvectors that characterize fault types. By using the ei-
genvectors, a dataset in which samples are labeled randomly is configured. -e dataset is roughly classified by the distance-
based clustering method. A fine classification process based on deep neural network is followed to achieve accurate
classification. -e entire process is automatically completed, which can effectively overcome the shortcomings such as low
work efficiency, high implementation cost, and large classification error caused by individual participation. -e proposed
method is tested with the bearing data provided by the Case Western Reserve University (CWRU) Bearing Data Center. -e
testing results show that the proposed method has good performance in automatic clustering of rolling-element bearings
fault data.

1. Introduction

Rolling-element bearings are widely used in industry. Such
bearings play a pivotal role in the rotating machine because
they can reduce friction between moving parts and allow the
machine to operate efficiently. However, rolling-element
bearings are also the most vulnerable component of a ma-
chine. Damage to the bearing can cause faults in the ma-
chine, potentially leading to severe accidents [1]. According
to statistics, rolling-element bearing failure is an important
factor causing rotating machinery failures [2]. Even in some
devices, bearing faults can constitute 44% of the total
number of faults [3].-us, regular inspections and diagnosis
are critical to ensure that rolling-element bearings work
properly.

Vibration monitoring is one of the most useful tech-
niques for condition monitoring because it is reliable and
very sensitive to fault severity [4]. It was noted in [3] that
vibration signal monitoring reveals early signs of abnor-
mality, even several months prior to any permanent damage.

-e literature [5] reviews typical bearing fault frequencies
and their expressions, including the ball pass frequency of
the outer race (BPFO), the ball pass frequency of the inner
race (BPFI), the fundamental train frequency (FTF), and the
ball spin frequency (BSF).

Consensus is that fault diagnosis relies on reliable signal
acquisition and efficient signal processing. Wavelet is char-
acterized by its multiresolution and the ability to characterize
local features of signals in the time-frequency domain, so it
has been widely used in the field of fault diagnosis. -e
wavelet transform (WT) can be used not only to extract fault
features [6], but also to combine with other methods, such as
the random forests classifier [7], the particle swarm opti-
mization and the nearest neighbor classifier [8], and the
support vector machine [9], to achieve fault diagnosis.
Moreover, the WT can work with artificial neural network
(ANN) to estimate the fault location [10]. -e review about
the application of WT in rotating machinery diagnostics and
prognostics was presented in [11, 12]. Although fault di-
agnosis based on signal processing methods such as the WT
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has achieved many important results in bearing fault di-
agnosis, it is still necessary to continue to explore better fault
diagnosis methods in the era of big data.

Deep learning is a powerful tool for processing big data
[13], and it has achievedmuch success in speech recognition,
visual object recognition, object detection, and many other
domains [14]. Deep learning has led to breakthroughs in the
field of bearing fault diagnosis [15]. It was shown in [1] that
the three deep neural network (DNN) models, deep
Boltzmann machine (DBM), deep belief network (DBN),
and stacked autoencoders (SAE) are highly reliable and
applicable in fault diagnosis of rolling-element bearings. A
recent review on the applications of deep learning in ma-
chine health monitoring was presented in [16], which holds
that deep learning is able to act as a bridge connecting big
machinery data and intelligent machine health monitoring.
-e combination of the WTand deep learning has begun to
detect faults of machines. -e wavelet packet transform
(WPT) used to extract fault features was employed to help
DBN [17] and CNN [18] to achieve intelligent fault
diagnosis.

It is ongoing research for automatic fault detection of
mechanical systems. A key technology for intelligent fault
diagnosis is the automatic classification of fault data.-ere is
a large amount of unlabeled data in practice, which makes it
more difficult to realize intelligent fault diagnosis. Deep
learning which can learn fault features autonomously
without human intervention is a powerful tool for intelligent
fault diagnosis. -us, deep learning is used here to achieve
automatic signal classification without the help of human
expert knowledge.

