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1is paper presents the practical results of the evaluation of the data obtained by using ground-based radar interferometer during
measurements carried out on bridge structures. Due to the nature of the objects studied, the authors proposed a comprehensive
method of data analysis, which identifies whether the passage of the vehicle did not damage the bridge.1e effective use of vehicles
as a source of bridge excitation allowed us to first develop a method for determining the damping parameters resistant to
potentially occurring beating frequencies. As a result, it is possible to determine these subsets of data registered with radar, for
which it is possible to assume compliance with linear systems. 1is type of data, often omitted in other works, forms the basis for
the second important element of the research—an algorithm based on the ARMA model supporting defect detection. 1e
optimization of the performed calculations, in particular the proposed optimal ARMA model order, the method of fault
identification based on the DSF parameter, or fault identification based on a nonmetrical Cook’s distance leads to a robust and
scalable method. 1e method’s low computational complexity allows for implementation in real-time solutions. In addition, the
distribution of errors and the sensitivity of classifiers based on the DSF parameter and Cook’s distances leaving them will enable
the automation of the classification process usingmachine learning.1e proposedmethod is universal; in particular, it can be used
for radar interferometry methods because it is resistant to potentially variable environmental conditions.

1. Introduction

1e inspection measurements of important and non-
standard engineering structures and related studies are the
basis for assessing their safety. In the group of objects that
must be monitored during load tests and require monitoring
are, among others, bridge structures and buildings exposed
to the influence of seismic factors. 1e monitoring of such
facilities and their examination under test loads should
provide a basis for assessing the safety of the structure at the
time of its commissioning and in the future.

Many failures can be identified based on the analysis of
observations carried out using various measuring devices. In
this group, attention should be paid to the radar in-
terferometry technique that allows simultaneous observa-
tion of many elements representing the tested structure. Its
important advantage is the ability to conduct measurements
in a noncontact manner and that there is no requirement to
install any devices on the object.

1e use of radar observations of many points on the site
to analyze the health of the structure is quite wide. 1is type
of research is carried out for both bridge and high-rise
buildings by determining the vibration parameters based
on dynamic displacement monitoring [1]. Gentile and
Bernardini [2] describe the application of the radar sensor to
vibration full-scale measurements of a bridge in relation to
the time series recorded by the conventional accelerometers.
In this research, the application of the radar sensor to vi-
bration full-scale measurements of a bridge in relation to the
time series recorded by the conventional accelerometers is
presented. As a result, the resonant frequencies and mode
shapes of the bridge that were identified from the radar
signals are compared to the corresponding quantities esti-
mated from the data recorded by the conventional sensors.
Moreover, Barros and Paiva [3] present many different types
of bridge structures on which radar measurements were
performed as a part of SHM. For each case study, the
comparison with the akin results obtained for the same case
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studies either by structural computational modeling or by
other intrusive SHM techniques is described, in order to
ascertain the accuracy of this nonintrusive radar in-
terferometry. In turn, Diaferio et al. [4] focus on operational
modal analysis (OMA), which is extensively used as a tool
for the modal identification and the SHM of civil engi-
neering constructions. 1ey analyze the capability and the
possibly needed improvements of the ground-based radar
interferometric experimental set-up applied to a railway
viaduct, as an alternative to classical experimental tech-
niques based on the use of accelerometers, which involve
high costs and long times for performing measurements and
often interrupt the service of a construction. Another ex-
ample of the application of radar measurements in relation
to the alternative observational method, which is a vision-
based measurement system based on the digital image
correlation coefficient, is presented by Kohut et al. [5]. 1is
research was carried out to assess the behavior of the tram
viaduct as a result of operational loads.

Research on the condition of structures based on radar
observations has also been carried out for high objects. Hu
et al. [6] use radar measurements to high-rise building
observations. 1ey established a sequential quadratic
programming-genetic algorithm to identify the dynamic
vibration characteristics of buildings under natural envi-
ronment excitation. 1is method not only accurately
identifies resonance frequencies but also directly extracts the
amplitudes of the sine and cosine components of the
building vibration signals under the resonance frequencies
response compared with the traditional spectrum analysis
based on the fast Fourier transform.

