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Footbridge lateral vibration remains an unsolved problem and is characterized by the following: (1) pedestrians are sensitive to
bridge vibration, which causes the pedestrian’s excitation being dependent on the bridge vibration; (2) pedestrian lateral excitation
is a stochastic process rather than a perfect periodic load.)erefore, footbridge lateral vibration is essentially a complex nonlinear
stochastic vibration system. )us far, an effective method of dealing with such nonlinear stochastic vibration of footbridges
remains lacking. A framework based on the probability density evolution (PDE) method is presented. For the mathematical
model, the parameter resonance model is used to describe the pedestrian-bridge interaction while treating the pedestrian lateral
excitation as a narrow-band process. For the analysis method, PDE is used to solve the nonlinear stochastic equations in
combination with the number theoretical and finite difference methods. )e proposed method establishes a new approach in
studying footbridge lateral vibration. First, PDE based on the small sample strategy avoids the large amount of computation.
Second, the randomness of both structural parameters and pedestrian lateral excitation could be taken into consideration by the
proposed method. )ird, based on the probability results with rich information, the serviceability, dynamic reliability, and
random stability analyses are realized in a convenient manner.

1. Introduction

In 2000, the famous London Millennium Bridge was ur-
gently closed down because of the large lateral vibration on
its opening day [1]. )is event became an influential symbol
of the pedestrian-induced vibration of bridges and caused an
in-depth discussion about the pedestrian-induced vibration
of footbridges. Scholars began to study the underlying
mechanisms, such as nonlinear vibration, parametric res-
onance, and pedestrian-bridge interaction, resulting in a
variety of models. )e first type is the linear model, such as
the linear direct resonance model, which holds that pe-
destrian excitation is independent of bridge vibration. In this
model, pedestrian lateral excitation is expressed by a simple
harmonic function, and the large lateral vibration of foot-
bridges is assumed to be caused by the direct resonance
between pedestrian lateral walking frequency and bridge
frequency. Fujino et al. [2] conducted a systematic study on
the T-bridge in Japan by using this type of model. )e

second type is the vibration-dependent model, wherein
pedestrian excitation depends on bridge vibration, and this
dependency can be described by knownmodels. A few dozen
models are based on this type of method, such as the Dallard
et al. [1], Nakamura [3], Piccardo and Tubino [4], and
Ingólfsson et al. [5, 6] models. )e Dallard, Nakamura, and
Ingólfsson models belong to nonlinear velocity-dependent
models. In this type of model, the velocity-dependent term is
regarded as the application of additional negative damping
to the structure. When the additional negative damping
exceeds the real structural damping, vibration will diverge.
)e Piccardo model is a parametric resonance model based
on the classical Matthew equation, by which the critical
condition triggering vibration divergence can be obtained
through stability analysis. )e third type is a coupling model
mixed with pedestrian motion and bridge vibration. )is
model also considers the influence of bridge vibration on
pedestrian excitation, but this influence is described by the
coupling equations of pedestrian motion and bridge
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vibration rather than a known empirical parameter model.
Examples of coupling models are the Roberts [7], Newl [8],
hybrid Van der Pol/Rayleigh [9, 10], and Macdonald et al.
[11, 12] models. )e Macdonald model, which is essentially
an inverted pendulum model, considers the pedestrian
lateral excitation as the inertia force of the human body mass
center controlled by the balance strategy. Unlike other
general models, this model insists that pedestrians maintain
their comfort and balance by adjusting the position of the
pace rather than the step frequency. Recently, on the basis of
the inverted pendulum model proposed by Macdonald,
Carroll et al. [13, 14] repeated the treadmill experiment of
Ricciardelli and Pizzimenti [15] by using a 3D human
motion capture technology and analyzed the pedestrian self-
excitation characteristics caused by the pedestrian-structure
interaction. Similarly, Bocian et al. [16], also based on the
inverted pendulum model, carried out an experiment of
pedestrian walking on the treadmill. )e experiment was
characterized by using a virtual reality simulation tech-
nology to reproduce the actual surrounding environment of
pedestrians walking to reduce the influence of indoor en-
vironment on pedestrian.

On the contrary, the randomness in pedestrian exci-
tation is a factor that cannot be ignored because of its
remarkable effect on bridge vibration, which may lead to
results inconsistent with those of deterministic cases.
However, research in this field is inadequate. )e con-
tinuous pedestrian excitation obtained from actual ob-
servations is not an ideal periodic force but rather a
narrow-band stochastic process. In the frequency domain,
the Fourier spectra are not distributed in discrete frequency
points obtained from the perfect periodic load but with a
certain distributed width around the main harmonics,
resulting in a reduced response, as compared with that of a
perfect periodic force. At present, the analysis of the
randomness of pedestrian excitation is focused on vertical
direction [17–20]. By contrast, few investigations are
available on the randomness of pedestrian lateral excita-
tion. Ricciardelli and Pizzimenti [15] tested the lateral force
caused by pedestrians walking on a treadmill. On the basis
of the test data, they converted the Fourier spectrum to
power spectrum and fitted the first five-order power
spectrums by using the Gaussian shape. On the basis of
Ricciardelli’s results, Ingólfsson and Georgakis [5] used a
discrete-time Gaussian Markov process to simulate the
random coefficients of equivalent damping and inertia
forces; the body weight, walking frequency, step length,
walking speed, and arrival time were considered random
variables to represent the intersubject variability. )e
narrow-band process of pedestrian lateral excitation was
further tested and studied by Racic and Brownjohn [21, 22].
)ey used multiple Gaussian curves to fit the lateral power
spectrum and restored the amplitude and phase process.
Bocian et al. [23] used the data of the British population to
obtain the statistical values of pedestrian parameters (e.g.,
gait length, step frequency, and body weight) involved in
the inverted pendulum model; they conducted a lateral
stability analysis of the bridge in terms of probability.
However, in Bocian’s model, the randomness of pedestrian

excitation is actually not reflected through the stochastic
process.

