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Traction systems are a good choice for high-rise lift systems, especially in deep wells. With increasing lift depth and weight, rope-
guided traction systems have become an essential design methodology in the mine lift field. In this paper, a comprehensive
mathematical model is established to simulate the dynamical responses of a rope-guided traction system with different terminal
tensions acting on the compensating rope. )e results and analysis presented in this paper reveal dynamical responses in terms of
longitudinal and transverse vibration. Additionally, a wide range of resonances occurs in the target system. Differences in the
dynamical responses between a traditional traction system and tensioned traction system are analysed in detail. )rough
comparison and analysis, it is determined that terminal tension plays an important role in the suppression of longitudinal
vibration in a system. However, changes in the amplitude of longitudinal vibration are independent of terminal tension, which
only affects longitudinal elastic elongation and does not affect the basic shape of longitudinal and transverse vibrations. Based on
this analysis, it can be concluded that longitudinal vibration suppression can be achieved by applying proper tension on the
compensating rope to ensure that it reaches a tensioning state. Continuing to increase terminal tension is not beneficial for the
vibration suppression of a system.)e results presented in this paper will serve as a valuable guide for the design and optimisation
of traction systems.

1. Introduction

Because of their ability to resist relatively large axial loads,
ropes have been widely applied in lift systems, such as
mobile cranes [1], elevators [2], and mine lifts [3]. Con-
sidering the characteristics of heavy loads and space saving,
traction systems are a good choice in high-rise lift systems,
especially in deep wells. With increasing lift depth, rope-
guided traction systems have become a popular solution in
the mine lift field. Compared to rigid guides, rope guides
are easier to install and more cost-effective. )erefore,
rope-guided traction systems will gradually replace tradi-
tional traction systems, meaning a dynamic model must be
established to explore the dynamic characteristics of such
systems.

Traditional traction systems consist of five main com-
ponents: a drum, lifting rope, rigid guides, conveyance, and
compensating rope. )e dynamical responses of traditional
lift systems have been thoroughly studied by many scholars.
For example, Kimura et al.[4] established a transverse vi-
bration model for elevators and used a single-degree-of-
freedom system to analyse dynamical responses.

It is widely understood that the longitudinal and
transverse vibrations of the lifting and compensating ropes
are induced by excitations in the winding process of the
drum.When the frequency of excitation matches the natural
frequency of the system, resonance will occur at the cor-
responding point. )is phenomenon causes impact loads
during the lifting process, leading to poor stability of the
system, and has been studied by many researchers for
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decades. For example, Kaczmarczyk [5, 6] established lon-
gitudinal and transverse models for a catenary-vertical
lifting cable system with periodic excitation to analyse
passage through resonances based on a multiscale method.

Regarding continuous dynamic modelling methods,
there are three main types of methods: Lagrange principle
methods, Hamilton principle methods, and finite element
methods (FEMs). For example, Ren and Zhu [7, 8] de-
veloped a spatial discretisation and substructure method to
calculate the dynamic responses of a one-rope system with
a time-varying length parameter accurately using the
Lagrange equation. )ey also explored the longitudinal and
transverse vibrations of a moving two-cable, one-rigid-body
car system, where the rotation of the car was considered. Bao
et al. [9] established a dynamic model for elevator lift sys-
tems based on the Hamilton principle and analysed the
influence of different system parameters on transverse and
longitudinal vibrations, as well as the energy characteristics
of longitudinal and transverse vibrations, which were ver-
ified experimentally. Wang et al. [10] introduced an FEM to
investigate the three-dimensional underwater vibrations of
a geometrically nonlinear cable with a weight at the lower
end. Wang [11] established a longitudinal vibration model
based on the Lagrange equation for a parallel lift system with
a tension auto-balance device (TABD) attached to the ends
of all lifting ropes. )e results revealed that for a parallel
lifting system with a TABD attached to the ends of all lifting
ropes, conveyance provides the main excitation that affects
the longitudinal vibration of the ropes.

One can see that most previous studies on the dynamical
responses of traction systems have focused on rigid guides.
Rigid guides and flexible guides exhibit significant differ-
ences in terms of their dynamic responses. Several scholars
have studied different types of guides and derived many
meaningful results. Yang et al. [12, 13] considered the
conveyance and guiding rope as a cohesive system based on
dynamic analysis of the swing of the conveyance. )e swing
angle of the conveyance during the lifting process was ob-
tained through numerical calculations. )e influence of the
length of the guiding rope, pretension of the guiding rope,
lifting speed, horizontal torque, and inertia and size of the
conveyance on the swing angle was analysed. Sai [14–16]
analysed the reasons for the transverse vibration of a lift
bucket and determined that the main internal factors leading
to oscillation were the twisting force of the lifting rope,
jumping of the lifting rope when the drum ran out of rope,
periodic fluctuation of the lifting rope caused by errors in
processing and installation, and initial offset and large ac-
celeration of the lifting rope. )e pretension of the flexible
guiding rope was an important external factor affecting
oscillation. )e influence of the lifting weight, tension of the
guiding rope, depth of the well, and lifting speed on the
swing angle of the conveyance was also analysed. It was
concluded that the roundness of the pulley is proportional to
the swing angle of the conveyance. )is roundness has the
greatest influence on the swing angle and is the fundamental
cause of swinging. To transform the equivalent mass and
time-varying stiffness of the guiding rope to the end of the
lifting rope, Cao [17] established a lateral and torsional

vibration model for a rope-guided lift system and analysed
the effects of various parameters on the lateral and torsional
vibrations of the conveyance. It was determined that ap-
propriate tension and distance differences can decrease the
maximum lateral displacement. Considering guiding and
lifting ropes as continuums, Wang et al. [18] established
equations of motion for a rope-guided lifting system using
first-order Lagrange equations. )e geometric relationships
between the conveyance and cables were accounted for by
the Lagrangian multiplier. )e dynamical responses of the
conveyance were calculated, and the transverse displace-
ments of the guiding ropes and constraining forces at the
interfaces were obtained. He also established equations of
motion using Hamilton’s principle and obtained boundary
conditions to calculate natural frequencies with a modified
velocity of wave propagation. According to Lyapunov’s
second method, the rate of change in energy indicates that
a cable-guided lifting system experiences stability and in-
stability during downward and upward movements, re-
spectively. Wang et al. [19] also considered the guiding rope
as a continuum to obtain the vibration characteristics of
a flexible steering lift system under multiple disturbances
and proposed an adaptive transverse vibration control
method.

In most previous models, the compensating rope has
been considered in a free state. Few scholars have also added
a compensation pulley to the end of the compensation rope
to control the dynamical response of the compensation rope.
For example, Crespo et al. [20] established a comprehensive
mathematical model for a high-rise elevator system con-
sidering the combined lateral stiffness of the roller guides
and guide rails. )e results and analysis presented in his
paper reveal frequency curve veering phenomena and a wide
range of resonances that occur in the system. Otosuki et al.
[21] presented a method of vibration control for an elevator
rope based on a nonstationary sliding mode control method
using an input device with gaps. )e results indicated ef-
fective vibration suppression and high robustness in the
cases described above, except for the case with varying
parameters. Using the Hamilton principle, Bao et al. [22]
established a model for the vibration control of a high-speed
elevator system with a tensioned compensation rope and
considered a high-speed elevator lift system as an example to
simulate and analyse the model.