Another example is a historic masonry bell tower ex-
amined by Castellano et al. [7]. 1e proposed approach
exploits the extraction of modal parameters to define me-
chanical features of the structure such as mass, damping and
stiffness matrices by means of operational modal analysis,
starting frommeasurements performed by a very promising,
expeditious, and contactless experimental technique based
on radar interferometry.1is approach may be very effective
for structural health monitoring purposes. A different ap-
plication is presented by Ochieng et al. [8]. 1ey used a
noncontact radar observation for structural health moni-
toring of infield wind turbines blades. Radar sensor helps the
monitoring of blades during design, testing, and operation.
Furthermore, it supports the determination of damage de-
tection for infield wind turbine blades within a 3-tier SHM
framework especially for those made of composite materials
by way of condition parameter residuals of extracted modal
frequencies and deflection.

Damage detection is one of the most important appli-
cations of SHM systems and algorithms. Modern compu-
tational technologies based on digital signal processing, the
evaluation of patterns by means of machine learning, or the
evaluation of patterns by the analysis of statistical charac-
teristics of signals can be used to assess the safety of building
objects [9, 10].

Recently, an important trend in this field is the use of
machine learning to identify potential problems. While the
use of AI methods is widely known for systems based on the

analysis of dynamic data, it is also worth noting that it is
possible to effectively analyze data from high-resolution
measurement systems using deep machine learning
methods [11]. 1e use of photogrammetric systems and
computer vision systems can also successfully include dy-
namic measurements. 1is type of work encompasses many
research directions, among which the following should be
mentioned: different template matching techniques for
tracking targets, coordinate conversion methods for de-
termining calibration factors to convert image pixel dis-
placements to physical displacements, measurements by
tracking artificial targets vs. natural targets, and many
others.

Finally, the applications of the measured displacement
data for SHM are reviewed, including examples of structural
modal property identification, structural model updating,
damage detection, and cable force estimation [12]. An im-
portant element of SHM systems is not only to identify the
damage but also to give such information an adequate
weight. In particular, research work may include the pro-
vision of information on the SHM system including the
number of sensors and sensor locations [13].1e complexity
of SHM systems and a large number of sensors do not
remain indifferent to the possibilities of the efficient use of
systems.

As important as research work that focuses on system
reliability, there are those that aim to reduce computational
complexity while maintaining damage detection efficiency.
In particular, unlike conventional strategies employing a
frequency response function or response data, a damage
detection methodology is addressed by employing trans-
missibility functions that retain a strong interrelation with
structural damage or deterioration in order to avoid the
measurement of excitation, together with the principal
component analysis that leads to a reduction in computa-
tional costs [14].

Studies on SHM algorithms concern, just like in this
paper, the identification of damages occurring on bridge
structures. 1ese tests, which are crucial for practical ap-
plications, must also include an analysis of the interaction
between the bridge and the vehicles that constitute the
source of disturbances and vibrations [15]. Long-term
monitoring of objects is inherently subject to changing
environmental conditions, in particular to changing weather
conditions. Such changes affect both the measurement
system and the behavior of the object itself. Huang et al. [16]
address this problem by indicating that, in practical appli-
cations, time-varying environmental and operational con-
ditions, such as temperature and external loadings, often
overwhelm the subtle changes caused by damage. It is
therefore of great significance to remove those structural
changes (damage features) caused by external influences
from actual structural damage. 1e authors present a new
damage identification method based on the Kalman filter
and cointegration (KFC). As a result, the environmental
effects on a damage indicator are removed, thanks to the
cointegration process of the Kalman filtered coefficients.
Bhowmik et al. [17] show that most work to date deal with
algorithms that require windowing of the gathered data that
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render them ineffective for online implementation. Algo-
rithms focused on mathematically consistent recursive
techniques in a rigorous theoretical framework of structural
damage detection are missing. 1is motivates the devel-
opment of the present framework. As a solution, a baseline-
free approach for continuous online damage detection of
multidegree of freedom vibrating structures using recursive
singular spectral analysis in conjunction with time-varying
autoregressive modeling is presented. Besides, the problem
of long-termmonitoring is also considered by Roy et al. [18].
1e authors draw attention to the fact that a direct com-
parison of the vibration signals or modal properties at
different periods of time may not be sufficient to identify the
damages and their locations. 1erefore, it is important to
analyze the vibration signals to extract the morphologies of
the changes in these response signals and correlate them
with the types, location, and magnitude of structural
damage.