Now, it well known that pedestrians act as autonomous
dynamic systems interacting with the footbridge, and that
the excitation term in the dynamic equation will contain the
bridge response. )is means that the pedestrian-induced
lateral vibration is a nonlinear dynamic system.Moreover, as
mentioned above, the random nature is another apparent
characteristic of pedestrian load. )e real consecutive pe-
destrian load is not a perfect periodic load but rather a
narrow-band stochastic process. )erefore, the pedestrian-
induced lateral vibration of footbridges is essentially a
nonlinear stochastic vibration problem, which means that
the traditional theory of linear stochastic vibration is no
longer applicable. For nonlinear stochastic vibration prob-
lems, only a small number of cases have the closed-form
solutions with certain specific conditions, but most of these
problems in reality can only be solved by discrete numerical
methods [5], which may require a large number of Monte
Carlo (MC) numerical simulations.

In the field of footbridge vibration, in addition to the
aforementioned models and methods, postprocessing
analysis (e.g., serviceability, dynamic reliability, and stabil-
ity) is also the focus of researchers (especially designers).
Serviceability is a crucial index to measure the normal
performance of footbridges. When the number of people on
the bridge is small, vibration could keep stable, but such
vibration may affect the pedestrian walking and make the
pedestrian feel uncomfortable and annoyed and result in the
impairment of the bridge’s performance for normal usage.
)erefore, it is necessary to investigate the serviceability of
pedestrians when they walk on the footbridge. At present,
most of the vibration serviceability assessment on the pe-
destrian structure are concentrated on the subjects of floor
vertical vibration [24–26] and the footbridge vertical vi-
bration [27–29], most of which belong to the linear vibration
system. However, there are few reports about the service-
ability of pedestrian impacting by the lateral vibration of the
footbridge. Regarding the serviceability analysis of foot-
bridges, the existing methods constantly use the concept of
the peak acceleration or root mean square (RMS) acceler-
ation reaching a certain threshold. In general, RMS accel-
eration is obtained directly from the acceleration power
spectrum (or through the frequency response function
(FRF) based on the force power spectrum) [17, 28]. )is
method is only suitable for linear systems, and the ran-
domness of structural parameters is ignored.

Serviceability analysis is actually a question of whether
the bridge response (acceleration) exceeds a certain limit.
Naturally, a deeper question arises: what is the probability of
the bridge lateral vibration crossing a critical value? In other
words, the probability of bridge lateral vibration remaining
in a certain safe area must be ascertained. )is process
involves the issue of dynamic reliability. )e dynamic re-
liability of bridges under various dynamic loads (e.g., seismic
action, wind load, and train load) has been widely studied
[30–35]. However, the dynamic reliability of pedestrian-
induced lateral vibration in the footbridge has been rarely
reported, especially when nonlinear stochastic vibration is
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considered. Unlike the conventional dynamic reliability
problem, a nonlinear stochastic dynamic reliability problem
is explored in this study. )e methods for solving the
nonlinear stochastic dynamic reliability problem can be
divided into two types: numerical simulation method and
analytical method. )e Monte Carlo simulation method can
be regarded as a simple and available numerical simulation
method, but the huge amount of computation limits its
applicability [5, 23, 36]. In terms of analytical methods, the
conventional means for dynamic reliability of the nonlinear
stochastic system usually need the using of Kolmogorov
backward equation developed from the theory of the first-
passage process [37–39]. )is type of method requires the
joint PDFs of the response process and its derivative process
combined with a specific assumption of the crossing event,
which makes it difficult to solve the multidimensional
system.Moreover, this technique can only be used to analyze
the single random (SR) case (i.e., the randomness of
structural parameters cannot be considered).

In this study, the probability density evolution (PDE)
method based on the small sample strategy proposed by Li
et al. [40–42] is used to avoid the large amount of com-
putation caused by the MC numerical method. Meanwhile,
the randomness in structural parameters and pedestrian
lateral excitation are considered synthetically. )e proposed
method is successfully applied to the numerical examples
(the London Millennium Bridge and the Passerelle Simone
de Beauvoir bridge), and the probability results with rich
information are obtained. )en, several critical analyses
related to the footbridge’s normal service performance and
ultimate limit performance, including the serviceability,
dynamic reliability, and random stability analyses, are
realized.

)e remainder of this paper is organized as follows:
Section 2 introduces the PDEmethod. Section 3 presents the
nonlinear stochastic model for footbridge lateral vibration
and describes the establishment and solution of PDE
equations related to the nonlinear stochastic model. Section
4 presents the applications of the proposed method to the
real footbridges and the realizations of serviceability, dy-
namic reliability, and random stability analyses. Finally, the
last two sections draw the conclusions and discussions.

2. Probability Density Evolution Method

In practical engineering, apart from the randomness in the
excitation load, the structural parameters, such as structural
mass, modulus, and section properties, may also have strong
randomness. Considering the randomness in structural
parameters and excitation simultaneously (also known as a
composite random issue) is a complex problem that has
remained unsolved. )e PDE method proposed by Li et al.
[40–42] provides an alternative approach for conducting a
composite random analysis.

Let Θ � [Θs,Θp] denote all the random variables in the
targeted system. Θs represents the random variables of the
structural parameters, andΘp refers to the random variables
from excitation. In general, a stochastic dynamic system can
be expressed as follows:

G €y, _y, y,Θp, t  � F Θs, t( . (1)

)e structural response of equation (1) can be expressed
as

y � y(Θ, t). (2)

Given that the randomness of Θ, y is a stochastic
process. )e velocity process of y is given as

_y �
zy(Θ, t)

zt
. (3)

)e randomness of process y comes completely from Θ,
and in the entire evolution process, no randomness disap-
pears and no new randomness is added in the extended
system [y(t), Θ]. )is feature indicates that [y(t), Θ] is a
probabilistic conservative system. On the basis of the
probabilistic conservative principle, we have

d
dt


Ωt×ΩΘ

pyΘ(y, θ, t)dy dθ � 0, (4)

where pyΘ(y, θ, t) is the joint probability density function
(PDF) of [y(t), Θ] and Ωt×ΩΘ denotes the distribution
domain of Θ at time t. After a series of derivations, the
generalized density evolution equation can be obtained as

zpyΘ(y, θ, t)

zt
+ _y(θ, t)

zpyΘ(y, θ, t)

zy
� 0. (5)