-e main contribution of this paper is to realize the
automatic classification of fault data by combining the
wavelet with DNN. In the proposed method, time-domain
vibration signals are decomposed by the WPT to build
a training dataset in which the samples are labeled randomly.
-e training dataset is roughly classified by clustering
methods. -e labels of samples are adjusted according to the
clustering results. A fine classification process based on the
DNN is followed to achieve accurate classification of the
samples. -e features are automatically extracted, and fault
data are automatically classified. -e testing results on the
bearing data provided by Case Western Reserve University
(CWRU) Bearing Data Center show that this method can
realize automatic classification of fault signals. Detailed
about the proposed algorithm is introduced with the fol-
lowing steps. In Section 2, features extraction through the
WPT is analyzed. Section 3 gives a detailed description of the
proposed fault data automatic clustering method based on
a DNN. In Section 4, testing of the proposed method with
the CWRU bearing data is presented. Finally, the conclu-
sions are drawn in Section 5.

2. Features Extraction by the WPT

-e WT is known to deal with signals with mutation or
functions with isolated singularity. -is approach is able
to characterize the local features of signals in both time
and frequency domains. However, the WT has the poor

resolution in the high-frequency regions because it just
redecomposes the low-frequency part of signals.

-e WPT overcomes the poor resolution of the WT
through further decomposing of the high-frequency part of
signals and offers a more comprehensive signal analysis
[19, 20]. -is approach decomposes a signal into a set of
wavelet packet (WP) nodes with the form of a full binary tree
[6]. A three-level WPT tree structure is shown in Figure 1.
Each level of theWPTprovides a frequency range that is half
as wide as the preceding level and twice as wide as the
proceeding level [21].

-e WP coefficients of a signal x(t) can be calculated
by [20]
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Equation (2) shows that WP function can be obtained by
a recursive equation in which W0(t) � ϕ(t) and W1(t) �

ψ(t) are also called the scaling function and the mother
wavelet, respectively. -e WP function Wn(t) can be cal-
culated by [6]
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where h(·) and g(·) are the low-pass and high-pass filters
associated with the mother wavelet, respectively. For a dis-
crete signal, the decomposition coefficients of WP can be
computed iteratively by [6]
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Fault features can be obtained from WPT energy [17,
19–22]. WPTenergy contains the wealth of fault knowledge,
and its fluctuation in a specific component corresponds
to the occurrence of a specific fault [20]. Compared with
the original signal, the length of dn

j(k) becomes shorter.
As the number of decomposition level increases, the
length of dn

j(k) becomes shorter and shorter. Too short of
the length of dn

j(k) will cause WPTenergy to distort. Instead
of WPT coefficients, reconstructed signals using WPT co-
efficients are used to calculate WPT energy. After a signal is
decomposed into several subsignals, the energy of each node
can be calculated by

E
n
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where sn
j(k) denotes the reconstructed signal from the WPT

coefficients dn
j(k).
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For the level j, all the energies of nodes are combined to
form a vector:

Ej � E
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To normalize the energy vector, (6) is rewritten as
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Different levels of decomposition result in large differ-
ences in energy vector Ej. For example, the WPT energy of
a signal provided by the CWRU Bearing Data Center [23] is
shown in Figure 2. -e signal and its spectrum are shown in
Figure 3. More layers of decomposition can reflect more
details of the signal.-us, we choose as many decomposition
layers as possible.

Different wavelet bases have different WPT energy
vectors. It was shown in [24] that the Daubechies 44 (db44)
is the most similar mother wavelet function across the
vibration signals. An example comparing the db3, db10,
and db44 is shown in Figure 4. -is figure shows that the
WPT energy vectors can better reflect the real situation of
the signal components by using db10 and db44. However,
db44 takes more CPU time than the two others, and it is not
the appropriate function for the fault identification algo-
rithm [24]. -us, db10 is selected to deal with the bearing
signals.

3. Fault Data Automatic Clustering

-e flowchart of fault data automatic clustering algorithm
based on the WPT and a DNN is shown in Figure 5. Here,
a time-domain signal is decomposed by usingWPTto obtain
some subsignals. After calculating the WPT energy,
a training dataset which has the characteristic of giving the
label randomly is configured. In fact, randomly given sample
labels avoids preassigning specific category labels to samples,
which in turn facilitates automatic classification of the
samples. However, it is challenging to classify all samples
successfully through a training process for the case of
randomly assigned sample labels in the dataset.