An interesting solution, presented by Krishnan et al.
[19], successfully eliminates the need for offline post-
processing and facilitates online damage detection espe-
cially when applied to streaming data without requiring any
baseline data. 1is is a novel baseline-free approach for the
continuous online damage detection of multidegree of
freedom vibrating structures using recursive principal
component analysis (RPCA) in conjunction with time-
varying autoregressive (TVAR) modeling. In this
method, the acceleration data are used to obtain recursive
proper orthogonal components online using the rank-one
perturbation method, followed by TVAR modeling of the
first transformed response, to detect the change in the
dynamic behavior of the vibrating system from its pristine
state to contiguous linear/nonlinear states that indicate
damage.

On the contrary, the health analysis of the structure
based on data representing the stationary parts of mea-
surement signals has been presented, among others, by Sohn
et al. and Nair et al. [20, 21]. 1ey are an important element
in the proposed solution.

1is work presents an algorithm for conducting re-
search under testing or operational load that allows si-
multaneous observation which will allow for identifying
any structural damage that may occur during testing and
are the basis for building a reference database of the system
based on SHM.

An algorithm for detecting and automatically identifying
the defects of buildings and structures is applied. It is
particularly useful for engineering structures susceptible to
dynamic excitations such as bridges, viaducts, flyovers,
masts, and towers, as well as free-standing chimneys (single
and multi-flue) based on tests carried out under testing or
operational load.

2. Proposition of the Damage
Detection Algorithm

2.1. Overview. 1e computational technique is that the
measurement signals, which are variable in time, are

measured, and the results are delivered to the computing
unit in the form of time series and spectrograms, and an-
alyses are carried out for the stationary fragments of the time
series.

In the first stage, when measuring a given structure,
measuring devices, such as the accelerometers, in-
terferometric radar, or GNSS receivers, are positioned in
such a way that the following can be performed:

(a) It is possible to accurately identify the mode shapes
resulting from the modal analysis of the structure

(b) 1ey are located in the places that are subject to
damage during tests under test loads and operational
loads

In the second stage, the values of the identified ampli-
tudes obtained from those parts of the time series, which
represent free vibrations, are compared with the results of
the modal analysis in the range of values in the frequency
domain and in the range of the logarithmic decrement of
damping calculated from the Hilbert transform of free vi-
bration [22].

1en, in the parts of the time series that represent the
stationary signal, the ARMA model is fitted (a linear model
of autoregressive moving average) [23]. On this basis, the
damage sensitive feature (DSF), introduced by Nair et al.
[21], is calculated as the normalized value (the first co-
efficient is divided by the square root of the sum of the
squares of the first three coefficients).

In the third stage, it is calculated if the distance of the
given calculated coefficient, on the basis of the given time
series after the crossing of a vehicle, changes the coefficients
of the regressive lines fitted into the previous realizations of
the DSF with the use of Cook’s distance. In this way, the
dynamic behavior of the bridge, which deviates from the
norm, is identified.

1e signal recorded during the load testing can be di-
vided into three parts in the time domain (Figure 1):

(1) 1e data represent the stationary signal. 1is is the
basis for finding the structure’s features representing
its condition prior to possible damage and in the
parts representing the condition of the object after
free vibration has expired. 1e second part is the
basis for evaluating whether or not the force dam-
aged the object.

