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/e conventional pooling method for processing one-dimensional vibration signals may lead to certain issues, such as weakening
and loss of feature information. /e present study proposes the cubic spline interpolation pooling method. /e method is
appropriate for processing one-dimensional signals. /e proposed method can transform the pooling problem into a linear fitting
problem, use the cubic spline interpolation method with outstanding fitting effects, and calculate the fitting function of the input
signals. Moreover, the values of the interpolation points are sequentially taken as the feature value output. Furthermore, the
network using the conventional pooling method and the pooling network model proposed in the present study are compared,
tested, and analyzed on the constructed simulation signals and the measured bearing dataset. It is concluded that the proposed
pooling method can reduce the data dimension while improving the network feature extraction capability and is more appropriate
for pooling one-dimensional signals.

1. Introduction

With the increasing development of the deep learning in
the last few decades, it has extensively attracted many
communities so that remarkable achievements have been
achieved in many fields [1–3]. Convolutional neural
network (CNN) is an important branch of the deep
learning. Because of reasonable features of the CNN in the
adaptive learning ability and feature abstraction ability, it
is widely used in numerous applications such as speech
and image recognition [4–6]. For example, Krizhevsky
and Sutskever [7] used the deep-expanded CNN to achieve
the best online classification effect in the ImageNet large-
scale visual recognition challenge (LSVRC). Many
scholars have applied the deep-expanded CNN to the fault
diagnosis and achieved reasonable results. For example,
Wen et al. [8] applied the bearing dataset of the Case
Western Reserve University (CWRU) on images as inputs
to diagnose the bearing fault through the CNN, where the
diagnostic accuracy higher than 95% is obtained. Ince

et al. [9] used the 1DCNN for real-time condition
monitoring and fault diagnosis of TV sets. Moreover,
Peng and Liu [10] applied the 1DCNN to diagnose the
HSTs’ wheel-to-bearing vibration signals and achieved
reasonable results.

Reviewing the literature indicates that the pooling is an
important part of the CNN architecture [11]. Its core idea
originates from the pioneering research of Hubel and
Wiesel [12] on the structure of mammalian visual cortex
models and the principle of the local correlation of signals
proposed by Koenderink and Doorn [13]. /e pooling
principle is to combine outputs of several near feature
detectors into a local or global “feature package” to remove
irrelevant details while retaining the task-related infor-
mation. Furthermore, the pooling is normally used to
achieve the signal conversion in variance, a more compact
representation, and the improved robustness against the
noise and clutter [14]. Studies show that the data-pro-
cessing load can be reduced so that useful information can
be retained through pooling operations. In fact, pooling
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operations are of significant importance in the CNN
structure and can have great impacts on the network
performance. /erefore, it is necessary to investigate the
pooling method comprehensively. Fukushima and Miyake
[15] applied pooling operations in the signal pattern rec-
ognition. Lecun et al. [16, 17] successfully trained the error-
based CNN through pooling. Moreover, Jarrett et al. [18]
used the max pooling to achieve the best results on the
Caltech-101 and MNIST datasets. Recently, Matthew
[19, 20] used a simple and effective stochastic pooling
method to prevent the overfitting during the CNN training
and achieved reasonable results. Moreover, Yu et al. [21]
combined the conventional max pooling and mean pooling
methods and proposed a hybrid pooling method to replace
deterministic pooling operations with the stochastic pro-
cess. Most recently, Hai and Xiao [22] proposed a prob-
ability weighting pool and compared it with the max
pooling, mean pooling, and stochastic pooling. /ey
showed that the proposed method improves the recogni-
tion rate. Lee et al. [23] added the intermap pooling (IMP)
layer in the CNN and proposed the IMP-CNN scheme.
/en, they verified the performance of the proposed IMP-
CNN structure.