3. PDE for the Lateral Nonlinear Stochastic
Vibration of Footbridges

During the opening day and subsequent on-site tests, a large
lateral vibration was observed in the middle span of the
London Millennium Bridge. )e tests conducted by Arub
Corp [1] demonstrated that the lateral fundamental fre-
quency of the middle span is approximately 0.5Hz, which is
considerably lower than 1Hz required for the pedestrian’s
primary resonance; this result indicated that other mecha-
nisms may exist. )e parametric resonance model [4] can
explain this phenomenon. In the present study, a parametric
resonance stochastic model is established, in which the
parametric resonance model is considered the basis, whereas
the pedestrian lateral load is treated as a narrow-band
stochastic excitation process.

3.1. Equations of Footbridge Lateral Vibration. Ignoring the
moment of inertia, axial force, and shear deformation, the
lateral vibration equation of the footbridge based on
Euler–Bernoulli beam [43–45] can be expressed as follows:

ms(x)
z2y(x, t)

zt2
+ cs(x)

zy(x, t)

zt
+

z2

zx2 EI(x)
z2y(x, t)

zx2 

� fc(x, t),

(6)

where ms(x), EI(x), cs(x), and y(x, t) are bridge mass per
unit length, bending stiffness, damping, and lateral
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displacement along the spatial coordinate x and fc(x, t)

denotes the lateral load per unit length exerted by pedes-
trians. Considering the proportional damping, equation (6)
can be decoupled into the modal equations by Galerkin
method. Only the first order y(x, t) � φ(x)q(t) is consid-
ered here, in which the mode function is φ(x) � sin(πx/L)

with L being the bridge length. )e modal equation is
written as

€q(t) + 2ωsζ _q(t) + ω2
s q(t) �

1
Ms


L

0
fc(x, t)φ(x)dx � F(t),

(7)

where q(t), φ(x), ωs, ζ, Ms, and F(t) are the modal dis-
placement, modal shape, angular frequency, modal damping
ratio, modal mass, and mass normalised modal load.

3.2. Pedestrian Lateral Excitation and Its Discretization.
)e crowd on the bridge can be divided into unsynchronized
and synchronous groups. )e lateral force produced by the
unsynchronized group is assumed to be equivalent to the
force produced by the crowd with different phases (uniform
distribution) but with the same frequency, which is in-
dependent of vibration, and its number can be converted
into the equivalent number established by the Fujino
method [2]. )e synchronous group is related to vibration,
which can be quantified by the synchronization coefficient
ρ. Hence, the pedestrian lateral excitation can be expressed
as

fc(x, t) �

�������
(1 − ρ)L

N



mp(x)gd1 + ρmp(x)gd2y(x, t) 

· cos ωpt ,

(8)

where mp(x) � Nmp/L is the pedestrian mass per unit
length (N, pedestrian number; mp, single pedestrian mass),
g is the acceleration of gravity, d1 � 0.04 and d2 � 2m− 1 are
the dynamic loading factors related to the static and self-
excited loads, respectively, ρ is the synchronization co-
efficient, and ωp is the lateral walking frequency of the
pedestrian.

)e randomness of the pedestrian load is now consid-
ered. As previously mentioned, the pedestrian load is not an
ideal periodic force and is not suitable to be described in the
form of a harmonic function. Hence, a stochastic excitation
process ξ(t) is used to replace the harmonic function in
equation (8), which can then be rewritten as

fc(x, t) �

�������
(1 − ρ)L

N



mp(x)gd1 + ρmp(x)gd2y(x, t) ξ(t).

(9)

On the basis of equation (7), the modal load F(t) is
expressed as follows:

F(t) �
1

Ms



L

0

�������
(1 − ρ)L

N



gd1mp(x)φ(x)dx
⎡⎢⎢⎢⎢⎢⎢⎣

+ 
L

0
ρgd2mp(x)φ(x)

2
q dxξ(t).

(10)

Let μ1 �
����������
(1 − ρ)L/N


gd1/Ms, μ2 � ρgd2/Ms, β1 � 

L

0
mp(x)φ(x)dx, and β2 � 

L

0 mp(x)φ(x)2dx; then, equation
(10) can be written as

F(t) � μ1β1 + μ2β2q ξ(t). (11)

To perform the numeric analysis in the time domain, the
simulation and discretization of ξ(t) are required. Various
stochastic process simulation methods based on the power
spectrum [46–48] have been widely used in engineering
practice. Among them, the spectral expression method has
been used frequently. On the basis of the spectral expression
method, the pedestrian stochastic excitation process can be
modeled as a harmonic function with random phases or
frequencies as follows:

ξ(t) ≈ 
N

i�1
A ωi( cos ωit + φi( ,

A ωi(  �

���������
2SF ωi( Δω

π



,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

where A(ωi), ωi, and φi are the amplitude, circular fre-
quency, and phase of the i-th harmonic component, Δω is
the increment of ωi, N is the number of harmonic com-
ponents, and SF(ω) is the PSD of ξ(t). On the basis of the
experimental results of Ricciardelli and Pizzimenti [15], the
PSD around the first harmonic of pedestrian lateral exci-
tation ξ(t) can be expressed as

SF(ω) �
σ2F

���
2π

√

ω
as

bs

exp − 2
ω/ωp − 1

bs

  

2⎧⎨

⎩

⎫⎬

⎭, (13)

where σ2F � W2d2 (W, single pedestrian weight; d, dynamic
loading factor) denotes the doubled area of PSD around the
first load harmonic and ωp is the reference undisturbed gait
frequency. as � 0.9 and bs � 0.043 are the fitting parameters.