(2) 1e data represent the deflection of the construction.
1e standard procedure may be used to calculate
other parameters such as the coefficients of the
dynamic amplification factor (DAF).

(3) 1e data represent the free vibration. 1e correctly
filtered and standardization process allows for the
calculation of an amplitude spectrum and also may
determine if the design is acting in accordance with
the damping based on the values of the logarithmic
decrement of damping.

2.2. Estimation of the Structure Damping. It is common
practice to use free-damping data to verify FEA (finite
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element analysis) models. Usually, data are used to obtain
information about the amplitude spectra (Figure 2). In order
to correctly establish an amplitude spectrum, the incoming
signal must be processed with a band-pass filter supported
by data and a precalculated modal analysis based on the
finite elements analysis method. 1e interval representing
free vibration may be presented as follows:

x(t) � Ae
−Bt cos(ωt + φ), (1)

where A is the amplitude, B is the damping coefficient, ω is
the frequency, φ is the phase, and t is the time.

If a Hilbert transform was calculated for such a signal,
the envelope of the damped oscillator was obtained as a
result (Figure 3).

Taking into account equation (1), the estimated pa-
rameter B may be calculated in the following two ways:

(i) Directly from the definition by fitting the expo-
nential function into the result of the Hilbert
transform

(ii) By fitting the linear function into the logarithm of
the Hilbert transform

A classic logarithmic decrement of damping is calculated
upon the basis of the following equation:

δ � ln
An

An+1
, (2)

where δ is the logarithmic decrement of damping and An

and An+1 are the consecutive amplitudes.
1e direct use of equation (2) does not solve the problem,

which is illustrated in Figure 3. Although the band-pass filter
is used, the signal, which registers the free vibration, is
affected by two very similar frequencies because the phe-
nomenon of beat frequencies occurs in bridge structures
while being tested. Such a situation is found on bridge
structures, especially for cable bridges [10, 25, 26]. 1e
proposed solution of this occurrence is superior to the
classical method based upon the definition of the loga-
rithmic decrement of damping that, in the submitted ex-
ample, the estimation of the damping coefficient is not

hampered by the errors occurring from the number of
frequency components (Figure 4).

1e standard equation describing the vibration is ex-
ponential. It is by its nature difficult to be analyzed by re-
gression algorithms. 1e proposed solution is based on
linearizing the equation before estimating the parameters.
1e logarithmic representation of the Hilbert transform can
be easily estimated using linear regression or generalized
linear regression with selected cost function (the authors
present the use of LSF as a cost function). It is a more ef-
fective way and a more robust solution.

Such an approach allows for the estimation of the
damping coefficients to be based on a robust estimation. In
addition, while the estimation is being determined, the entire
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(reproduced from [24], under the Creative Commons Attribution-
NonCommercial 4.0 International License).

Time (s)
40 50 60 70 80 90 100 110

D
isp

la
cm

en
t (

m
m

), 
am

pl
itu

de

–0.2

–0.1

0

0.1

0.2

Figure 3: Hilbert transform calculated for signal obtained from
damping vibrations with beat frequencies (reproduced from [24],
under the Creative Commons Attribution-NonCommercial 4.0
International License).

4 Shock and Vibration



data acquisition of the measuring signal is being utilized,
rather than an arbitrarily chosen amplitude (Figure 4).
1erefore, after determining the linear estimation,

y � Bx + C, (3)

δ � B · T, (4)

where T is the period of the dampened vibration and C is the
constant.

2.3. Structural Health Estimation and Damage Detection.
If during a load test, damage to the construction occurred, it
would change the statistical characteristics of the measured
data. 1ere exists a group of methods which has been de-
veloped for the identification of the damage. 1ey are based
on the congruency of the ARMA (autoregressive moving
average) models into the given data. 1e general form is as
follows:

xij(t) � 􏽘

p

k�1
akxij(t− k) + 􏽘

q

k�1
bkεij(t− k) + εij(t), (5)

where xij(t) is the normalized measurement signal,
ak and bk are the k-th AR and MA coefficients, p and q are
the model orders of the AR and MA processes, and εij(t) is
the residual term.