/e abovementioned pooling methods mostly focus on
two-dimensional inputs and solve problems such as the image
recognition. /e input is a two-dimensional matrix, such as
pixel values of the image. However, in the field of fault di-
agnosing, most of the measured results through sensors,
including the vibration and pressure signals, are one-di-
mensional signals [24–26]. Hence, one-dimensional con-
volutional neural networks (1DCNNs) are often used for these
problems. Unlike the image recognition, each sample point of
vibrational signals indicates the magnitude of the amplitude,
while the order of the points indicates the time sequence. It
should be indicated that the time sequence may contain
periodic or short-term pulse characteristics of the signal in the
segment. /ese features are often important features of the
state signal, while they may not exist in two-dimensional
images. /erefore, when the one-dimensional state signal is
pooled, the commonly used pooling algorithms in the image
recognition are applied, which may lead to weakening or even
losing certain important features of the signal information.
/erefore, the present article proposes a pooling algorithm for
the feature extraction of one-dimensional state signals.

/e cubic spline interpolation pooling is compared with
the max pooling and mean pooling commonly used in the
CNN to verify the effectiveness of cubic spline interpolation
pooling.

/e main contents and research ideas of the present
study are organized as follows: /e network structure of the
1DCNN is introduced in Section 2. /en, three commonly
used pooling methods and the cubic spline interpolation
pooling method are introduced in Section 3. Moreover,
typical simulation signals are constructed and problems
dealing with one-dimensional vibration signals are analyzed
in Section 4. /en, the feasibility of the proposed pooling
algorithm is verified through the actual mechanical fault
signals. Finally, main achievements and conclusions are
presented in Section 5.

2. Introduction of 1DCNN

2.1. Network Structure. Figure 1 shows the constructed
1DCNN structure. It indicates that the time-domain status
signal is input from the input layer, while the layer-by-layer
feature extraction and sparse processing are performed
through several convolutional layers and pooling layers.
/en, signals are classified through the fully connected layer
and the output layer by the Softmax classifier.

Various layers of the CNN are introduced below.
/e convolutional layer uses a one-dimensional con-

volution kernel to perform the convolution calculation for
the local region of the input signal to produce the corre-
sponding one-dimensional feature map, and different
convolution kernels extract different features in the input
signals [27]. Each convolution kernel detects specific fea-
tures at all locations on input feature maps to achieve the
weight sharing on the same input feature map. Character-
istics of the local connection and the weight sharing can
effectively reduce the network complexity and subsequently
reduce the number of training parameters.

If the lth layer is a convolutional layer, the one-dimen-
sional convolutional layer can be expressed as

x
i
j � f 

M

i�1
x

l− 1
i ∗ k

l
ij + b

l
j

⎛⎝ ⎞⎠, (1)

where k represents the convolution kernels, j denotes the
number of kernels, M represents the channel number of the
input xl− 1, b is the bias corresponding to the kernel, f is the
activation function, and ∗ is the convolution operator.

After passing through convolutional layers, the number
of feature maps increases, resulting in an expansion of the
data dimension, which is not conducive to the calculation.
/erefore, each feature map should be processed at the
pooling layer. It should be indicated that the 2DCNN usually
employs the mean pooling or the max pooling. /e mean
pooling calculates the mean value of the parameter within
the range in accordance with the predetermined pooling
window size, while the max pooling selects the largest pa-
rameter within the predetermined window range as the
output value.

All the neuron nodes of the fully connected layer are
connected to all neuron nodes in the feature map output by
the previous layer. It should be indicated that if the last
pooling layer is the (l+ 1)th layer, and it is passed as an input
to the fully connected layer, then its output is described as
follows:

h(x) � f w
l+1

· x
l+1

+ b
l+1

 , (2)

where w denotes the weight and b denotes the bias.

2.2. NetworkTraining. During the network training process,
the network initializes the parameters such as weights and
thresholds initially. /e input data are propagated through
the convolutional layers, the pooling layers, and the fully
connected layer to obtain output values. /en, the errors
between the output values of the network and the expected
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values are obtained. /e errors are reversed back to the
network, and the errors of the fully connected layer, the
pooled layer, and the convolutional layer are obtained
successively. Moreover, the error gradient is calculated and
the weight and threshold are updated until the tolerance
condition of the error is satisfied to complete the training.
Figure 2 shows the abovementioned process.