-e training dataset is roughly classified by clustering
methods. -e labels of samples are adjusted according to the
clustering results. Next, a fine classification process based on
a DNN is designed to achieve accurate classification of
samples. A detailed description of the proposed algorithm is
as follows.

3.1. RoughClassification. If the number of samples is not too
large, the samples can be classified directly. However, for
a dataset with a large number of samples, assigning labels to
each sample will result in a large number of output-layer
neurons, which will increase training time. -us, a pre-
liminary classification on the samples is required. Here,
a rough classification process is designed by using clustering
methods.

Clustering can group a set of samples into the same class
with more similar features. -ere are already many clus-
tering algorithms, such as distance-based clustering, density-
based clustering, and fuzzy clustering. Here, the distance-
based clustering is used to achieve rough classification. For
two samples x1(n) and x2(n) with length N, the Euclidean
distance is defined as
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If the distance between two samples is less than the user-
specified tolerance, then we say that the two samples are
similar. Similar samples can be classified into the same
category and be assigned the same label. -e rough classi-
fication ended after calculating all the distance of different
two samples in a dataset and adjusting the label of samples.
-e result of clustering is to form a new dataset in which
similar samples have the same label.

However, the Euclidean distance is a very brittle distance
measure [25, 26]. -ere is no guarantee that all similar
samples will be assigned to the same class. -is is the reason
that it is called rough classification.-us, a fine classification
is needed to get an accurate classification.

3.2. Fine Classification. When the rough classification is
completed, a fine classification process based on a DNN is
followed to achieve accurate classification of the samples.
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Figure 1: Illustration of the wavelet packet transform process.
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�e �owchart of the �ne classi�cation process is shown in
Figure 6. �is �gure shows that there are two main steps,
training the DNN and assessing the training result to adjust
the dataset.

First, a DNN is built, and it is trained with the training
dataset. For a dataset with preset labels, the DNN can be
trained with expected classi�cation results if the training
epoch is su�ciently large. �erefore, if the training is not

successful, we increase the number of training epoch and
train the DNN again. However, excessive training epoch
consumes a lot of computation time. In this way, if the
number of training epoch increases to a certain value and the
training is still unsuccessful, we terminate the training
process.

After the DNN is trained, the output of the DNN is as
consistent as possible with the sample labels. �is is
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Figure 3: �e signal of the record 160FE and its spectrum. �e top and bottom �gures show the raw data and their spectrum, respectively.
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Figure 2: �e WPT energy of the record 160FE provided by CWRU. �e top and bottom �gures show the WPT energy of levels 6 and 8,
respectively.
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obviously not the result we want. In other words, we cannot
achieve a truly e�ective classi�cation of samples only
through training the DNN. �us, it is necessary to design
a method or a strategy to evaluate the trained DNN.

A method is designed to assess the DNN classi�cation
result and to adjust the sample labels. We divide the raw
data into smaller sections and calculate the WPTenergy of
each subsignal. Next, we build a testing dataset in which
the sample labels are set according to the training results.
As long as the length of subsignal is not too short, the
WPT energy vector of the subsignal is similar to the raw
data. An example is shown in Figure 7 where the distance
function values between subsignal and raw data are cal-
culated by using WPT energy. �is �gure shows that the
�uctuations of the Euclidean distance values are small. At
the same time, the Euclidean distance values are not zero,
which indicates that the subsignal is di�erent from the
original signal. �us, the subsignal can be used to assess
the trained DNN and to test the generalization ability of
the DNN.

If not all the testing results meet the requirement, we �nd
out the misclassi�ed samples. We change the sample labels
and modify the sample dataset according to the test results.
In other words, we adjust the training dataset by using the
test result. �e distance function shown in (9) is applied to
prevent overadjustment of dataset. �e distance function
also prevents unrelated or less relevant samples from being
classi�ed as the same class.

If the dataset is changed, then the DNN is trained
a second time. �e �ne process is ended after an iterative
process of training and testing on the DNN.�e result of the
�ne classi�cation is that similar samples are grouped into the
same class.