1e algorithms of the group are discussed in detail
[10, 19, 20]. In particular, the modified and implemented
algorithm adapts to the structure in Figure 5.

1e structure of the proposed algorithm is discussed in
more detail below.1e assumption is to answer the question
whether the condition of the structure before the vehicle’s
approach during the loading of the bridge structure and after
that has changed. 1e algorithm operates on data por-
tions—called batch or data intervals. Batch data processing is
an efficient way of processing high volumes of data where a
group of transactions is collected over a period of time. Data
are collected, entered, and processed, and then the results are
produced. Since we would like to be able to compare the

results between measurements, the intervals of the data must
be standardized in the beginning of the process, as is shown
in Figure 5. A practical way of doing this is as follows:

x(t) �
(x(t)−m)

σ
, (6)

where x(t) is the analyzed interval (batch of data), m is the
mean value, and σ is the standard deviation.

After the standardization, the time series is entered into
the model of ARMA in accordance with equation (5). Taking
into consideration the different types of engineering
structures, the rank of the coefficients AR (p) and MA (q), in
the proposed solution, is subject to estimation.
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1erefore, the effect of the action of the algorithm will be
the result of the damage sensitive feature of the DSF pa-
rameters calculated for the specific data vectors representing
the engineering structure before and after the potential
damage (Figure 6):

DSF �
a1����������

a2
1 + a2

2 + a2
3

􏽱 ,
(7)

where ai is the coefficients obtained from equation (5).
1e classical approach to identify the damage in a given

structure is that one must take all the obtained DSF co-
efficients prior to the test (marked in Figure 6 as circles) and
use this as a basis to calculate the estimated value. 1e next
step would be an analogical procedure for the entire interval
representing the structure behavior after the excitation has
been applied to the construction (the result is marked in
Figure 6 as plus signs).

Hence, for both groups of data, the mean values have to
be estimated. Upon this basis, it may be concluded that there
will be a substantial difference between the groups, using the
standard t-test for this aim.

1is type of approach has two characteristic
shortcomings:

(1) It is crucial to take a sufficient number of samples
representative of the structures behavior after force
has been applied to the construction, in order for the
statistical significance from the given test to be
properly kept at accordingly a high level.

(2) Limiting the possibility of using the calculation
techniques of bridge structures while under opera-
tion being subjected to continual use, there may not
be a suitable length of time between the impact of the
structure to gather the proper amount of data to run
a t-test determining the DFS coefficients.

2.4. Reducing the Amount of the Necessary Data. 1e
abovementioned limitations may be solved by using a dif-
ferent criterion than the statistical difference estimated
between the two groups of data. A dataset was considered in
which after the excitation and damping of the object and
before the next excitation, a limited amount of data can be
registered. It means that two consecutive forces are applied
to the structure in a short time. In the case of such data, it is
possible to calculate a limited number of the DSF coefficients
(in Figure 7 marked with an arrow).

Such a situation may be encountered when research is
being carried out in bridge structures that are in current use,
especially those with a large variety of vehicles that are not
standard and are oversized. 1e question at hand is whether
or not a given vehicle may be the cause of damage to a
structure even during minimal intervals between the
impacts.

In order to verify whether the limited number of DSF
parameters that were registered are significantly different
from the average realization, the formula that may be used in
such a regression analysis is based upon Cook’s distance
given by the following equation:

Di �
􏽐

n
j�1 yj −yj(i)􏼐 􏼑

2

p · MSE
, (8)

where yj is the j-th fitted response value, yj(i) is the j-th fitted
response value where the fit does not include observation i,
MSE is the mean squared error, and p is the number of
coefficients in the regression model.