3. Pooling Methods in CNN

After the input signal is convoluted, it requires performing
secondary feature extraction and data dimension reduction
through the pooling layer. When calculating the feature
value of a certain part of the input signal, it is necessary to
analyze and count the features of the signal and to use the
new feature to represent the total features of the signal. /is
segment signal is called the pooling domain, and the process
is called pooling. /e use of pooling operations can improve
the expressive ability of features and reduce the data di-
mension, which effectively avoids the overfitting phenom-
enon caused by excessive parameters and complicated
structure in the network training. Conventional pooling
methods include mean pooling, max pooling, and stochastic
pooling.

3.1. Conventional Pooling Methods

3.1.1. *eMean Pooling. Mean pooling means that all values
in the pooling domain are summed and the arithmetic mean
is used as the postpooling eigenvalue during the pooling
process. In the 1DCNN pooling calculation, X, b2, S, and a
indicate the input signal, the offset, the obtained pooling
feature vector, and the pooling process moving step, re-
spectively. Moreover, the subsampling pooling domain is a
1× a vector. /en, the algorithm expression is described as
follows:

S1i �
1
a



a

i�1
X1i + b2. (3)

/e input signal pooling process with a length of 1× 12
and a pooling step of 4 is taken as an example. Figure 3 shows
the pooling calculation process.
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Figure 1: Structure of the 1DCNN.
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Figure 2: Process of network training.
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3.1.2. *e Max Pooling. Max pooling uses the maximum
value in the pooling domain as the pooling eigenvalue, and
its algorithm is described as follows:

S1i � max
a

i�1
x1i(  + b2, (4)

where x, b2, and S denote the input signal, the offset, and the
pooling eigenvector, respectively. Moreover, the pooling
domain is a 1× a vector. /e pooling process has a moving
step of a. It should be indicated that the input signal pooling
process with a length of 1× 12 and a pooling step of 4 is taken
as an example. Figure 4 illustrate the pooling calculation
process.

3.1.3. *e Stochastic Pooling. /e stochastic pooling method
was proposed by Zeiler and has been widely used in recent
years. Different from max pooling and mean pooling, the
eigenvectors obtained by the stochastic pooling of the same
input signal are not necessarily identical. /is method can
reduce the overfitting phenomenon that occurs during the
training. In the stochastic pooling process, the output value
by pooling is selected according to the probability distri-
bution of the eigenvalues of the pooling domain. Moreover,
the probability of being selected with a large eigenvalue is
also large./e pooling steps are as follows: If the input signal
is set as x, the probability value P is calculated for each
feature selected, initially. It should be indicated that the
probability value of each feature is distributed between 0 and
1. /en, a random number r is taken between 0 and 1.
Moreover, r is in the probability interval of a certain ei-
genvalue. /en, this feature is selected as the pooling ei-
genvalue S. Figure 5 shows an example of this process.

During the pooling process of the input signals, it is
assumed that the pooling domains of the two different cases
shown in Figure 6 appear. /e shaded part in Figure 6(a)
represents that the input value is x, and the remaining input
values are 0. It is observed that the feature information in
Figure 6(a) is concentrated in the shadow x. If the mean
pooling algorithm is used at this time, the feature value of
S� x/4 is resulted. /is leads to weakening of the key feature
information significantly, which is not beneficial for the
feature extraction and classification. However, in this case,
the max pooling algorithm can help better extract the feature
information x of the pooling domain and achieve the re-
duction of the feature dimension without losing the feature
information. In Figure 6(b), x1, x2, and x3 (x1< x2< x3)
represent different input values. If the max pooling algo-
rithm is used in this case, the output feature value is S� x3,
which does not consider the feature information contained
in x1 and x2, ignores the possible connections among x1, x2,
and x3, including the time continuity in the one-dimensional

time-series signals, and results in the loss of large quantities
of useful feature information. However, in this case, the
mean pooling algorithm can reduce the loss of useful
information.