In the normal spectral expression method, the harmonic
function phase is assumed to be a uniformly distributed
random variable to simulate the randomness of excitation,
and the harmonic function frequency is a series of divided
deterministic variables (ωi � iΔω, i � 1, 2, . . . , N). To
guarantee the accuracy, the above normal spectral expres-
sion method often requires at least 500 harmonic compo-
nents, resulting in high-dimensional random vectors and
large computational workload. Fortunately, an improved
approach named the second kind of spectral expression
(SSE) could significantly reduce the discrete harmonic
components. On the basis of a previous study [49], if A(ωi),
ωi, and φi in equation (12) satisfy the following conditions:
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(1) φi, i � 1, 2, . . . , N are mutually independent random
variables subject to uniform distribution among
(0, 2π],

(2) ωi, i � 1, 2, . . . , N are mutually independent random
variables subject to uniform distribution among
(ωs

i− 1, ω
s
i ], i � 1, 2, . . . , N, respectively,

(3) A(ωi) �
������������
2SF(ωi)Δωi/π


, Δωi � ωs

i − ωs
i− 1, i � 1,

2, . . . , N,

then the PSD of harmonic function ξ(t) represented by
equation (12) will be equal to SF(ω). )e use of this method
can remarkably reduce the number of harmonic compo-
nents needed for discretization.

According to the expression of PSD given in equation
(13), the SSE is applied for the simulation and discretization
of ξ(t). )e analysis results (Figure 1) show that the accuracy
requirements will be met in the SSE if the number of
harmonic components is up to N � 10 (i.e., the total number
of random variables is 2N � 20).

3.3. Establishing the PDE for Lateral Vibration of the
Footbridge. On the basis of equations (5) and (7), the PDE
for the lateral vibration of the footbridge can be expressed as

zpqΘ(q, θ, t)

zt
+ _q(θ, t)

zpqΘ(q, θ, t)

zq
� 0. (14)

)e corresponding initial condition is

pqΘ q, θ, t0(  � δ q − q0( pΘ(θ), (15)

where q0 is the deterministic initial value for q(t) and δ is the
Dirac delta function. By solving equation (14) combined
with the initial condition of equation (15), the PDF of
structural response q can be obtained as

pq(q, t) � 
ΩΘ

pqΘ(q, θ, t)dθ. (16)

)e value of _q(θ, t) should be determined firstly before
solving equation (14). It is observed that there is no partial
differential in terms of θ in equation (14).)is means that for
specific θ, equation (14) can be solved by a deterministic
numerical method (in this study, the finite difference
method will be adopted, see Section 3.5). )erefore, it is
necessary to conduct the discretization of θ, whereby a set of
discrete representative points θi, i � 1, 2, . . . , n in the
probability distribution space of θ can be obtained. Once
these discrete representative points have been determined,
the velocity process of _q(θ, t) can be obtained by the de-
terministic solution of equation (7). Afterwards, pi(q, θi, t)

can also be obtained according to equation (14), and
equation (16) will be changed to

pq(q, t) � 
n

i�1
pi q, θi, t( . (17)

)e accuracy of equation (17) depends on the discrete
representative point θi, i � 1, 2, . . . , n. It is not a wise choice
to select a sufficient number of θ to ensure the accuracy, as
this may result in a huge computation. )erefore, how to

select a set of representative points in the probability dis-
tribution space of θ to meet the accuracy requirements while
reducing the number of points as small as possible will be the
next problem to be considered.)is will involve the partition
of the probability-assigned space and selection of repre-
sentative points, which are discussed in following Section
3.4.

3.4. Partition of the Probability-Assigned Space and Selection
of Representative Points. For any subdomain Ωh,
h � 1, 2, . . . , np, which is a partition of domain space ΩΘ, if
∪np

h�1Ωh � ΩΘ and Ωh ∩  Ωw | h≠w � ∅, then equation (16)
can then be rewritten as

pq(q, t) � 

np

h�1

Ωh

pqΘ(q, θ, t)dθ � 

np

h�1
ph q, θh, t( , (18)

where ph(q, θh, t) � Ωh
pqΘ(q, θ, t)dθ. Let

Ph � 
∞

− ∞
ph q, θh, t( dq � 

∞

− ∞

Ωh

pqΘ(q, θ, t)dθ dq

� 
Ωh

pΘ(θ)dθ.

(19)

Hence, Ph is a normalised factor and also called the
assigned probability because it denotes the probability in
subdomain Ωh.

By selecting a representative point θh in subdomain Ωh,
equation (14) becomes

zph q, θh, t( 

zt
+ _q θh, t( 

zph q, θh, t( 

zq
� 0, h � 1, 2, . . . , np.

(20)

)e corresponding initial condition can be rewritten as

ph q, θh, t0(  � δ q − q0( Ph. (21)

By combining equations (20) and (21), a group of
equations with number np can be solved to obtain ph(q, t).
)en, the PDF of q can be easily obtained by using equation
(18). )e representative point θh and assigned probability Ph

depend strongly on the partition of the probability-assigned
space (i.e., the selection of subdomain Ωh). For a given
representative point set, its representative subdomain is
preferred to the Voronoi region (Figure 1).

As mentioned earlier, for the PDE analysis of structural
response, it is necessary to obtain discrete representative
points in multidimensional probability space ΩΘ, and these
discrete representative points should be scattered as uni-
formly as possible. When the dimension of random variables
is large, the number theoretical method (NTM) can be used,
by which a representative point set uniformly scattered can
be generated.