1ere are several reasons why Cook’s distance has been
chosen as a tool to detect changes in the DSF coefficients
value. First of all, the use of this method allows for the
diagnosis of the object’s state immediately after the load has
been removed which is crucial for the algorithm. 1us, the
potential damage to a bridge object can be detected on the
basis of a small amount of data. Second, there are un-
ambiguous, objective criteria for assessing whether Cook’s
persistence is statistically significant [27]. 1irdly, it is not
necessary to perform recursive statistical significance tests of
the DSF coefficients, which significantly reduces computa-
tional complexity.

Figure 8 presents Cook’s distances calculated for the
example dataset. It is easy to see that all of the captured DSF
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coefficients for the vectors of the data representing a
damaged structure are assigned a value above line.

1e dashed line in Figure 8 corresponds to the rec-
ommended threshold value of three times the mean of
Cook’s distance. 1e plot has observations with Cook’s
distance values which are greater than the threshold value. In
particular, the DSF obtained for vector numbers 51, 52, and
53 have Cook’s distance values that are relatively higher than
the others, which exceed the threshold value. Usually you
might want to find and omit these from your data and
rebuild your model, but in our case, this information is used
to answer the question if extraction (for example, a vehicle)
caused damage to the tested bridge. It is important to keep in
mind that this is not the value of Cook’s distance, but the
change in the value of the DSF coefficient is the basis for
identifying the damage to the object. Cook’s distance is only
a tool that allows you to objectively and efficiently find
changes in the DSF value.

3. Bridge Test Results

3.1.Acquisitionof theObservationData. 1e object on which
the test was carried out was a tram viaduct. 1e ground-
based interferometric radar IBIS-S was used to acquire the
data (Figure 9). 1e displacements of a dozen points rep-
resenting the bridge span were the subject of measurement;
however, the observations of one point, located in the span
half-length, were used for further analyzes. 1e sampling
frequency was set as 100Hz.

1e design specifications on the phase accuracy applied
on the radar system, which was used in the presented re-
search, are suitable for measuring short-term displacements
with a range accuracy better than 0.1mm [28].Moreover, the
radar manufacturer claims that displacement surveying
accuracy is at the level of 0.01mm.1is value is confirmed by
the analyses carried out by Rödelsperger [29], who consider
the relationship between the SNR (signal to noise ratio) and
the displacement measurement error. 1e SNR value de-
pends on the intensity of the radar signal reflected by the
observed object. For an SNR of 40 dB, the displacement
measurement error is 0.03mm and decreases with a further

increase of SNR.1e time series subjected to further analysis
was recorded for one of the 7 points observed on the bridge
span, and for all of them, the SNR was greater than 65 dB.

In the conducted research, it was assumed that the
impact of the atmospheric disturbance and the multipath
signal effect is negligible. 1is is possible because, during the
observation, the atmospheric conditions did not change and
the configuration of the measurement system and the object
remained unchanged. In addition, taking into account the
fact that the precision of the measurement result is more
important to the performed tests than its accuracy, it may be
assumed that the record of 0.01mm displacement is an
actual observation.

1e time series subjected to further analysis is shown in
Figure 10. 1e data representing the stationary signal are
marked in red. 1ey provide input data for the proposed
algorithm for potential damage detection. With the use of
arrows, the intervals of clear excitation of the free vibrations
are marked, which will be used to determine the frequency
spectrum of the construction vibrations and the logarithmic
decrement of damping.

In the proposed algorithm, the frequency spectrum
analysis is not a key but an auxiliary element of the solution.
1e essence of the algorithm is based on the transformations
of stationary signals. However, the proposed application of
the method is monitoring bridges that will be subjected to
vehicle traffic. 1erefore, in order to correctly analyze the
data, it is necessary to verify when after the excitation the
construction vibration has been damped.

To determine the parameters of damping the structure,
the observation intervals marked with arrows were used
(Figure 10). 1e selected observation intervals were sub-
jected to FFT analysis. Both of the analyzed cases showed a
dominant frequency of value 2.95Hz± 0.01Hz. 1is means
that the natural vibration period of the tested bridge span is
T� 0.34 s.