It should be indicated that, during the feature extraction
of one-dimensional time-series signals, conventional pooling
algorithms are not applicable to all cases. /e max pooling
algorithm ignores the correlation between input feature
values in the pooling domain, while the mean pooling al-
gorithm weakens key feature information in the case that the
feature information is concentrated. /e stochastic pooling
algorithm considers the correlation between the input feature
values. However, during the pooling process, the feature
extraction does not contain all the information and the results
of multiple experiments may be different. /erefore, the
repeatability of the experiments is poor.

3.2.*eCubic Spline InterpolationPooling. In the actual fault
diagnosis, the machine, which should be tested, may have
periodic fault signals or short-term excitation signals due to a
transient shock. /erefore, the key information in the
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Figure 3: Process of mean pooling.
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Figure 4: Process of max pooling.
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vibration signals may be periodic or instantaneous. However,
the conventional pooling algorithms need to be selected
according to the features of the input signals, which can
obviously reduce the efficiency and versatility of the 1DCNN
for fault diagnosis. /erefore, considering the limitations of
the abovementioned conventional pooling algorithms, an
improved pooling algorithm is proposed in the present study
named the cubic spline interpolation pooling, which makes
the feature information fully extracted and mined while
considering the time continuity of input signals.

Cubic spline interpolation is a mathematical process of
solving three-moment equations to obtain the curve
function group by using a smooth curve through a series of
form points [28, 29]. However, the Newton interpolation
algorithm has a large amount of calculation. Moreover,
when the number of interpolation polynomials is higher,
the error rate increases. It should be indicated that the
piecewise linear interpolation has uniform convergence,
while the smoothness is poor. In comparison with the
higher order spline, the cubic interpolation spline requires
less computation and storage and is more stable. More-
over, compared with the quadratic interpolation spline,
the cubic interpolation spline is more flexible when
simulating arbitrary shapes. /e cubic interpolation spline
curve provides a reasonable compromise between flexi-
bility and computational speed. /erefore, the cubic spline
interpolation method is used instead of applying the
original pooling method. /e mathematical definition is as
follows.

Let a function y� f(x) have n+ 1 equally spaced sampling
points on the interval [a, b], i.e., a� x0< x1< · · ·< xn � b. /e
value of the function at the sampling point is f(xi)� yi (i� 0,1,
. . ., n). If there is a segmentation function z(x) that meets the
following conditions, then z(x) is called the cubic spline
interpolation function:

z(x) is no more than a cubic polynomial on each
subinterval [xi, xi+1]
z(x) has a continuous second derivative over the entire
interval [a, b]
z(xi)� yi (i� 0,1, . . ., n)

During the pooling process for one-dimensional time-
series signals, the improved pooling algorithm replaces the
conventional pooling methods with the cubic spline inter-
polation method and performs quadratic feature extraction
and dimension reduction on the feature signal output after
the convolutional layer feature extraction.

/e network pooling process shown in Figure 1 is taken
as an example, and the cubic spline interpolation pooling
method proposed in the present study is described as
follows:

Step 1: the eigenvector of size 1 ×N output from the
convolutional layer is divided into subvectors whose
segments do not overlap each other. It should be
indicated that each segment vector is an independent
pooling domain and the size of each subvector is
1 × n.

Step 2: the function is fitted by using each point in the
subvector as a series of known form points. /e
function fitted by the abovementioned method, which
is referred to as the eigenfunction hereinafter, retains
the feature information to the greatest extent and
ensures the time continuity of input features.
Step 3: the value of each interpolation point is calcu-
lated according to the specified step size based on the
eigenfunction obtained by the fitting process. /en, the
value is used as the output eigenvalue after the cubic
spline interpolation pooling. /e eigenvalues obtained
in each segment are connected, and the obtained vector
is the eigenvector output after pooling.

/e pooling method enables the pooling layer to perform
feature secondary extraction on the input feature signals. It
retains useful information to the greatest extent, realizes data
dimension reduction, and improves the network computing
efficiency. Figure 7 shows the process of the pooling
algorithm.