�e above procedure shows that the entire procedure is
unsupervised. �e label of the sample is given randomly
before starting the classi�cation. Similar classes are con-
tinually merged in the rough classi�cation and the �ne
classi�cation processes. �erefore, the classi�cation process
is completely automatic without manual intervention. �e
e�ectiveness of the algorithm is tested by using the CWRU
bearing data, which is provided in the next section.

4. Testing and Analysis

�e proposed method is tested by using the CWRU bearing
data with faults in 0.021 inch. �ese data include 12k drive-
end, 48k drive-end, and 12k fan-end bearing data. �e
designed DNN has six layers. �e number of decomposition
layers of WPT is 8. �us, the input layer of the DNN has 256
arti�cial neurons. �e hidden layer of the DNN is set as 200-
130-80-50. �e number of output-layer neurons is de-
termined by the types of sample labels, which can be ad-
justed dynamically. �e weights of the DNN are initialized
randomly. �e learning rate and the batch size are set to 1.
�e activation function of neurons is the sigmoid function.
�e samples are selected randomly as the input to train the
DNN.

In the rough classi�cation process, all distances of dif-
ferent two samples in the dataset are calculated. �e mean
distance of all samples is calculated. If the distance between
two samples is less than half of the mean distance, they are
grouped together. In the �ne classi�cation process, the raw
data are divided into small sections with lengths of 16,384,
8192, 4096, and 2048 to test the trained DNN.

For the 12k drive-end 0.021-inch bearing data, the 60
samples are randomly signed a label from 1 to 60. �ese
samples are grouped into 48 categories after the rough
classi�cation. �e rough classi�cation results are further
classi�ed using the DNN, and the results are shown in
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Figure 4: Illustration of the in�uence of mother wavelets.
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Figure 8. -e raw data are divided into six classes. -e WPT
energy vectors of samples show significant differences in
various categories, as shown in Figure 9.

-e testing results on the trained DNN are shown in
Table 1. We learn from this table that all the testing results
are accurate except for the subsignals of length 2048. -ere
are only 13 samples whose testing result is not consistent
with the label of the subsignals of length 2048. -e testing
accuracy rates are 100%, 100%, 100%, and 99.63% for the
samples with lengths 16,384, 8192, 4096, and 2048,
respectively.

To further demonstrate the rationality of the classifi-
cation, principal component analysis (PCA) [27, 28] was
used to visualize the features extracted by the DNN.-e first
three principal components (PCs) of the features are shown
in Figure 10. -is figure shows that the features of the raw
data are clearly gathered into six groups. However, as the
sample length becomes shorter, the boundaries between
certain gathering points begin to blur.-us, we learn that the
length of the testing samples cannot be too short. Combined
with Figures 8–10 and Table 1, we can say that the overall
classification results of the algorithm are satisfactory.

For the 48k drive-end 0.021-inch bearing data, the 40
records are given a unique label that is a random number
between 1 and 40. -ese records are divided into 28 cate-
gories through the rough classification, and they are divided
into 3 groups after the fine classification. -e classification
results are shown in Figure 11, and the WPT energy vectors
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Figure 7:-e Euclidean distance values between subsignal and raw
data by using WPT energy.
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of each class are shown in Figure 12.-eWPTenergy vectors
of samples in different classes display distinct differences
though there are somewhat similar for the first and third
categories.

-e testing results with the 48k drive-end bearing data
are shown in Table 2. Similar to the testing results with the

12k drive-end bearing data, all the testing results are accurate
except for the subsignals of length 2048 with 19 misclassified
samples. -e testing accuracy rates are 100%, 100%, 100%,
and 99.77% for these four types of the subsamples.

To further prove the validity of the classification, the
first three PCs of the features extracted the DNN are
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Figure 8: Classification results for the 12k drive-end bearing data.
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Figure 9: WPT energy vectors of the samples in various classes.

Table 1: -e testing results on the 12k drive-end bearing data.