In the NTM, the discrepancy is used to measure the
uniformity of a set of sample points. For a s-dimensional
space, let Cs denote a unit cube in s-dimensional space.
Furthermore, let n be a positive integer and
θ(k) � (θ(n)

1 (k), θ(n)
2 (k), . . . , θ(n)

s (k)), 1≤ k≤ n denote a set
of sample points ofCs, among which, 0≤ θ(n)

i (k)< 1, 1≤ i≤ s.
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For any η � (η1, η2, . . . , ηs) ∈ Cs, if set Nn(η, θ) as the
number of points which meet the condition 0≤ θ(n)

k,1 <
η1, . . . , 0≤ θ(n)

k,s < ηs, the discrepancy D(n, θ) of θ(k) is given
as

D(n, θ) � sup
ς∈Cs

Nn(η, θ)

n
− |η|




, (22)

where |η| � η1η2 . . . ηs denotes the volume of region |0, η|.
And when the following condition holds

D(n, θ) � O n
− 1/2

 , (23)

where O( ) denotes the order of error, then θ can be
considered as the NTMpoint set among Cs.)ere are several
methods that can be used to generate the NTM point set,
such as good Latin point (GLP) set, Halton set, Hamersley
set, and good point (GP) set. )e GP set will be used in this
paper, as it has a good applicability to the high-dimensional
problem. Let η � η1, η2, . . . , ηs  ∈ Cs and suppose that there
is a set θ(k) expressed as

θ(k) � η1k , . . . , ηsk  , 1≤ k≤ n. (24)

If the discrepancy of θ(k) meets

D(n, θ)≤O(η, ε)n− 1+ε
. (25)

)en θ will be called a GP set. )e operational character
[.] in equation (24) means the decimal operator. Normally,
the good point η can be generated by the cyclotomic field
method [50]:

η � 2 cos
2π
c

 , 2 cos
4π
c

 , . . . , 2 cos
2πs

c
  , (26)

where c is a prime number which satisfies c≥ 2s + 3. By
substituting equation (26) into (24), the wanted set of GP
points can be obtained. To better understand this method,
two simple cases are considered:

(1) Two variables (x1, x2) use the NTM to generate the
GP points among the intervals of x1 ∈ [− 6 6] and
x2 ∈ [− 4 12]

(2) )ree variables (x1, x2, x3) use the NTM to generate
the GP points among the intervals of x1 ∈ [− 6 6],
x2 ∈ [− 4 12], and x3 ∈ [5 15].

Figure 2 presents the GP points for the two cases. It can
be observed that the GP points have a good uniformity.

3.5. Finite Difference Method (Total Variation Diminishing
(TVD) Scheme Based on the Lax–Wendroff Method).
Equation (20) is a typical convective equation, which has
difficulty in obtaining its analytical solution. )e finite
difference method [51, 52] or the finite element method [53]
can be used to solve such partial differential equations. For
simplicity, the finite difference method is adopted in this
study. To ensure the second-order accuracy and avoid os-
cillations, the TVD scheme [54] based on the Lax–Wendroff
scheme is used in this study. For convenience, ph(q, θh, t) in
equation (20) will be abbreviated to p. Initially, the Lax–
Wendroff expression of equation (20) is written as

p
n+1
j � p

n
j −

1
2

( _qλ +| _qλ|)Δpn
j− (1/2) −

1
2

( _qλ − | _qλ|)Δpn
j+(1/2)

−
1
2

(1 − | _qλ|)| _qλ| Δpn
j+(1/2) − Δpn

j− (1/2) ,

(27)

where n denotes the time mesh step index, j represents the
space mesh step index, λ � Δt/Δy refers to the mesh ratio
between the time step and the space step, _q refers to the
velocity process term (i.e., _q(θh, t)), andΔpn

j− (1/2) � pn
j − pn

j− 1;
Δpn

j+(1/2) � pn
j+1 − pn

j . )e first and second terms in equa-
tion (27) are the numerical fluxes of the upwind and
Lax–Wendroff schemes, respectively. To ensure that equation
(27) has the TVD scheme (avoid oscillations) and second-
order accuracy, equation (27) is rewritten as
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Figure 1: Simulation of ξ(t) by using the SSEmethod: (a) one discrete sample generated by SSE; (b) PSDs under different discrete harmonic
components and the comparison with real PSD.
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p
n+1
j � p

n
j −

1
2

( _qλ +| _qλ|)Δpn
j− (1/2) −

1
2

( _qλ − | _qλ|)Δpn
j+(1/2)

−
1
2

(1 − | _qλ|)| _qλ| φ r
+
j+(1/2), r

−
j+(1/2) Δpn

j+1/2

− φ r
+
j− (1/2), r

−
j− (1/2) Δpn

j− (1/2),

(28)

where r+
j+(1/2) � Δpn

j+(3/2)/Δp
n
j+(1/2), r−

j+(1/2) � Δpn
j− (1/2)/Δ

pn
j+(1/2), r+

j− (1/2) � Δpn
j+(1/2)/Δp

n
j− (1/2), and r−

j− (1/2) �

Δpn
j− (3/2)/Δp

n
j− (1/2) and φ is a function of r+ and r− , which is

called the flux limiter. To ensure that equation (28) satisfies
the sufficient conditions of TVD, φ must be further re-
stricted. In this study, the following adaptive flux limiter will
be used [55]:

φ r+, r−( ) � ϑ(− _q)φs r+( ) + ϑ( _q)φs r−( ),

φs(r) � max[0, min(2r, 1), min(r, 2)],
 (29)

where ϑx �
1, x≥ 0
0, x< 0 . )e Courant–Friedrichs–Lewy

(C.F.L) criteria for the stability of equation (28) is given by

_qmaxλ


≤ 1. (30)

)e value of _qmax is estimated by trial calculations, by
which the mesh ratio λ can be determined according to
equation (30). By doing this, the convergence of the solution
of equation (28) will be guaranteed.

To illustrate this method, a simple numerical example is
considered:

zp

zt
+ a

zp

zx
� 0, x ∈ (− ∞,∞), t> 0, (31)

where a � 2, and the initial condition p(x, 0) is given as

p(x, 0) �

10x + 1, − 0.1≤ x≤ 0,

− 10x + 1, 0≤x≤ 0.1,

0, others.

⎧⎪⎪⎨

⎪⎪⎩
(32)

For comparison, besides the method of TVD based on
Lax–Wendroff used in this study, two other methods are also
used to solve equation (31), including the upwind method,

the Lax-Wendroff method. Figure 3(a) presents the solu-
tion at t � 0.2, as well as the comparative results among
different methods. It can be observed that the upwind
method with the inherent accuracy up to first order has the
worst performance; the Lax–Wendroff method has an
oscillation in the vicinity of the left-hand side due to the
effect of dispersion, while the method of TVD based on
Lax–Wendroff has nearly the same result as the exact so-
lution. Figure 3(b) presents the entire process of the so-
lution along the timeline obtained by the method of TVD
based on Lax–Wendroff, from which the convergence can
be confirmed.