According to the proposed algorithm, the Hilbert
transform was used to determine the damping of the
structure. 1e signal from the observation is marked in blue,
while the envelope of the vibration (i.e., the graph of the
Hilbert transform) is shown in red (Figure 11).

1en, in the logarithmic representation of the Hilbert
transform, the linear function was fitted (Figure 12). 1e
determined value of parameter B defined in equation (3) is
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Figure 8: Cook’s distance calculated for the linear model of DSF
coefficients [24] (reproduced from [24], under the Creative Com-
mons Attribution-NonCommercial 4.0 International License).

Figure 9: IBIS-S radar unit under the tested bridge span.
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0.0572 and 0.0646 for the analyzed cases.1is means that the
logarithmic decrement of damping equals 0.019 and 0.022,
respectively.

3.2. Optimization ofAlgorithmParameters. 1e algorithm of
the structure damage detection based on the autoregressive
moving average model has several parameters that can be
adjusted adequately to the analyzed building objects. Among

them are the p and q values, that is, the model orders of the
AR and MA processes can be pointed out. In addition, the
length of the vector containing the data to determine the
DSF parameter is also not strictly defined, the same as the
number of these vectors. Hence, for the analyzed case, an
attempt was made to determine the optimal AR and MA
values (Figures 13 and 14, respectively).

In the following figures, different symbols were used for
marking the DSF values obtained as a result of the analysis of
the signal recorded before the occurrence of the load and
after the load termination and related effects (like the
damped vibrations). 1e solid lines in the corresponding
colors represent the regression lines fitted into the set of DSF
values determined for the adopted number of the analyzed
data vectors.

1e values of the model orders of the AR and MA
processes have a range that makes them appropriate for the
analysis [21]. 1e presented variants allow the choice of p �

4 and q� 3 as optimal for further analysis. And while the q
parameter does not significantly affect the DSF values (q� 3
was chosen for further analysis), in the case of parameter p,
the differences are significant.1e choice of p � 4 for further
analysis is due to the smallest variability of the DSF value
(the black markers in Figure 13) in relation to the time series
from the observation of the structure before the load oc-
currence, i.e., the potential damage.

In the next stage, the effect of the length of the vector
containing the data to determine the DSF parameter and the
number of analyzed vectors was verified. Observation data
were divided into two ways: (1) 21 vectors with 200 elements
and (2) 11 vectors with 400 elements (Figure 15). 1e results
indicate a higher sensitivity of the variant (1); however, the
variant (2) also reveals that the values are significantly
different from the average.1is is important in the process of
detecting changes in the state of the structure.1e advantage
of variant (2) is the higher calculation speed.

3.3. Application of Cook’s Distance. In the proposed algo-
rithm, Cook’s distance was used to determine if the imple-
mentation of a limited number of DSF parameters are
significantly different from the average realization. 1e an-
alyses were made on the basis of the DSF datasets, as shown in
Figure 15. 1e effect is shown in Figure 16. 1e DSF values
exceeding the adopted threshold (the dashed lines in Fig-
ure 16), i.e., the outliers, are marked with red circles.

It should be noted that the DSF values that would in-
dicate a change of the structure state (vectors no. 9–13 in
Figure 15(a) or vector no. 6 in Figure 15(b)) are not con-
firmed by the calculated Cook’s distance. On the contrary,
there can also occur outliers (the black cross in Figure 16(b))
which do not indicate damage on the basis of the DSF. 1is
leads to the conclusion that the detection of structural
damage should be based not only on the DSF coefficient but
also on Cook’s distance, which is its valuable complement in
the proposed algorithm. 1e proposed algorithm has an
advantage over a standard solution because it is not based on
simple statistical significance testing of the DSFs. As a result,
the size of the sample before and after the load can vary.