Length of subsignal -e number of samples Misclassified samples Accuracy rate (%)
16,384 420 0 100
8192 840 0 100
4096 1740 0 100
2048 3540 13 99.63
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Figure 10: First three PCs of the features for the 12k drive-end bearing data.-e results of (a) the raw data, (b) the subsignals of length 4096,
and (c) the subsignals of length 2048, respectively.
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presented in Figure 13. -ere is no overlap for the raw
data features in different groups, but some discrete fea-
ture points appear between two classes. Overall, the
boundaries between the three gathering points are still
very clear. -us, the proposed method offers satisfactory
performance.

For the 12k fan-end 0.021-inch bearing data, the 36 re-
cords are given a unique label that is a random number
between 1 and 36. -ese records are divided into 29 and 4
categories through the rough and the fine classifications,
respectively. -e classification results are shown in Figure 14,
and the WPT energy vectors of each class are shown in

Figure 15 which displays a clear difference between the WPT
energy vectors of samples for different classes.

-e testing results are shown in Table 3.-e results show
that there are 2 and 13 misclassified samples for the sub-
signals of lengths 4096 and 2048, respectively. -e testing
accuracy rates are 100%, 100%, 99.81%, and 99.38% for these
four types of the subsamples.

-e first three PCs of the features extracted the DNN are
presented in Figure 16. -ere are 4 gathering points dis-
played on the feature map of the raw data. Nevertheless, the
boundaries between two gathering points on the feature map
for the subsignal of length 4096 are blurred. Also, 3 gathering
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Figure 11: Classification results for the 48k drive-end bearing data.
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Figure 12: WPT energy vectors of the samples in various classes for the 48k drive-end bearing data.

Table 2: -e testing results on the 48k drive-end bearing data.

Length of subsignal -e number of samples Misclassified samples Accuracy rate (%)
16,384 984 0 100
8192 2006 0 100
4096 4032 0 100
2048 8090 19 99.77
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Figure 13: First three PCs of the features for the 48k drive-end bearing data.-e results of (a) the raw data, (b) the subsignals of length 4096,
and (c) the subsignals of length 2048, respectively.
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points occur on the feature map for the subsignal of length
2048. -ere are two class features connected into one piece.
-is also indicates that the length of the subsignals cannot be
too short.

As mentioned earlier, the testing dataset is different from
the training dataset. -at is, the samples used for testing
differ from the training samples. -us, we obtain that the
proposed method has strong generalization ability.

5. Conclusion

An automatic clustering method of bearing fault data based
on wavelet and deep neural network is proposed. -e fault
characteristics of signals are extracted by the WPT. -e
clustering process consists of a rough classification and a fine
classification. -e rough classification is designed to achieve
preliminary clustering of samples. A fine classification based
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Figure 14: Classification results for the 12k fan-end bearing data.
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Figure 15: WPT energy vectors of samples in various classes for the 12k fan-end bearing data.

Table 3: -e testing results on the 12k fan-end bearing data.

Length of subsignal -e number of samples Misclassified samples Accuracy rate (%)
16,384 252 0 100
8192 504 0 100
4096 1044 2 99.81
2048 2112 13 99.38
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Figure 16: First three PCs of the features for the 12k fan-end bearing data. -e results of (a) the raw data, (b) the subsignals of length 4096
and (c) the subsignals of length 2048, respectively.
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on DNN is further to classify the samples accurately. -e
original label of the training sample is randomly given, and
the labels of samples update automatically in the subsequent
process without manual intervention. -e entire clustering
process is completely automated and does not rely on hu-
man expertise, which helps us to achieve intelligent di-
agnosis of faults.

-e proposed method is tested by using the CWRU
bearing data with faults in 0.021 inch. -e testing results
show that the proposed method has good performance and
can be used for automatic classification of bearing fault data.
However, in practical applications, the operating state of the
device is very complicated. It is undeniable that some
samples may not be classified into the expected category.-e
proposed method still requires a lot of data for further
testing.

In engineering practice, different purposes lead to dif-
ferent expectations for classification results. In real appli-
cation, manually adjusting the clustering results can bemade
to achieve accurate classification according to a certain
purpose. Applying the proposed method to engineering
practice and continuously improving and perfecting it, as
well as exploring better methods, are the work needed to be
done in the future.
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