4. Performance Evaluation

In this section, several pooling methods are utilized to verify
the validity of the cubic spline interpolation method and
consider the definition conditions of the cubic spline in-
terpolation. Moreover, the corresponding 1DCNN is con-
structed to diagnose different fault signals and compare the
diagnostic results. /e network consists of one input layer,
two convolutional layers, two pooling layers, one fully
connected layer, and one output layer. It should be indicated
that the experiment is performed in the Matlab2014a en-
vironment. /e operating system is Windows 10, and the
CPU is Intel i7-6700HQ with the memory of 8GB.

4.1. Simulation Signal Verification. In this section, two
typical simulation signals in signal processing are developed,
including the sinusoidal signals and periodic pulse signals, to
verify the effects of the proposed method. /e expression of
the sinusoidal signals is as follows:

Y � sin(500 πt + 10). (5)

/e two typical simulation signals are pooled by mean
pooling, max pooling, and cubic spline interpolation pooling
methods of different pooling steps. Figure 8 shows the time-
domain waveform of the periodic pulse signals when the
pooling step is taken as 2 and 8, respectively. Moreover, it
illustrates the results after pooling.

It is observed, that for the pooling step size of 2, the
pooling domain is small. /erefore, three types of methods
completely preserve the pulse components contained in the
original signals. However, as the pooling step size increases
and reaches 8, the data dimension is reduced, while the
feature sparseness constantly increases. Meanwhile, the
feature information in the signals has a certain loss. It should
be indicated that most feature information is lost by mean
pooling, while the most feature information is retained by
the cubic spline interpolation pooling. Moreover, due to the
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algorithm characteristics of mean pooling, it compresses the
signal amplitude to some extent after the input signal is
pooled, which also leads to a certain degree of loss of feature
information. /erefore, the mean pooling method is not
applicable to signals with large amplitude changes or more
transient impact components in the input.

Figure 9 shows the time-domain waveform of the si-
nusoidal signals when the pooling step is taken as 2 and 8,
respectively. Moreover, it shows the results after pooling.

Figure 9 shows that when the pooling step size is 2, the
three types of methods preserve the periodic features in the
signals more reasonably, while mean pooling can also result
in a certain compression of the amplitude. It should be
indicated that when the pooling step gradually increases to
be equal to one periodic component of the sinusoidal signal
or an integer multiple of the period, the eigenvalues
extracted by each pooling domain of mean pooling and max
pooling are the same, and the output eigenvector is a straight
line at last. Figure 9(b) shows that when the pooling step size
is 8, the size of the pooling domain is exactly equal to one
periodic component of the sinusoidal signals. Taking the
max pooling as an example, the eigenvalues obtained in each
pooling domain are only the largest amplitude in a sinu-
soidal cycle and the result after the pooling is a straight line.
/is kind of method results in the fact that the pooling
results only contain the partial amplitude of the original
signals and lose the periodic features in the original signals.
In the actual diagnosis process, this is obviously not con-
ducive to further extracting features since it reduces the
diagnostic accuracy. For the cubic spline interpolation
pooling, due to the characteristics of its algorithm, curve
fitting is performed in each pooling domain and the cor-
responding interpolation points are calculated in the fitted
curve, which are used as pooling eigenvalue outputs so as not
to result in a lot of useful information to be lost.

4.2. Experiment and Comparison of Results. /e experi-
mental data in this section are derived from the Case West
Bearing University Rolling Bearing Data Center./e CWRU
dataset is the world’s recognized dataset for bearing fault
diagnostic criteria. /e object of this test is the drive end
bearing. /e bearing type is deep groove ball bearing
SKF6205. Moreover, the bearing is single-point damaged by
EDM, and the sampling frequency is 12 kHz. /e rolling
bearing has four states, including the normal state, rolling
element damage, inner ring damage, and outer ring damage.
It should be indicated that the damage diameter is 0.007
inch. In the test, every 1024 data points are used as one input
signal, and no overlap sampling is used. /en, the input
dataset contains a total of 500 signal samples, of which 400
are training samples and the remaining 100 are test samples.
Figure 10 shows the time-domain waveforms of the four
types of bearing signals.