Overall, previous studies have largely focused on tra-
ditional lift systems. )ey have not accounted for the
characteristics of rope guides, tensioned compensating
ropes, etc., which are crucial for extreme lift depths. Ad-
ditionally, previous studies have not presented any unified or
comprehensive models. )is paper extends the analysis
presented in previous publications to develop a compre-
hensive mathematical model for rope-guided traction sys-
tems to analyse the dynamical behaviours of the lifting rope,
compensating rope, guiding rope, and conveyance. Fur-
thermore, comparisons of longitudinal and transverse vi-
brations between traditional and tensioned traction systems
are presented in this paper. It is demonstrated that longi-
tudinal vibrations in a system can be suppressed to a certain
extent by applying tension to the end of the compensation
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rope. In this paper, a �rst-order Lagrange equation is used to
derive a mathematical model. �e complex constraint
conditions between the conveyance and ropes are derived
using a condensational method. �e results will serve as
a helpful guide for the design and optimisation of traction
systems, especially in the prediction of resonance zones and
suppression of longitudinal vibrations.

2. Model Description

First, the following assumptions must be considered:

(1) �e linear densities of the lifting, guiding, and
compensating ropes are assumed to be uniform

(2) �e bending sti ness of rope was neglected in this
study

(3) Considering the small axial excitation of the friction
drum, out-of-plane transverse responses relative to
the ropes and conveyance are neglected

As shown in Figure 1, a rope-guided traction system
consists of four main parts: the driving drum, guiding ropes,
lifting rope, conveyance, and compensating rope. �e
guiding ropes are tensioned by Tbi, i � 1, 2. �e compen-
sating rope is tensioned by FT. Based on the consistent
properties of guiding ropes on each side, for the sake of
mathematical modelling, four total guiding ropes are
equivalent to one rope on each side of the conveyance. �e
lengths of the lifting and compensating ropes are donated as
li(t), i � 1, 2. Correspondingly, their velocities and accel-
erations can be expressed as vi(t), i � 1, 2 and ai(t), i � 1, 2,
respectively. �e longitudinal dynamic displacements of the
lifting and compensating ropes at a position x and time t are
ui(x, t), i � 1, 2. �e transverse dynamic displacements of
the lifting and compensating ropes at a position x and time t
are yi(x, t), i � 1, 2. �e longitudinal, transverse, and ro-
tational dynamic displacements of the conveyance are do-
nated as uc, yc, and θ, respectively. �e transverse dynamic
displacements of the guiding rope are denoted as ygi, i � 1, 2.
A(B) is the connecting point between the lifting (com-
pensating) rope and conveyance. Ci, i � 1, 2, 3, 4 are the
connecting points between the guiding ropes and convey-
ance. �e centroid point of the conveyance O is used to
de�ne the coordinate frame O−XY. Based on the rotation
and vibration displacement of the conveyance, the con-
necting points A, B, Ci, i � 1, 2, 3, 4 between the ropes and
conveyance are transformed into A′, B′Ci′, i � 1, 2, 3, 4.
Lguide is the length of the guiding rope. �e horizontal
distance between a connecting point Ci and the conveyance
centroid O is donated as la. �e half-height of the con-
veyance is donated as lb.

Based on the schematic in Figure 1, a 3D model of
a traction system with terminal tension acting on the
compensating rope is presented in Figure 2. �e actual
installation of the traction system consists of nine main
parts: the driving drum, pulley, lifting rope, conveyance,
compensating rope, tension actuator, auxiliary drum,
guiding rope, and sensors. In Figures 2(a) and 2(b), the
tension acting on the compensating rope is applied through

the electric cylinder. Using the auxiliary drum, the tensions
on the compensating rope on both sides can be loaded by
electric cylinders independently. Based on feedback from the
tension sensor in front of the cylinder block, the tension
magnitude on the compensating rope can be controlled
precisely. Figures 2(c) and 2(d) present the arrangement of
the conveyance and driving drum. Tension sensors are
arranged on the top and bottom of the conveyance to
monitor the tensions of the lifting and compensating ropes,
respectively.

2.1.MathematicalModel. By considering the physical model
illustrated in Figure 1, a mathematical model was established
using an energy-based method. A dynamical equation for
the system can be obtained by inputting the energy of the
system into the �rst-order Lagrange equation. �e kinetic
energy of the system is calculated as follows:

Tk �
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Figure 1: Traction system with tension acting on the compensating
rope.
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where x1, x2, and x3 represent the coordinate measurements
of the lifting rope, compensating rope, and guiding rope,
respectively. As shown in Figure 1, the interval of x1, x2, and
x3 can be obtained as follows: 0≤x1 ≤ l1(t), 0≤ x2 ≤ l2(t),
and 0≤ x3 ≤ Lguide. )e operator D/Dt represents a material
derivative and is defined as follows:

D

Dt
�

z

zt
+ vi

z

zxi

, i � 1, 2, (2)

where ρ1, ρ2, and ρg are the linear densities of the lifting,
compensating, and guiding ropes, respectively. mc is the
mass of the conveyance, and Jc is the moment of inertia of
the conveyance.

)e potential energy of the traction system is a function
of vibration displacement, which is defined as follows:
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where EA is the axial stiffness of the ropes. Ti(x, t) and
Tgi

(x, t), i � 1, 2 are the tensions of the ropes at a position x.
Specific expressions are provided in Appendix A. εi, i � 1, 2
are the elastic strains of the ropes:
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Based on rope damping, the dissipated energy De of the
ropes can be calculated as follows:
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where μ1, μ2, and μg are the distributed damping co-
efficients of the lifting, compensating, and guiding ropes,
respectively.
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Figure 2: Installation schematic. )e (a) system for applying tension on the compensating rope (unilateral schematic), (b) system for
applying tension on the compensating rope (bilateral schematic), (c) conveyance, and (d) drum and pulley.

4 Shock and Vibration



As shown in Figure 1, translation of the centroid of the
conveyance can be represented as [uc, yc]

Τ in the coordinate
system. Using a transformation matrix, the constraint
conditions for a rope-guided traction system can be obtained
as follows:

gz(t) � gΤ1(t) gΤ2(t) gΤ3(t)􏽨 􏽩, (6)

where g1(t) denotes the constraint relationship between the
lifting rope and conveyance, g2(t) denotes the constraint
relationship between compensating rope and conveyance,
and g3(t) denotes the constraint relationship between the
guiding rope and conveyance. Specific expressions [20] are
provided in Appendix B. Based on small rotations of the
conveyance, some reasonable approximations can be
implemented, namely, sin θ ≈ θ and cos θ ≈ 1.)erefore, the
constraint conditions are simplified as shown in Appendix
B. Considering the boundary excitation at the drum, the
transverse displacement of the lifting rope can be expressed
in the following form:

y1 x1, t( 􏼁 � y1 x1, t( 􏼁 + hy1 x1, t( 􏼁, (7)

where y1(x1, t) is selected to satisfy the corresponding
homogeneous boundary conditions and hy1(x1, t) com-
pensates for the effects of boundary excitation that are not
satisfied by y1(x1, t). Considering that excitation is linearly
distributed, the distribution function of the excitation
hy1

(x1, t) is defined as a first-order polynomial at a position
x1 and time t, which is expressed as follows:

hy1
x1, t( 􏼁 � ey(t) · 1−

x1

l1(t)
􏼠 􏼡. (8)

Considering the geometric constraints of this model, the
homogeneous boundary conditions at the drum, convey-
ance, and end of the compensating rope can be obtained as
follows:

u1(0, t) � 0,

y1(0, t) � 0,

y2 l2(t), t( 􏼁 � 0.