Time (s)
320 325 330 335 340 345 350

D
isp

la
ce

m
en

t (
m

m
), 

am
pl

itu
de

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

0.04

(a)

Time (s)
715 720 725 730 735 740 745 750

D
isp

la
ce

m
en

t (
m

m
), 

am
pl

itu
de

–0.02

–0.01

0

0.01

0.02

(b)

Figure 11: Hilbert transform of selected intervals.
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It also does not matter what the distribution of the residuals is
(there is no need to meet the assumptions related to a formal
significance test). In the examples discussed, the values of the
DSF coefficients signaling object damage are unlikely to be
detected by another method. 1anks to this, the proposed
method is not only faster but also more sensitive.

4. Conclusions

1e presented algorithm comprehensively discusses the
methods of prototyping engineering structures, in particu-
lar, examining bridges under testing and operational loads.
Its basic assumptions and features are the following:
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Figure 13: Distribution of DSF values depending on the AR process order: (a) version order of AR� 4, order of MA� 3; (b) version order of
AR� 5, order of MA� 3; (c) version order of AR� 6, order of MA� 3.
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AR� 4, order of MA� 3; (c) version order of AR� 4, order of MA� 4.
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(1) 1e decomposition of the recorded signal represents
the vibration of a given bridge structure into three
groups in the time domain. 1e first group contains
data before an impact and after free vibration, and
technically, it is the group of stationary signals of
linear systems. 1e second group is the response of
the construction (i.e., the deflection of the span
occurred). 1e third group is the part of the signal
which represents the free vibration in a structure that
is excited.

(2) 1e decomposition of a signal in a frequency
spectrum, especially with band-pass filters, allows for
the more effective spectral analysis. 1e band width
is the results of the FEM analysis.

(3) 1e amplitude spectrum is comparable to the
analysis made with the finite elements method
through the calculation of the fast Fourier transform.

(4) Construction damping of an object is represented by
the logarithmical decrement. 1e calculation of its
values is not dependent upon the implementation of
the direct definition but on the calculation of the

Hilbert transform. Furthermore, for the logarithm of
the envelope, the linear regression with the robust
least squares fitting method is calculated. 1e cal-
culated coefficients of the linear estimation allow for
an estimation of logarithmic decrement of damping
in the entire signal, even when the structure expe-
riences beat frequencies.

(5) 1e identification of the potential damage to a
structure as a result of impact is based on the DSF
coefficients.1e answer to the question if the damage
occurred is based on Cook’s distance rather than the
comparison of the average values of the tests is
obtained as follows: the effect of such an examination
is when in real time the conclusion may be drawn
whether or not the data from the tested object in-
dicate the damage, even in the cases when the
damage occurs during the operation of the tested
object.

It is of utmost importance that the data supporting the
algorithm in the field of stationary signals are analyzed
properly. 1e important parameters are as follows: the order
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of the ARMAmodel, the length of the data windows, and the
test if the residuals obtained are normal, impeded, and
identically distributed. Verification of the construction
condition has to be based on the proper baseline (the same
environmental conditions). In addition, the proposed so-
lution presents current and modern approaches to solving
the problem. In particular, it offers the following:

(i) 1e effective separation of stationary and non-
stationary signals

(ii) Optimal ARMA model parameters
(iii) Implementation possibilities supporting online

solutions by limiting computational complexity
(iv) Effective input data for the analyzes conducted

using the AI method, in particular for classifying
the DSF parameters and Cook’s distances assigned
to them

(v) A methodology of using Hilbert transforms for
oversize excitations

(vi) 1e use of observation methods based on in-
terferometric radars, which facilitate the location
of potential damage, because the input data are
uniform in the time domain and strictly defined to
the location; due to the easy coverage of the tested
object with multiple observations, the analysis of
data, and consequently the location of the damage,
is easier

(vii) Input data from radar systems which allow, due
to the frequency and accuracy of the displace-
ment measurements, the use of the most algo-
rithms that were developed for the analysis
of the measurements performed with the
accelerometers

(viii) No influence of weather conditions variability on
the possibility of inference about the state of the
object for the dynamic issues.

Further research is the technological implementation of
machine learning which will allow for the automatic clas-
sification of the DSF coefficients.
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