3.6. Outline of the Procedure. )e proposed method is
presented in Figure 4, which is based on the following it-
erative procedure.

Step 1. )e random variables of structural parameters
Θs � (θs1, θs2, . . . , θsn), such as bending stiffness, mass,
and damping, are determined. Meanwhile, the SSE
method is used to discretize the pedestrian lateral ex-
citation process ξ(t) into harmonic components with
N � 10, by which the discrete random variables of Θp �

(θω1, θω2, . . . , θω10; θφ1, θφ2, . . . , θφ10) with 2N � 20 are
defined. θφi, i � 1, 2, . . . , N are mutually independent
random variables subject to uniform distribution among
(0, 2π], and θωi, i � 1, 2, . . . , N are mutually in-
dependent random variables subject to uniform distri-
bution among (ωs

i− 1,ωs
i ], i � 1, 2, . . . , N, respectively.

Step 2. NTM is used to select the set of discrete rep-
resentative points θh, h � 1, 2, . . . , np in space ΩΘ,
where Θ � [Θs,Θp]. np is generally set to 10 times as
the total number of random variables, that is,
np � 10[dim(Θs) + dim(Θs)]. Meanwhile, the corre-
sponding assigned probability Ph, q � 1, 2, . . . , np is
determined through the statistical characteristics of
each variable and the Voronoi partition region.
Step 3. For each θh, the deterministic solution of lateral
vibration, equation (7), is performed to yield the ve-
locity process _q(θh, t).
Step 4. _q(θh, t) obtained in Step 3 is substituted into
equation (20) and combined with the initial conditional
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Figure 2: GP points (green “o” marker) and Voronoi regions (polyhedral). (a) 2 variables; (b) 3 variables.
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equation (21). )en, equation (20) is calculated to
obtain the numerical solution ph(y, t), h � 1, 2, . . . , np

by using the finite difference method (i.e., equation
(28)).
Step 5. Finally, pq(q, t) can be obtained by substituting
the results from Step 4 into equation (18) and per-
forming a summation.

4. Case Study

)e London Millennium Bridge is the first footbridge built
on the )ames River. )is structure is a shallow suspension
bridge with the spans of 81m+ 144m+ 108m. During its
opening day and subsequent on-site tests, large lateral vi-
brations in all three spans were observed.)emiddle span of

Obtain the velocity process
q(θh, t)

Start

Define random variables

Structural random variables

Discrete random variables from
excitation (SSE method)

Select the set of discrete 
representative points
θh, h = 1, 2, … np

NTM method

For each θh, solve the equation of footbridge
lateral vibration (Eq. 7)

PDE of footbridge lateral
vibration (Eq. 20) Initial condition (Eq. 21)

Obtain ph(q, θh, t)

Make a sum of ph(q, θh, t) to
obtain pq(q, t)

TVD finite difference
method (Eq. 28)

End

Figure 4: Flowchart of the proposed method.

Exact solution
Upwind method

Lax–Wendroff
TVD based on
Lax–Wendroff
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Figure 3: Solutions of equation (31) at t � 0.2. (a) Comparative results among different methods. (b) Entire process of solution by the
method of TVD based on Lax–Wendroff.
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theMillennium Bridge is selected as themain analysis object,
wherein the fundamental frequency and damping ratio are
approximately 0.48Hz and 0.007, respectively. )e bending
stiffness of the main beam EIb, mass per unit length mb, and
damping ratio ζ are considered as structural random vari-
ables. Since the report of the statistical characteristics of
these structural random variables are very limited, it is
assumed that they obey the normal distribution, and their
variability are defined according to the general practical
experience. )e properties of structural random variables
are listed in Table 1. )e detail of the discrete random
variables from pedestrian lateral excitation can be referred to
Section 3.2.

Figure 5 shows a series of probability results of the
lateral vibration displacement of the bridge when the
number of pedestrians on the bridge is set to Np � 120, and
the pedestrian central lateral walking frequency is the
double of the bridge fundamental frequency (parameter
resonance). Figure 5(a) presents the 3D diagram of PDFs
during evolution containing the entire probability in-
formation of the timeline. To achieve an improved display
effect, Figure 5(b) illustrates the PDF contour results (i.e.,
density flow) in the entire process.)e results show that the
density flow moves steadily without abrupt changes when
the number of pedestrians is relatively small. It can also be
found that, with the increase of time, the probability
density begins to increase in the large displacement areas
but tends to be stable at the later stage. On the basis of the
results of Figure 5(a), some certain time points of interest
can be obtained to analyze the specified PDF of lateral
displacement. )e PDF results of three time points (T/3,
2T/3, and T) are shown in Figure 5(c) and compared with
the MC results. In the Monte Carlo simulation (MCS), the
structural random variables and discrete random variables
are sampled according to their distributions, and the dy-
namic equation of equation (7) is solved under each set of
samples, by which the statistic of structural response is
implemented to obtain the probability distributions. In
Figure 5(c), it can be known that the PDF results at different
time instances of the proposed method are consistent with
those of MCS. In Figure 5(d) which gives the mean values of
displacement along the timeline, the proposed method has
a worse performance in the initial stage, but its results
closely match with those of MCS in the later stage. )e
congruous comparative results confirm the effectiveness of
the proposed method. Compared with the 10,000 repeti-
tions of dynamic analyses needed in the MCS, the PDE-
based approach only needs 230 iterations without com-
promising the accuracy.

To further illustrate the availability of the proposed
method, the Passerelle Simone de Beauvoir bridge [56], a
combined shallow arch bridge located in Paris, is also taken
as the analysis object. Its main span length, bending stiffness
of the main beam, and mass per unit length are 190m,
5.665 × 1011N·m2, and 3420 kg/m. Its fundamental fre-
quency and damping ratio are approximately 0.56Hz and
0.0076, respectively. Like the London Millennium Bridge,
the bending stiffness of the main beam, mass per unit length,
and damping ratio are considered as structural random

variables, and their coefficients of variation are assumed as
the same as those in the London Millennium Bridge. Due to
space limitations, Figure 6 presents the results of PDFs at
different time instances. )e results show good agreement
with the MCS results, confirming the availability of the
proposed method again.