(9)

)e homogeneous boundary conditions at the top and
end of guiding rope can be obtained as follows:

yg1
(0, t) � 0,

yg2
(0, t) � 0,

yg1
Lguide, t􏼐 􏼑 � 0,

yg2
Lguide, t􏼐 􏼑 � 0.

(10)

2.2. Dynamical Equations. For simplicity, two new di-
mensionless parameters ξ1 and ξ2 are introduced. )e
original time-varying domain [0, l(t)] is transformed into
a fixed domain [0, 1]. )erefore, the dependent variables
ui(xi, t), y1(xi, t), and y2(xi, t) become 􏽢ui(ξi, t) and
􏽢yi(ξi, t), i � 1, 2. )eir partial derivatives with respect to ξi
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where Y(xi, t) is a representative of ui(xi, t), y1(xi, t),
and y2(xi, t), i � 1, 2. 􏽢Y(xi, t) denotes 􏽢ui(ξi, t) and
􏽢yi(ξi, t), i � 1, 2.

)e dependent variable ygi
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the introduction of ξ3. Its partial derivatives with respect to
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(12)

Accordingly, the expression of rope tension and the
boundary conditions for the old variables xi, i � 1, 2, 3 are
transformed into a new expression for ξi, i � 1, 2, 3.

Based on the continuous characteristics of ropes, the
dynamic displacement coordinates can be approximated
using the assuming modal method (AMM). )e AMM is
a discretisation method for continuous systems. It uses
a linear combination of finite modal functions to approxi-
mate the responses of the system, which consist of discrete-
order and modal functions.)e selection of modal functions
must meet the limitations of boundary conditions. Discrete
results can be obtained as follows:

􏽢u1 ξ1, t( 􏼁 � 􏽘

N1

i�1
ϕ1i ξ1( 􏼁q1i(t),

􏽢u2 ξ2, t( 􏼁 � ϕ20 ξ2( 􏼁q20(t) + 􏽘

N1

i�1
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􏽢y1 ξ1, t( 􏼁 � 􏽘
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i�1
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N2

i�1
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􏽢yg1
ξ3, t( 􏼁 � 􏽘

N3

i�1
ψ1i ξ3( 􏼁k1i(t),

􏽢yg2
ξ3, t( 􏼁 � 􏽘

N3

i�1
ψ1i ξ3( 􏼁k2i(t),

(13)

where N1 and N2 denote the included discrete order of the
lifting and compensating rope longitudinal and transverse
displacements, respectively. N3 denotes the mode number
of guiding rope transverse displacement. q1,i(t), q2,i(t),

r1,i(t), r2,i(t), k1i(t), and k2i(t) are the generalised co-
ordinates of the traction system. ϕ1i(ξ1), ϕ2i(ξ2), k1i(ξ1),
k2i(ξ2),ψ1i(ξ1), and ψ2i(ξ2) are the corresponding trial
functions that satisfy the homogeneous boundary conditions

Shock and Vibration 5



and constraint equations of the system [23]. )erefore, the
trial functions can be set as follows:

ϕ1i ξ1( 􏼁 � sin
2i− 1
2

πξ1􏼒 􏼓,

ϕ20 �
1
2
,

ϕ2i ξ2( 􏼁 �
�
2

√
cos iπξ2( 􏼁,

κ1i ξ1( 􏼁 � sin
2i− 1
2

πξ1􏼒 􏼓,

κ2i ξ2( 􏼁 � cos
2i− 1
2

πξ2􏼒 􏼓,

ψ1i ξ3( 􏼁 � sin iπξ3( 􏼁.

(14)

Here, 1≤ i≤Ni. By substituting equation (14) into
equation (13), the derivatives of the time and position
variables can be obtained as follows:

􏽢Wi,t(ξ, t) � 􏽘

N1

i�1
Ai(ξ) _pi(t),

􏽢Wi,ξi
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(15)

where 􏽢Wi(ξ, t) is a representative of 􏽢u1(ξ1, t), 􏽢u2(ξ2, t),

􏽢y1(ξ1, t), 􏽢y2(ξ2, t), 􏽢yg1
(ξ3, t), and 􏽢yg2

(ξ3, t). Ai(ξ) is a rep-
resentative of ϕ1i(ξ1), ϕ2i(ξ2), κ1i(ξ1), κ2i(ξ2),ψ1i(ξ1), and
ψ2i(ξ2). pi(t) is a representative of q1,i(t), q2,i(t), r1,i(t),

r2,i(t), k1i(t), and k2i(t).
By substituting equation (15) into equations (1), (3), and

(5), the discretised kinetic energy and potential energy are
introduced into the first-order Lagrange equation.

d

dt

zTk
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zKe
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+
zDe

z _qj

+
zEe

zqj

� Qj + 􏽘
n

k�1
λk

zgk

zqj

. (16)

A dynamical equation for the system can be obtained as
follows:

M(t)€q(t) + C(t) _q(t) + K(t)q(t) � F(t) + N(t)+GΤλ,

gz(q, t) � 0,

⎧⎨

⎩

(17)

where M(t),C(t),K(t), and F(t) are the mass, damping,
stiffness, and force matrices, respectively. N(t) is the cou-
pling term introduced by the interaction between transverse

and longitudinal vibrations. )e entries in the matrices,
force vectors, and specific forms of the elements in the
matrices are presented in Appendix C.

Here, q � (k11, . . . , k1N3
, k21, . . . , k2N3

, q11, . . . , q1N1
, q20,

q21, . . . , q2N1
, r11, . . . , r1N2

, r21, . . . , r2N2
, qc1, qc2, qc3)

Τ is the
vector of generalised coordinates. )e conveyance displace-
ments uc, yc, and θ are denoted as qc1, qc2, and qc3, re-
spectively. gz represents the constraint equations.
G � zgz(t)/zq is a Jacobian matrix of the constraint equa-
tions. λ � [λ1, λ2, . . . , λ8] are Lagrangian multipliers that
denote constraint forces between the ropes and conveyance.