/e aforementioned datasets are trained by the 1DCNN
with different pooling methods. Prior to the training, the
network-related parameters need to be set. /e convolution
kernel size of the two-layer convolutional layers is 1× 301,
and the number of convolution kernels is 4./e learning rate

α is 0.01, and the batch size is 10. In other words, the network
updates the weight when training every 10 samples.
Moreover, the maximum number of training is 1000 times.

Table 1 presents the classification accuracy of the CWRU
bearing dataset of each network model after a number of
experiments. It is observed that, for a bearing in the normal
operation, application of three pooling methods results in
the recognition rate higher than 98%. In the case of the
bearing rolling element fault state, the recognition rates of
the network with both mean pooling and max pooling
decrease, and the recognition rate of mean pooling is the
lowest. When identifying and diagnosing the faults of the
inner and outer rings of the bearing, both the max pooling
method and the cubic spline pooling method have rea-
sonable recognition rates. However, the recognition rate of
the mean pooling method is low, which is difficult to meet
the requirements of the actual diagnostic accuracy.

For the feature extraction and classification of one-di-
mensional vibration signals, the cubic spline interpolation
method preserves the feature information in the input
signals. While realizing data dimension reduction, it ensures
that useful information will not be lost. From the perspective
of the overall recognition accuracy of the bearing dataset, the
network using the cubic spline interpolation method has
96% recognition accuracy, which is higher than that of the
other two methods. /is indicates that this pooling method
is superior to max pooling and mean pooling methods
commonly used in the CNN for feature extraction and
classification of one-dimensional vibration signals. More-
over, it is more suitable for the processing of the one-di-
mensional input.

4.3. Analysis of Test Results. In this section, the eigenvector
visualization of the first layer of pooling layers is extracted to
further study the working principles of pooling methods and
compare the advantages and disadvantages of several types
of pooling methods and perform qualitative analysis. /en,
the correlation coefficients between the eigenvector and the
original signals are calculated for quantitative analysis to
determine which pooling method can retain the feature
information in the original input signals to the greatest
extent.

4.3.1. Qualitative Analysis. In this section, the eigenvectors
of the first layer of the pooling layers in the CNN constructed
by the three types of pooling methods are extracted. Fig-
ure 11 shows the visualization results.

Figure 11 shows that the mean pooling method needs to
be averaged in the local area in the pooling process of the
four types of bearing state signals. /erefore, the amplitude
range of the original input signals is compressed to some
extent. In the processing of the one-dimensional signals, the
essence is to obtain the trend line of the signal by taking the
mean value. Although this pooling method can extract the
global and periodic characteristics of the input signal, some
of the pulsed local features that exist in the vibration signals
are ignored. /erefore, the signal recognition with large
amplitude changes is not effective.
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In contrast, the max pooling method overcomes the
abovementioned issue more reasonably. /e principle of
the max pooling method is to retain the local maximum as

the pooling feature output. Moreover, this method is
equivalent to taking the envelope of the original signals in
a one-dimensional network. /e max pooling can extract
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Figure 9: Time-domain waveform of the sinusoidal signals when the step size is (a) 2 and (b) 8.
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the typical features contained in the signals, which is
helpful for fault diagnosis of the bearing status. However,
Figure 11(b) shows that, during the process of diagnosing
the rolling element fault state signals, the extracted feature
signals are affected in continuity and smoothness, which
may result in a decrease of the recognition rate. /is is
because this method only extracts the maximum value and
does not consider the correlation before and after the
signal time.

/e cubic spline interpolation poolingmethod proposed in
the present study is excellent to avoid the abovementioned
problems. /e cubic spline interpolation function has the
characteristics of simple calculation, good stability, and good
smoothness, while the fitting function fully extracts the original
input signal feature information. /erefore, it can ensure the
continuity of the whole fitting curve, which is more conducive
to the following deep feature extraction of the convolutional
layers and the classification of the fully connected layer.
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Figure 10: Time-domain waveforms of the four types of bearing signals. (a) Normal state. (b) Rolling element damage. (c) Inner ring
damage. (d) Outer ring damage.