4.1. Influence of Randomness. In comparison with the single
random (SR) case that considers the randomness of exci-
tation only, the composite random (CR) case (considers the
randomness of the structural parameters and excitation) has
always been a difficult issue. To date, no studies are available
on the CR analysis of footbridge lateral vibration. )e
structural parameters of the footbridge may have evident
randomness that also considerably influences the results due
to the measurement error. Figures 7(a) and 7(b) show that
the PDF result of the CR case is flatter than that of the SR
case, indicating that the former dispersion is higher than the
latter. )is finding is consistent with the expectation because
adding the randomness of structural parameters to the
system will likely lead to a high discreteness of the response.
Given that only three structural parameters are considered
random variables in this study, it is believed that the results
will be more different from those of the SR case if more
structural parameters are involved. Furthermore, to analyze
the influence brought by the random disturbance intensity
of excitation, the parameter bs in equation (13) is slightly
changed to be 0.35. From Figure 7(c), when bs is reduced
(i.e., the random disturbance intensity is increased), the PDF
around the zero-value region grows larger, which means that
increasing the random disturbance intensity is helpful to
keep the small vibration.

4.2. Serviceability and Dynamic Reliability. In this study, the
RMS acceleration is obtained in a convenient manner of
using all the temporal and spatial probability distributions
instead of using the power spectrum method. By replacing
the displacement q(t) with acceleration €q(t) in equation (2),
the probability distributions of acceleration p€q(€q, t) can be
obtained by using the same procedure as that for pq(q, t).
)en, RMS acceleration can be developed by using the
following expressions:

Γ€q(t) � E €q(t)
2

  � 
∞

− ∞
€q
2
p€q(€q, t)d€q,

σ €q �

�����������

1
T


T

0
Γ€q(t)dt



�

��������������

1
T


T

0
E €q(t)

2
 dt,

 (33)

where Γ€q(t) is the original moment of second order.
In comparison with the definition of the vertical comfort

limit on the footbridge, limited references are available for
the lateral direction. Bachmann et al. [57] suggested that the
limit of lateral peak acceleration should be no more than
0.2m/s2, and Dallard et al. [58] thought that the limit set to
0.2–0.4m/s2 was more appropriate. In terms of code, BS
5400 [59] offered that the maximum lateral acceleration
should be less than 0.25m/s2, and EN 1990 [60] suggested
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Table 1: Properties of structural random variables.

Random variable Distribution type Mean Coefficient of variation
Bending stiffness of the main beam—EIb, (N · m2) Normal 8.0383×1010 0.05
Mass per unit length—mb, (kg/m) Normal 2000 0.05
Damping ratio—ζ Normal 0.007 0.1
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Figure 5: Probability results of the lateral displacement (Np � 120). (a) PDF evolution process (T� 30 s). (b) Contour of the PDF surface
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that lateral peak acceleration should be less than 0.14
��
f
√

or
0.15m/s2. In the present study, a strict limit is adopted, wherein
the RMS acceleration may not exceed the value of 0.12

��
fs
√

.
�e time length is still set to 30 s. Figure 8(a) shows the

time-history results of Γ€q(t)
1/2 when the number of pedestrians

Np are 90, 110, 130, and 150. Figure 8(b) presents the results of
σ €q when the number of pedestrians ranges from 90 to 150. As
shown in Figure 8(a), Γ€q(t)1/2 has a low value, and the cor-
responding RMS acceleration σ €q is considerably lower than the
limit value of comfort (Figure 8(b)) when the number of
pedestrians is small. However, σ €q rapidly increases when the
number of pedestrians increases. When the number of people
is up toNp � 150, σ €q exceeds the comfort limit, indicating that
the pedestrians will start to feel annoyed due to the bridge
vibration. If the number of pedestrians continues to increase to
a certain critical value, then a large instability vibration of the
bridge may occur. At this time, the pedestrian’s feelings may be
beyond the concept of comfort but probably panic. Hence, the
analysis will no longer belong to the scope of serviceability but
the random stability analysis of bridge vibration.

As previously mentioned, the conventional analytical
methods are mainly based on the Kolmogorov backward
equations, which are di�cult to apply due to their strict as-
sumptions and inability to deal with the SR case. By contrast,
the PDF results of structural response obtained from the PDE
method can easily solve the dynamic reliability while avoiding
the use of the backward Kolmogorov equation, thus providing
an alternative method for the dynamic reliability analysis of
nonlinear stochastic systems. In this study, we will only con-
sider the �rst-passage failure of the bridge lateral vibration
displacement, that is, we will calculate the probability of the
bridge lateral vibration displacement not crossing a certain
limit value for the �rst time. �e dynamic reliability based on
the �rst passage failure criterion can be expressed as

R(t) � P q(τ) ∈ Ωs, 0≤ τ ≤ t{ }, (34)

Ωs denotes the safe domain. If the double symmetry
thresholds Ωs⟶ |q(τ)|≤ qlim are considered, equation
(34) can be rewritten as

R(t) � P |q(τ)|≤ qlim, 0≤ τ ≤ t{ }. (35)

If q(τ) ∉ Ωs, then the structure performance is a failure,
and the probability carried by the corresponding event will
no longer return to the security domain. �is process is
equivalent to adding an absorbing boundary condition:

pq(q, t) � 0， q(τ) ∉ Ωs, 0≤ τ ≤ t. (36)

On the basis of the boundary conditions of equation (36)
and the initial condition equation (21), equation (20) will be
resolved by using the �nite di�erence method. �en, a new
PDF marked as p∗q(q, t) with the absorbing boundary
condition can be obtained, whereby the dynamic reliability
will be subsequently obtained as