2.3. Numerical Calculation. As shown in equation (17), the
governing equation for the system is a mixed-differential-
algebraic equation. Here, a substructure method is in-
troduced to eliminate the Lagrange multipliers. First, the
Jacobian matrix of constraint equations for the generalised
coordinates is divided into two parts as follows:

G(t) � G0 G1􏼂 􏼃, (18)

where G0 must be a nonsingular C × C matrix and C is the
number of constraint equations. Here, a coordinate trans-
formation matrix Tr is introduced to adjust the order of
generalised coordinates to ensure that G0 is nonsingular:

􏽥p � Tr · q, (19)

where 􏽥p is the new generalised coordinate vector. )e
matricesM(t),C(t),K(t), F(t), andN(t) are transformed as
follows:

􏽥M(t) � TrM(t)TΤr ,

􏽥C(t) � TrC(t)TΤr ,

􏽥K(t) � TrK(t)TΤr ,

􏽥F(t) � Tr[F(t) + N(t)],

􏽥G � GTΤr � 􏽥G0
􏽥G1􏽨 􏽩.

(20)

)erefore, the dynamical equation for the system is
transformed as follows:

􏽥M(t)€􏽥p + 􏽥C(t) _􏽥p + 􏽥K(t)􏽥p � 􏽥F(t)+ 􏽥GΤ􏽥λ,

gz(􏽥p, t) � 0.

⎧⎨

⎩ (21)

)e constraint conditions can be written as

gz(􏽥p, t) � 􏽥G(t)􏽥p + gr(t) � 0. (22)

Suppose
􏽥G(t) � 􏽥G0

􏽥G1􏽨 􏽩,

􏽥p � 􏽥p0 􏽥p1􏼂 􏼃
Τ
.

(23)

)en, the constraint equations can be written as

gz(p, t) � 􏽥G0
􏽥G1􏽨 􏽩 · 􏽥p0 􏽥p1􏼂 􏼃

Τ
+ gr(t) � 0 (24)

In this situation, gr(t) � 0. By solving equation (24), the
generalised coordinates 􏽥p can be written as
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􏽥p �
−􏽥G−10 􏽥G1

I
⎡⎢⎣ ⎤⎥⎦􏽥p1, (25)

where 􏽥p1 is a vector that is linearly independent and I is an
identity matrix.

Suppose

U(t) �
−􏽥G−10 􏽥G1

I
⎡⎢⎣ ⎤⎥⎦. (26)

)en, differentiating equation (25) once and twice yields
􏽥p � U(t)􏽥p1,
_􏽥p � _U(t)􏽥p1 + U(t) _􏽥p1,
€􏽥p � €U(t)􏽥p1 + 2 _U(t) _􏽥p1 + U(t)€􏽥p1.

(27)

Substituting equation (27) into equation (21) and pre-
multiplying by UΤ(t) yields

M(t)€􏽥p1 + C(t) _􏽥p1 + K(t)􏽥p1 � F(t). (28)

Here, by usingUΤ 􏽥GΤ � 0, the generalised mass, stiffness,
and damping matrices are transformed as follows:

M(t) � UΤ 􏽥M(t)U,

C(t) � 2UΤ 􏽥M(t) _U + UΤ 􏽥C(t)U,

K(t) � UΤ 􏽥M(t) €U + UΤ 􏽥C(t) _U + UΤ 􏽥K(t)U,

F(t) � UΤ􏽥F(t).

(29)

By eliminating the Lagrange multipliers, the differential-
algebraic equations are transformed into ordinary differ-
ential equations (ODEs). )e above ODEs can be solved
using numerical methods, meaning the dynamical responses
of the traction system can be obtained.

3. Dynamical Responses

To obtain dynamical responses, numerical simulations were
applied to the rope-guided traction system. )e typical
parameters for a traction system with tension on the
compensating rope are defined as follows: ρ1 � 23.6 kg/m,
ρ2 � 23.6 kg/m, ρg � 28.3 kg/m, mc � 45000 kg,
JP � 8.56e4 kg · m2, Lguide � 1200m, la � 1.8m, lb � 7.5m,
and EA � 4e8N. )e initial and final lengths of the lifting
rope are 1150m and 70m, respectively. )e dynamical re-
sponses of the traction system are discussed below. )e
displacement, velocity, and acceleration profiles of the
conveyance are presented in Figure 3.

In equation (17), one can see that the coupling termN(t)

for the longitudinal and transverse vibrations will participate
in the dynamical equation for the system as a separate term.
Using numerical solution methods, the dynamical responses
can be obtained as described below.

3.1. Longitudinal Response. First, the longitudinal vibration
of the system is obtained as follows. To explore the effects of
terminal tension on the longitudinal vibration of the system,

the gravitational potential energy of the lift system is ig-
nored. )e natural frequency of longitudinal vibration (red
line) and frequency of excitation (blue line) are presented in
Figure 4.

Here, a traction system with a terminal tension of
FT � 5×104N was selected as an example. )e longitudinal
response consists of two parts: vibration displacement
caused by inertia and stiffness and elastic elongation caused
by terminal tension. To observe the characteristics of lon-
gitudinal vibration clearly, these parts must be separated. For
example, the longitudinal response of the conveyance with
terminal tension acting on the compensating rope is pre-
sented in Figure 5(a). )is longitudinal response is divided
into vibration displacement, which is presented in
Figure 5(b), and elastic elongation, which is presented in
Figure 5(c). )e distinction between vibration displacement
and elastic displacement is clear.

Figure 6 presents the longitudinal responses of the
traction system at the midpoint of the lifting rope, convey-
ance, midpoint of the compensating rope, and end point of
the compensating rope. One can see a resonance region in the
longitudinal vibration. At 20 s and 109 s, there are two steps in
the longitudinal response caused by lift acceleration. Over
time, the lifting rope becomes longer and the compensating
rope becomes shorter. )e stiffness of the ropes follows an
opposite trend. As the stiffness of rope increases, the mag-
nitude of the step caused by acceleration decreases. )e
opposite also applies. In Figure 6, it is clear that resonance
occurs from time approximately 83 s to 108 s. )is can be
proven based on Figure 4 by observing the intersection point
of the longitudinal natural frequency and excitation. Based on
effects of damping, the greatest point of resonance does not
appear at the intersection but is delayed. In Figure 6, the
longitudinal response is an inclined vibration curve. As
mentioned above, it must be separated into two parts: the
vibration displacement and elastic displacement.