Table 1: Results of the experiment.

Number of bearing status signals Number of misidentified bearing states
Bearing condition Train sample Test sample Max pooling Mean pooling Cubic spline interpolation pooling
Normal state 400 100 8 4 5
Rolling element damage 400 100 12 16 3
Inner ring damage 400 100 3 20 2
Outer ring damage 400 100 1 28 6
Accuracy of the testing sample (%) 94.0 83.0 96.0
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Figure 11: Continued.
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Figure 11: Pooling results of bearing status signals. (a) Normal state. (b) Rolling element damage. (c) Inner ring damage. (d) Outer ring
damage.
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4.3.2. Quantitative Analysis. In order to compare the
pooling effects of the conventional pooling methods with
that of the proposed cubic spline interpolation pooling
method, this section utilizes the eigenvectors extracted in the
previous section and analyzes the correlation between the
original input signals. Table 2 shows the correlation coef-
ficients between the proposed method and the input signals
of different bearing states.

Table 2 shows that both the max pooling method and
the cubic spline interpolation pooling method have a
higher correlation with the original input signals, while
the correlation between the eigenvectors obtained by the
mean pooling method and the original input signals is
lower. /e obtained results correspond to the diagnostic
recognition accuracy of the respective networks. After
mean pooling, although this method roughly expresses the
trend of the input signals of this segment and retains the
periodic features, the details and local features are
weakened or even lost. /erefore, the degree of similarity
between feature vectors obtained after pooling and the
original signals is not high, which results in the loss of
useful information. /is affects subsequent feature ex-
traction and final classification effects. In contrast, when
the max pooling method is used to process most of the
one-dimensional vibration signals, the pooled feature
vector is highly correlated with the original signals, and
more useful information can be retained. However, due to
the pooling method characteristics, which are regardless
of the temporal relationship between the vibration signals,
the maximum value is taken as the eigenvalue in the re-
spective specified pooling domain. Finally, the eigenvec-
tors obtained by arranging these eigenvalues in series are
affected by their continuity. For example, Figure 11(b)
shows that the max pooling result in the rolling element
fault state is not ideal and the correlation coefficient with
the original signals is also low. /is indicates that the max
pooling method is not affected by the fluctuation degree of
the signals. It should be indicated that if the fluctuation
degree of a certain segment signal is large, the use of the
max pooling results in poor continuity of the obtained
feature signals. Moreover, the original signals are char-
acterized properly so that the overall recognition accuracy
of the network is lowered. However, the cubic spline
interpolation pooling overcomes the limitations of the
abovementioned methods. /e calculation mode of the
segmentation interpolation fits the function correspond-
ing to the segment signal reasonably so that the feature
information remains intact. Moreover, the time continuity
of the signal is considered, ensuring that the obtained
feature vector is smooth and continuous and improves the
network recognition rate.

5. Conclusion

For the periodicity and short-time pulse characteristics of
one-dimensional time-series signals in fault diagnosis and
considering the time continuity of sampling points before
and after the signals, a CNN pooling method based on the
cubic spline interpolation is proposed in the present study. It
should be indicated that the eigenvectors input from the
previous layer of convolutional layers are divided into
several nonoverlapping subsignal segments, initially. /en,
the corresponding fitting function is calculated by the cubic
spline interpolation in each signal segment. Moreover, each
of the interpolated points after the fitting is sequentially
arranged as an eigenvector output. /e proposed method
can preserve the feature information in the original signals as
much as possible while ensuring the continuity of the sig-
nals. /e comparison tests on the CWRU public dataset
show that the proposed method in the present study has a
higher recognition rate and stability for one-dimensional
signals. Moreover, it better preserves the signal character-
istics while achieving data dimension reduction.
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