R(t) � ∫
∞

− ∞
p∗q(q, t)dq. (37)

By using the aforementioned method, the dynamic re-
liability analysis of footbridge lateral vibration is successfully

completed. Figure 9 illustrates the results of dynamic reliability
under di�erent thresholds (qlim � 0.003, 0.0035, 0.0045) when
Np � 160. It is found that when qlim � 0.003, the value de-
creases rapidly with time in the initial stage but tends to be
stable. In this case, the stable value at the ending time is ap-
proximately 0.678, that is, the probability that the lateral vi-
bration does not exceed 0.003 for the �rst time is 0.678. On the
basis of the comparative results of di�erent threshold condi-
tions, the dynamic reliability value will be signi�cantly im-
proved if the passage threshold is increased; such �ndings are
consistent with the expected results. �e dynamic reliability of
footbridges, especially for those with increasing pedestrian
loads and possible damages [61], is a critical index for bridge
safety assessment because it can provide a probabilistic sense of
evaluation on the normal use or ultimate performance of
bridges. Apart from the case of nonlinear stochastic vibration of
footbridges, the calculation of dynamic reliability has always
been challenging for designers or researchers. However, this
study successfully demonstrates that such problems can be
solved by using an e�ective and relatively simple method.

4.3.RandomStability. Random stability is also analyzed on
the basis of the obtained probability results. Figure 10
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shows the probability density �ow of lateral displacement
under the case ofNp � 180. In comparison with the case of
a smaller number Np � 120 (Figure 5(b)), the probability
density �ow of lateral displacement is no longer stable. In
the latter parts of the timeline, the probability density �ow
begins disorder, and a large amplitude vibration will occur
for the �rst time with a high probability. �is phenom-
enon can also be observed from the joint PDF of dis-
placement and velocity. Figures 11(a) and 11(b) present
the joint PDFs of the cases with Np � 170 and Np � 180,
respectively. Figure 11(a) shows that a peak exists around
the zero-value region when Np � 170, indicating that the
probability of small vibration remains high. When the
number of people increases to Np � 180 (Figure 11(b)),
the shape and the number of peaks of joint PDF change.
�e shape of the single peak in the zero-value region
disappears and shifts around, and the overall shape be-
comes an irregular volcano-shaped peak around the
nonzero region, indicating that the possibility of large
vibration is relatively high. �is result is consistent with
the on-site observed result (the number of pedestrians
that triggered the divergency is approximately 170) and
the results from other researchers [4, 5], which veri�es the
e�ectiveness of the proposed method.

5. Conclusions

As pedestrian lateral excitation depends on vibration and
involves randomness, the pedestrian-induced lateral vi-
bration of footbridges is essentially a complex problem of
a nonlinear stochastic vibration system. To solve this
problem e�ectively, a framework based on the PDE
method is proposed in this study. First, the parametric
resonance stochastic model and the corresponding vi-
bration equations are developed. Second, to avoid the
large amount of computation, the PDE, number theo-
retical, and �nite di�erence methods with the TVD
scheme are used to solve the vibration equations at a cost
of small number of samples, and the probability results
with rich information are obtained. �e proposed method
is successfully applied to the London Millennium Bridge
and the Passerelle Simone de Beauvoir bridge, and its
e�ectiveness is veri�ed by comparing its results with those
of the MCS.

�e serviceability, dynamic reliability, and random
stability analyses are conducted on the London Millennium
Bridge, based on which it can be summarized as follows:

(1) �e proposed method can easily deal with the CR
cases, which makes up the inadequacy that only
excitation randomness is considered in the random
analysis of footbridges in the past. In a future study,
in addition to the randomness of excitation, the
randomness of structural parameters also needs to be
considered because the comparison between the SR
and CR cases suggests that the in�uence brought by
the randomness of structural parameters on the
probability results is important.
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(2) In this study, the serviceability analysis of the
London Millennium Bridge is conducted in a con-
venient manner rather than the previously used
power spectrum method. It is found that there is a
nonlinear relationship between the number of pe-
destrians and the RMS acceleration. When the
number of pedestrians is small, the RMS acceleration
increases linearly with the number of pedestrians,
but it will rapidly increase when the number of
pedestrians is relatively large. It is also found the
RMS acceleration will not exceed the threshold that
causes pedestrian uncomfortable if the number of
pedestrians is less than 150.

(3) Instead of using the numerical MC method with
enormous computation burden or the conventional
analytical method based on the backward Kolmo-
gorov equation, the dynamic reliability of the Lon-
don Millennium Bridge is successfully analyzed by
making advantage of the PDF results of structural
response. )is demonstrates that the complex dy-
namic reliability analysis of nonlinear stochastic
vibration of the footbridge can be dealt with an
effective and relatively simple method.

(4) Based on the random stability analysis, it is found
that when the number of pedestrians grows to a
certain value, the single peak in the zero-value region
disappears, while a volcano-shaped peak around the
nonzero region arises, suggesting a large vibration
may likely happen. )e critical number of pedes-
trians triggering the divergency of vibration is in a
good agreement with the existent reports.

6. Discussions

)e proposed method is not limited to solving such
problems and can be used for other nonlinear stochastic
models. Hence, the proposed method is worthy of pro-
motion. Nevertheless, there are also some limitations in
this study. For the sake of simplicity, the intersubject
variability among crowds is not considered in this paper,
and the synchronized pedestrians are assumed to be
identical. Moreover, although the proposed method can
determine the stability of lateral vibration via the density
flow or joint PDF, this approach belongs to the numerical
analysis method, and only a rough interval of the critical
condition can be obtained with multiple trials. Alterna-
tively, the stochastic average method or equivalent non-
linear approximate method can be applied to obtain an
analytical expression of the critical condition triggering the
vibration instability. However, this type of method can only
consider random excitation by ignoring the randomness in
structural parameters. Another strategy called the energy
criterion method can identify the stability/instability in the
nonlinear stochastic system through the difference between
the input and output energies.)is method can also be used
within the frame of the PDE method to obtain the prob-
ability of stability/instability. )is related research will be
completed in our future work.
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