Based on the least squares method, the vibration dis-
placement and elastic displacement are separated in Fig-
ures 7 and 8. Figure 7 presents the elastic elongation caused
by the terminal tension acting on the compensating rope at
different positions in the traction system. In the figures
above, the red, blue, green, and yellow lines represent the
longitudinal displacement at the midpoint of the lifting rope,
conveyance, and midpoint and end point of the compen-
sating rope, respectively. Here, one can see that the elastic
elongations at different positions along the ropes are in-
consistent with the constant tension acting on the com-
pensating rope. )e length of a rope is the key factor
affecting its stiffness. )e stiffness of ropes also varies with
time in lift systems with time-varying length. As the con-
veyance is lifted up, the stiffness of the lifting rope increases
and that of the compensating rope decreases. Based on the
increasing stiffness of the lifting rope, the elastic elongation
caused by the tension acting on compensating rope de-
creases. Overall, the elongation of the lifting rope and
shortening of the compensating rope are complementary at
the end of the rope. )erefore, at the end of the compen-
sating rope, the elastic elongation is relatively steady.
However, the elongation of the lifting rope and shortening of
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the compensating rope caused by terminal tension cannot
completely compensate for each other. )is is why the
longitudinal trends in Figure 7 decline at the midpoints of
the lifting rope, compensating rope, and conveyance. At the
conveyance, the negative slope of the longitudinal trend is
the largest. )is means that the elastic elongation caused by

terminal tension changes the most at the conveyance during
the lifting process. In Figure 8, one can see that the am-
plitude of longitudinal vibration increases with the obser-
vation points of the traction system from the top to the end.
At the end point of the compensating rope, the amplitude
reaches a maximum. Based on this phenomenon, one can see
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Figure 3: Conveyance movement profiles. )e (a) displacement curve, (b) velocity curve, and (c) acceleration curve.
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Figure 4: Natural frequency of the longitudinal vibration (red line) and frequency of excitation (blue line).
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that the longitudinal vibration has transmissibility in
a continuum from the top to bottom. In other words, the
amplitude of longitudinal vibration increases gradually from
the top to the end.

Figure 9 presents the longitudinal tensions of the trac-
tion system at different positions.)e longitudinal tension at
the connecting points of the lifting rope, compensating rope,
and conveyance corresponds to plots (a), (b), and (c), re-
spectively. In this figure, the black line represents the static
tension caused by varying rope length and the mass of the

conveyance. From these figures, the resonance region of the
tension is exactly the same as that of the displacement,
meaning they are positively correlated. In Figure 9, the
amplitude of dynamical tension is much higher than that of
static tension, especially in the resonance region.

3.2. Transverse Response. Figure 10 presents the transverse
vibration responses at the midpoint of the lifting rope,
midpoint of the compensating rope, and conveyance. By
comparing these three observation points, one can see that
the amplitude of transverse vibration at the midpoint of the
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Figure 6: Longitudinal responses of the traction system at different positions. )e (a) midpoint of the lifting rope, (b) conveyance, (c)
midpoint of the compensating rope, and (d) end point of the compensating rope.
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lifting rope is much greater than that at the midpoint of the
compensating rope. )e point at which the transverse vi-
bration amplitude is minimised is the conveyance.

In this system, excitation is transmitted from the drum to
the conveyance and then to the compensating rope. Based on
the constraints of the boundary conditions (guiding rope) at
the conveyance, the amplitude of transverse vibrations at the
conveyance is significantly reduced, meaning the excitation
of the compensating rope is small. )erefore, the most vi-
olent transverse vibrations in the tensioned traction system
occur at the midpoint of the lifting rope.

In Figure 10, one can see a resonance region. )e res-
onance at the midpoint of the lifting rope begins at a time of
90 s and then decreases towards the end of the measured
region. )e maximum amplitude is 0.13m, which signifi-
cantly exceeds the excitation amplitude of 0.02m.

Figure 11 presents the transverse vibrations at the con-
nection points and conveyance. Although the observation
points are all on the conveyance, the displacements of the

transverse vibrations of these three observation points are
inconsistent, especially in the final stages of lifting. )is is
because there are still small rotations at the conveyance
caused by excitation and flexible guides, as shown in
Figure 11(d). In the final stages of lifting, the angle of rotation
of the conveyance increases to its maximum, which increases
the inconsistency of transverse vibrations at the conveyance.

Figure 12 presents the transverse forces between the
conveyance and ropes. Overall, the amplitude of the
transverse forces gradually increases throughout the lifting
cycle. After a time of 100 s, the frequency and amplitude of
the transverse force increase significantly. From a hori-
zontal comparison between connecting points A and B, one
can see that the transverse forces at the connecting points
are different, even though their transverse vibrations are
similar. )rough analysis and comparison, it can be con-
cluded that the magnitudes of the transverse forces at the
connection points are positively related to their individual
rope tensions.
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Figure 9: Longitudinal tension of the traction system at (a) connecting point A (shown in Figure 1), (b) connecting point B (shown in
Figure 1), and the (c) conveyance.

10 Shock and Vibration



4. Comparison between Traditional Traction
System and Tensioned Traction System

Previous studies have largely focused on traditional traction
systems. In previous studies, many scholars have considered
the compensating rope as a time-varying concentrated mass
located inside the conveyance. Wu et al. [24] established
a transverse vibration model using the Hamilton principle,
which considers ropes as continuums, and obtained the
transverse vibration characteristics of a traditional traction
system. Traction systems with terminal tension acting on the

compensating rope represent a novel type of lifting system.
To analyse the differences between this new type of system
and a traditional traction system, the mathematical model
from [25] is considered in this paper. A physical model and
equivalent mathematical model of a traditional traction
system are presented in Figure 13.

As shown in Figure 13, in a traditional traction system,
the compensation rope is in a free suspension state. In this
situation, the compensating rope can be considered as blocks
of variable mass at the end of the conveyance, which are
denoted as me. )e mass of the blocks is equal to the product
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of line density and the length of the compensating rope.
�erefore, this value varies with time.�e Lagrange equation
was used to establish the mathematical model. �e dynamic
characteristics of the traditional traction system model can
be obtained using numerical solution methods.

4.1. Longitudinal Response Comparison between Traditional
Traction System and Traction System with Terminal Tension.
Based on the referenced model, the dynamical responses of
a traditional traction system can be obtained using nu-
merical solution methods. Figure 14 presents a comparison
of the longitudinal responses at the conveyance between

a traction system with terminal tension and a traditional
traction system.

It is clear that the longitudinal vibration at the con-
veyance with terminal tension is smaller than that in the
traditional traction system. From the beginning of lifting to
a time of 60 s, the vibration displacements at the convey-
ances of the two systems are nearly the same. However, the
amplitude of the traction system with terminal tension
acting on the compensating rope is much smaller than that
of the traditional traction system when the systems operate
inside the resonance zone. Overall, from a time of 80 s to the
end of lifting, the terminal tension on the compensating rope
can signi�cantly restrain the longitudinal vibration of the
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conveyance. Changes in the physical properties of the
compensating rope result in a change in the amplitude of the
longitudinal vibrations. Here, the compensating rope is
considered as a spring with time-varying stiffness and mass.
)e tensioned compensating rope acts as a shock absorber.
In a traditional traction system, the compensating rope is not
tightened and does not have the nature of a spring.

In Figure 14, it is clear that the resonance regions of the
traditional traction system and the traction system with
terminal tension are different. Figure 15 verifies this finding.
In this figure, one can see that the locations of the in-
tersection points between the excitation frequency and first
natural frequency of the two-traction systems are different.
Consider the first-order natural frequencies in Figure 15 as
an example. One can see that the first-order natural fre-
quencies of the two-traction system are significantly dif-
ferent when the position of the conveyance is between the
initial position and 400m. )e frequency of the traditional
traction system is much greater than that of the tensioned
traction system. However, when the position of the con-
veyance exceeds 400m, the frequencies of the two systems
are nearly identical. )erefore, it can be concluded that the
change in longitudinal natural frequency is greater for the
traction system with a tensioned compensating rope only
when the compensation rope is long. )is finding also ap-
plies to higher orders of natural frequencies.

4.2. Transverse Response Comparison between Traditional
Traction System and Traction System with Terminal
Tension. Figures 16–18 present comparisons of the natural
frequencies of transverse vibrations of the traditional trac-
tion system and tensioned traction system.

Regarding the natural frequencies in Figure 18, the
frequency of the traditional traction system is greater than
that of the tensioned traction system in most stages for
corresponding orders. However, there is always an in-
tersection of corresponding orders and the frequency of the
tensioned traction system will ultimately exceed that of the
traditional traction system. To analyse dynamical responses,
the midpoint of the lifting rope and conveyance were se-
lected as two observation points. From Figures 16 and 17,
one can see that the trends of the transverse vibrations of
both traction systems are similar. In other words, it can be

concluded that the tension on the compensating rope has
little effect on the transverse vibration of a system.

5. Response Comparisons of Tensioned
Traction Systems with Different
Terminal Tensions

5.1. Longitudinal Response Comparisons with Different Ter-
minal Tensions. Applying different tensions to the com-
pensating rope will produce different dynamic responses.
)erefore, it is necessary to analyse the dynamic responses of
the tensioned traction system under different terminal
tensions. Figure 19 presents the longitudinal vibration fre-
quencies of the traction system with different tensions acting
on the compensating rope. )e red line represents for the
longitudinal natural frequency of the traction system. )e
blue line represents the frequency of longitudinal excitation.
)e green point represents the intersection between the
natural frequency and frequency of excitation.

In Figure 19, three different terminal tensions
(tension � 4 ×104 N, 6 ×104 N, and 8 ×104 N) on the
compensating rope are presented for comparison. One
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can see that the longitudinal natural frequency of the
system does not change with different tensions acting on
the compensating rope. )erefore, the position of the

intersection does not change. It can be concluded that the
longitudinal natural frequency is independent of the
terminal tension.
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Figure 20 presents the longitudinal responses of the
tensioned traction system with different terminal tensions. To
obtain vibration characteristics, the longitudinal vibrations
were divided into two parts: vibration displacement and
elastic elongation. )e conveyance was selected as the ob-
servation point.)e results are presented in Figures 21 and 22.

In Figure 21, by comparing the longitudinal vibrations
at different terminal tensions, one can see that the shapes of
the longitudinal vibrations with different terminal tensions
acting on the compensating rope do not change. However,
the negative slope of the trend of longitudinal vibration
becomes gradually steeper with an increase in tension
acting on the compensating rope. )erefore, the elastic
elongation of the rope is proportional to the terminal
tension. In summary, the shapes of vibration and natural
frequency curves do not change with the terminal tension
acting on the compensating rope, but elastic elongation
does change.

5.2. Transverse Response Comparisons between Traction Sys-
tems with Different Terminal Tensions. )e main reason for
the resonance in transverse vibrations is the intersection
between the excitation frequency and natural frequency of
the system. )erefore, it is necessary to analyse natural
frequency changes according to the terminal tension acting
on the compensating rope. )e variations in frequency
corresponding to all transverse modes of the ropes with
a terminal tension of 5×104N acting on the compensating
rope are presented in Figure 23.

In Figure 23, the red, green, and yellow lines represent the
natural frequencies of the compensating, lifting, and guiding
ropes, respectively. )e blue line represents the frequency of
excitation. Overall, one can see that the natural frequency of
the lifting rope decreases as the length of the lifting rope
increases. In contrast, the natural frequency of the compen-
sating rope increases. One can see that the natural frequencies

of the lifting rope are much higher than those of the com-
pensating rope for each corresponding order when they are
measured on the corresponding length scales. )is is mainly
caused by the difference in tension between these ropes. )e
tension on the lifting rope consists of not only its own gravity
but also the gravity of the conveyance and compensating rope,
and the terminal tension acting on the compensating rope.
Regarding the compensating rope, its tension only consists of
its own gravity and the terminal tension. )ese differences in
tension result in differences in stiffness, which affect the
natural frequencies of ropes.)erefore, in Figure 23, the lifting
rope shows a much higher frequency than the compensating
rope in the same coordinate dimension.

)e natural frequencies of the traction system can be
divided into three parts, namely, the frequencies of the
guiding, lifting, and compensating ropes. )e variations in
the frequencies of the lifting and compensating ropes with
different terminal tensions are presented in Figure 24.

)e variation in the natural frequency of the lifting rope
is presented in Figure 24(a), while that of compensating
rope is shown in Figure 24(b). In Figure 24, the red, green,
and blue lines represent the variations in the natural fre-
quencies of the lifting and compensating ropes with ter-
minal tensions of 2 ×104 N, 5 ×104 N, and 1× 105 N acting
on the compensating rope, respectively. It is evident that
the transverse frequencies of the lifting and compensating
ropes increase as the tension acting on the compensating
rope increases. )e increase in natural frequency is pro-
portional to the terminal tension. By comparing
Figures 24(a) and 24(b), one can see that the increase in the
amplitude of the natural frequency of the lifting rope is
much smaller than that of the compensating rope with the
same increase in terminal tension. )erefore, the natural
frequencies of the compensating rope are more sensitive to
variation in terminal tension than those of the lifting rope.
Logically, the resonance region of the midpoint of the
lifting rope will also change accordingly although the
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Figure 19: Longitudinal vibration frequencies of the traction system. (a) Tension� 4×104N, (b) tension� 6×104N, and (c)
tension� 8×104N.
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Figure 20: Longitudinal responses of the tensioned traction system at the (a) midpoint of the lifting rope, (b) conveyance, and (c) end point
of the compensating rope.
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magnitude of the change is relatively small. �is variation
in the resonance region is presented in Figure 25. Re-
garding the compensating rope, its transverse vibration
characteristics do not change signi�cantly when applying
di erent terminal tensions, so they are not discussed
further.

6. Dynamical Behaviour of the Guiding Rope

6.1. Dynamical Responses. When tension is applied to the
end of the compensating rope, the properties of the system
change and a ect the dynamic characteristics of the guiding
rope. �erefore, it is necessary to analyse the di erences in
the dynamical responses of the guiding rope in a tensioned
system and traditional system.

�rough numerical simulations, the transverse dis-
placements of the guiding rope were obtained. �e results
are presented in Figure 26. �e transverse displacements of
the two guide ropes are identical based on consistent pre-
loading. �erefore, only one rope is represented for the time
period of 10 s to 110 s in Figure 26. In this �gure, the “∗”
marker represent the upper and lower boundaries of the
conveyance, which can characterise the lifting position and
rotation of the conveyance (Figure 27).

In Figure 26, the amplitude and vibration frequency of
the guiding rope increase as the conveyance is lifted up. At
a time of 110 s, high-order modes of the guiding rope are
considered, meaning the results can represent all vibrations
of the guiding rope. By comparing Figures 26 and 11(d), it
can be concluded that the increase in the amplitude and
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Figure 21: Longitudinal vibration displacements of the tensioned traction system. (a) Terminal tension� 4×104N, (b) terminal
tension� 6×104N, and (c) terminal tension� 8×104N.
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Figure 22: Elastic elongation displacements of the tensioned traction system. (a) Terminal tension� 4×104N, (b) terminal
tension� 6×104N, and (c) terminal tension� 8×104N.
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Figure 23: Natural frequencies of the lifting, compensating, and guiding ropes.
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Figure 24: Variations in the transverse natural frequencies of the lifting and compensating rope, where ωlifting−1,2,3 is the transverse natural
frequency of the lifting rope, ωcompen−1,2,3 is the transverse natural frequency of the compensating rope, and ωexcitation is the excitation
frequency in the transverse direction.

100 200 300 400 500 600 700 800 900 1000 1100
Length (m)

–0.2

–0.1

0

0.1

0.2

A
m

pl
itu

de
 (m

) A1 (260.81, 0.131)

(a)

Figure 25: Continued.
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frequency of transverse vibration at the end of guiding rope
is caused by the influence of transverse vibration at the
conveyance. In other words, the vibration of the conveyance
is the source of excitation for the guiding rope.

)e transverse connecting force between the conveyance
and guiding ropes can be observed in Figures 27 and 28. As
shown in Figure 28, C1 and C4 are the connection points
between the left guiding rope and conveyance and are located

at the upper and lower boundaries of the conveyance, re-
spectively. Because the height of the conveyance is small when
compared to the length of the guiding rope, the trends in the
transverse vibrations and connecting forces of connecting
points C1 and C4 are generally consistent with a few small
differences. )e main reason for these differences is the ro-
tation of the conveyance. )e amplitude of the transverse
vibrations at connecting point C4 is larger than that at C1.
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Figure 25: Variation in the resonance region at the midpoint of the lifting rope. (a) Terminal tension� 2×104N, (b) terminal
tension� 5×104N, and (c) terminal tension� 1× 105N.
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Figure 26: Transverse displacement of the guiding rope of the traction system at different times.
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6.2. Comparisons. Figure 29 presents a comparison of the
transverse vibration displacements of the connecting points in
a tensioned traction system and traditional traction system.

In Figures 29 and 30, one can see that the transverse
amplitude of the tensioned traction system is smaller than
that of the traditional traction system in most stages.
However, in some stages, the terminal tension cannot act as
a significant restraint. For example, in Figure 30(b), the
amplitude of the tensioned traction system is greater than
that of the traditional traction system at times of approxi-
mately 80 s and 100 s. In Figure 30, one can see that the
transverse connecting force of the tensioned traction system
is much smaller than that of the traditional traction system
in most stages. Overall, terminal tension can reduce the
transverse vibrations of the connection point between the
guiding rope and conveyance, but it cannot play a significant
role in some local areas. By applying tension at the end of the
compensating rope, the transverse connecting force between
the guiding ropes and conveyance is reduced.

7. Conclusion

In this paper, the dynamical behaviour of a traction system
with terminal tension acting on the compensating rope was

investigated. A model for the tensioned traction system was
established using an energy-based method. A dynamical
equation was derived using the first-order Lagrange equation.
)e longitudinal and transverse dynamic behaviours of the
lifting, compensating, and guiding ropes were modelled. )e
ropes were spatially discretised using the AMM, and results
were obtained using numerical methods. First, the longitu-
dinal and transverse responses of the tensioned traction
system were analysed in detail. Second, we compared the
analysis results to those of a traditional traction system and
determined that terminal tension acting on the compensating
rope can restrain the longitudinal vibration of the conveyance,
including in the resonance region. However, tension has no
significant effect on the suppression of transverse vibrations
in the system. It was shown that the longitudinal vibrations of
the lifting and compensating ropes do not change significantly
with different levels of terminal tension on the compensating
rope, which can only affect the elastic elongation of the ropes.
)e system’s natural frequencies of transverse vibration were
calculated accurately. )rough comparisons, it was de-
termined that the natural frequencies of the compensating
rope are more sensitive to variations in terminal tension than
those of the lifting rope. Finally, the shape and vibration
responses of the guiding rope were simulated accurately.
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Figure 28: Comparison of the transverse force of the traction system at the connecting points.

0 20 40 60 80 100 120
Time (sec)

–0.015

–0.01

–0.005

0

0.005

0.01

0.015

0.02

A
m

pl
itu

de
 (m

)

At connecting point C1
At connecting point C4

Figure 27: Comparison of the transverse vibrations of the traction system at the connecting points.
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Figure 30: Comparison of the transverse connecting forces in a tensioned traction system and traditional traction system; (a) connecting
point C1; (b) connecting point C2.
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Figure 29: Comparison of the transverse vibration displacements of the connecting points in a tensioned traction system and traditional
traction system; (a) connecting point C1; (b) connecting point C2.
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Compared to a traditional traction system, a traction system
with terminal tension can suppress the transverse vibrations
and transverse forces of the connecting points between the
guiding ropes and the conveyance to a certain degree.

Based on the analysis above, the dynamical character-
istics and inherent properties of a tensioned traction system
were detailed. Differences compared to a traditional traction
system were also discussed in detail, meaning these results
should serve as a helpful guide for the design and optimi-
sation of traction systems.

Appendix

A. Tensions of the Ropes

)e tensions at arbitrary positions along the lifting, com-
pensating, and guiding ropes are calculated as follows:

T1 x1, t( 􏼁 � mcg + ρ1 l1(t)− x1( 􏼁􏼂 􏼃 g− a1( 􏼁, 0≤x1 ≤ l1(t),

(A.1)

T2 x2, t( 􏼁 � mcg + ρ2 l2(t)−x2( 􏼁􏼂 􏼃 g− a2( 􏼁, 0≤ x2 ≤ l2(t),

(A.2)

Tg1
x3, t( 􏼁 � Tb1

+ ρgg Lguide − x3􏼐 􏼑,

Tg2
x3, t( 􏼁 � Tb2

+ ρgg Lguide − x3􏼐 􏼑,

0≤x3 ≤ Lguide.

(A.3)

B. Constraint Conditions

)e constraint conditions for the rope-guided traction
system are defined as follows:

g1(t) �
u1(l(t), t) � uc + lb(1− cos θ)

y1(l(t), t) � yc − lb sin θ
􏼢 􏼣, (B.1)

g2(t) �
u2(0, t) � uc + lb(cos θ− 1)

y2(0, t) � yc + lb sin θ
􏼢 􏼣, (B.2)

g3(t) �

yC1
(l(t), t) � yc − lb sin θ + la(cos θ− 1)

yC2
(l(t), t) � yc + la(1− cos θ)− lb sin θ

yC3
l(t) + 2lb, t( 􏼁 � yc + lb sin θ + la(1− cos θ)

yC4
l(t) + 2lb, t( 􏼁 � yc + lb sin θ + la(cos θ− 1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(B.3)

When sin θ ≈ θ, cos θ ≈ 1, the constraint conditions can
be simplified as follows:

g1(t) �
u1(l(t), t) � uc

y1(l(t), t) � yc − lbθ
􏼢 􏼣, (B.4)

g2(t) �
u2(0, t) � uc

y2(0, t) � yc + lbθ
􏼢 􏼣, (B.5)

g3(t) �

yC1
(l(t), t) � yc − lbθ

yC2
(l(t), t) � yc − lbθ

yC3
l(t) + 2lb, t( 􏼁 � yc + lbθ

yC4
l(t) + 2lb, t( 􏼁 � yc + lbθ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (B.6)

C. Elements of Matrix of Dynamics Equation

)e matrices and force vectors for the tensioned traction
system are defined in the following forms:

M(t) � diag My1
(t), My2

(t), Mu1
(t), Mu2

(t), Myg1
(t), Myg2

(t), Mc, Mc, Jc􏼒 􏼓,

C(t) � diag Cy1
(t), Cy2

(t), Cu1
(t), Cu2

(t), Cyg1
(t), Cyg2

(t), 0, 0, 0􏼒 􏼓,

F(t) � Fy1
(t); Fy2

(t); Fu1
(t); Fu2

(t); Fyg1
(t); Fyg2

(t); Fc; 0; 0􏼔 􏼕,

N(t) � Ny1
(t); Ny2

(t); Nu1
(t); Nu2

(t); 0; 0; 0; 0; 0􏽨 􏽩,

K(t) �

Ky1
(t) 0 Ku1−y1

(t) 0 0 0 0 0 0

0 Ky2
(t) 0 Ku2−y2

(t) 0 0 0 0 0

Ky1−u1
(t) 0 Ku1

(t) 0 0 0 0 0 0

0 Ky2−u2
(t) 0 Ku2

(t) 0 0 0 0 0

0 0 0 0 Kyg1
(t) 0 0 0 0

0 0 0 0 0 Kyg2
(t) 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(C.1)
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)e specific forms of the elements in matrices Muk
, Myk

,

Cuk
, Cyk

, Kuk
, Kyk

, Fuk
, Fyk

, Fuc
, and Fyc

are defined as follows:

Muk,ji � ρklk(t) 􏽚
1

0
􏽘

N

i�1
ϕkiϕkj

⎛⎝ ⎞⎠dξ,

Myk,ji � ρklk(t) 􏽚
1

0
􏽘

N

i�1
κkiκkj

⎛⎝ ⎞⎠dξ,

(C.2)

Cuk,ji � ρkvk 􏽚
1

0
(1− ξ) 􏽘

N

i�1
ϕki
′ ϕkjdξ + ρkvk 􏽚

1

0
􏽘

N

i�1
ϕkiϕkjdξ

− ρkvk 􏽚
1

0
(1− ξ) 􏽘

N

i�1
ϕkiϕki
′ dξ

+ μkρklk(t) 􏽚
1

0
􏽘

N

i�1
ϕkiϕkj

⎛⎝ ⎞⎠dξ,

Cyk,ji � ρkvk 􏽚
1

0
(1− ξ) 􏽘

N

i�1
κki
′ κkjdξ + ρkvk 􏽚

1

0
􏽘

N

i�1
κkiκkjdξ

− ρkvk 􏽚
1

0
(1− ξ) 􏽘

N

i�1
κkiκki
′ dξ

+ ζkρklk(t) 􏽚
1

0
􏽘

N

i�1
κkiκkj

⎛⎝ ⎞⎠dξ,

(C.3)

Kuk,ji � ρkak 􏽚
1

0
(1− ξ) 􏽘

N

i�1
ϕki
′ ϕkjdξ +

ρkv2k
lk

􏽚
1

0
ξ 􏽘

N

i�1
ϕki
′ ϕkjdξ

−
ρkv2k

lk
􏽚
1

0
(1− ξ)

2
􏽘

N

i�1
ϕki
′ ϕki
′⎛⎝ ⎞⎠dξ

+
EA

lk
􏽚
1

0
􏽘

N

i�1
ϕki
′ ϕki
′ dξ

− μkρkvk 􏽚
1

0
ξ 􏽘

N

i�1
ϕki
′ ϕkj

⎛⎝ ⎞⎠qki(t)dξ,

Kyk,ji � ρkak 􏽚
1

0
(1− ξ) 􏽘

N

i�1
κki
′ κkjdξ

+
ρkv2k

lk
􏽚
1

0
ξ 􏽘

N

i�1
κki
′ κkj

⎛⎝ ⎞⎠dξ

−
ρkv2k

lk
􏽚
1

0
(1− ξ)

2
􏽘

N

i�1
κki
′ κki
′ dξ

+ 􏽚
1

0

Tk(ξ, t)

lk
􏽘

N

i�1
κki
′ κki
′⎛⎝ ⎞⎠dξ

+
EA

2l3k
􏽚
1

0
3􏽢h

2
ky,ξ + 􏽢h

2
kw,ξ􏼒 􏼓 􏽘

N

i�1
κki
′ κki
′ dξ

− ζkρkvk 􏽚
1

0
ξ 􏽘

N

i�1
κki
′ (ξ)κkj

⎛⎝ ⎞⎠rki(t)dξ,

(C.4)

Fuk,j � ρk g− ak( 􏼁lk − ρkv
2
k􏽨 􏽩 􏽚

1

0
ϕkjdx

+ ρkv
2
k 􏽚

1

0
(1− ξ)ϕkj

′ dξ − 􏽚
1

0
Tk(ξ, t)ϕkj

′ dξ,

Fyk,j � −⎛⎝ρklk 􏽚
1

0
􏽢hky,ttκkjdξ + ρkak 􏽚

1

0
(1− ξ)􏽢hky,ξκkjdξ

+
ρkv2k

lk
􏽚
1

0
ξ􏽢hky,ξκkjdξ

+ ρkvk 􏽚
1

0
􏽢hky,t +(1− ξ)􏽢hky,ξt􏽨 􏽩κkjdξ

− ρkvk 􏽚
1

0
(1− ξ)􏽢hky,tκkj

′ dlξ

+ 􏽚
1

0

Tk(ξ, t)

lk

􏽢hky,ξκkj
′􏼠 􏼡dξ⎞⎠,

Fuc
� mc(g− a),

Fyc
� 0,

(C.5)

Nui
� −

EA

2l2i
􏽚
1

0
ϕij
′ (ξ)RT

i Ki
′TKi
′Ri􏼐 􏼑dξ, (C.6)

Nyi
� −􏽚

1

0
⎛⎝
EA
l3i

qTi Φi
′TKi
′Ri􏼐 􏼑κij
′

+
EA

2l3i
κij
′ 􏼔􏼒RT

i Ki
′TKi
′RiKi
′Ri

+ 3􏽢hiy,ξR
T
i Ki
′TKT

i Ri􏼓􏼕⎞⎠dξ,

(C.7)

where Ki � [κi1, . . . , κiN],Ri � [ri1, . . . , riN],Φi � [ϕi1, ϕi2,

. . . , ϕiN], qi � [qi1, qi2, . . . , qiN].
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