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In the present paper, the amplitude-frequency characteristics of torsional vibration are discussed theoretically and experimentally
for automotive powertrain. A bending-torsional-lateral-rocking coupled dynamic model with time-dependent mesh stiffness,
backlash, transmission error etc. is proposed by the lumped-mass method to analysis the amplitude-frequency characteristic of
torsional vibration for practical purposes, and equations of motive are derived. ,e Runge–Kutta method is employed to conduct
a sweep frequency response analysis numerically. Furthermore, a torsional experiment is performed and validates the feasibility of
the theoretical model. As a result, some torsional characteristics of automotive powertrain are obtained. ,e first three-order
nature torsional frequencies are predicted. Torsional behaviors only affect the vibration characteristics of a complete vehicle at
low-speed condition and will be reinforced expectedly while increasing torque fluctuation. Gear mesh excitations have little effects
on torsional responses for such components located before mesh point but a lot for ones behind it. In particular, it is noted that the
torsional system has a stiffness-softening characteristic with respect to torque fluctuation.

1. Introduction

,e front-engine, rear-wheel drive layout (FR) vehicle has a
complicated powertrain consisting of engine, clutch,
transmission, drive shaft, rear axle, and tire, as shown in
Figure 1, which indicates that more dynamic behaviors
occur. In a typical dynamic operating condition, the fluc-
tuation of engine output torque, U-joint dynamic charac-
teristics will induce torsional vibration of the whole
powertrain. Internal excitations originating from inherent
characteristics of hypoid gear set also are responsible for the
transverse-torsional-rocking coupled vibration of rear axle.
,ese vibrations are eventually transmitted to the vehicle
body through intermediate support and suspension to act as
the main aspects of excitations causing vibration and noise
for the complete vehicle. In order to improve the dynamic
performances for vehicle, a number of research studies had
been performed.

Vesali et al. [1] obtained the relationship between input
and output angular speed for different U-joint with

variations in structure. Lu et al. [2] proposed a dynamic
model with clearance by the lumped-mass method to discuss
dynamics of a cross shaft type universal joint and analyze the
effects of clearance on output speed and dynamic torque
response. Wu et al. [3] optimized the phase differences
between adjacent U-joints, which reduced the torsional
vibration of transmission shaft. A classical model was
proposed by Porter [4] in which the transmission system
containing a U-joint was modeled as a torsional system with
one degree-of-freedom. Asokanthan and Wang [5] intro-
duced a torsional model with two degree-of-freedom to
investigate stability and bifurcation performances by using
the maximum Lyapunov exponent method based on Porter’s
model. Farshidianfar et al. [6] developed a lumped-mass
model for a driveline forced by torsional excitation to analyze
the formation mechanism of noise. Friction was considered
in Abd Elmaksoud’s paper [7], whose investigation indicated
that the friction moment is a main aspect of excitation-
inducing torsional vibration for the automobile driveline.
Juang et al. [8] discussed effects of the sliding-tube-type
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driveshaft on a complete vehicle by experimental and finite
element method. ,ey reached a conclusion that fluctuation
of nonlinear contact force in sliding mechanism accounts for
the complete vehicle vibration. Coutinho and Tamagna [9]
analyzed the bending natural frequency of half-shaft to
prevent from resonance under power excitation. ,e effects
of intermediate support on complete vehicle vibration are
discussed in Yiting Kang’s work [10]. Xu et al. [11] and
Zhang et al. [12] analyzed dynamics of transmission shaft-
rear driving axle based on ADAMS and experimental
demonstration, and the coupling effects between trans-
mission shaft and rear axle were discussed. Xu et al. [13] and
Xu et al. [14] developed several different dynamic models
considering coupling interaction between automobile
transmission shaft and main reducer. In their studies, effects
of bearing stiffness, backlash, intermediate support, etc. on
the system were discussed numerically. It is noted that the
key of analytical solution for the main reducer is the de-
velopment of the dynamic model of hypoid gear, with time-
varying meshing stiffness, damping, clearance, bear, and
other line or nonlinear factors, which inherits the research
studies on spur and helical gear pair conduct by Kahraman
and Singh [15–17], Cai and Hayashi [18], and Velex et al.
[19–21], and remarkable achievements can be found within
documents of Lim’s team [22–26] and other researchers.

As introduced in preceding section, a few investigations
treating engine, clutch, transmission, transmission shaft, and
rear axle as a whole system were conducted mathematically.
Although many models have been introduced in the liter-
ature, very few considered the influence of transverse and
rocking vibration on torsional performances theoretically
for discussing torsional characteristics of powertrain. In the
present paper, the amplitude-frequency characteristics of
torsional vibration for automotive powertrain are analyzed
theoretically and experimentally considering the interac-
tions between powertrain and the main reducer gear system.

As for the layout of the present paper, it mainly contains
five sections besides introduction. In the second section, a
lumped-parameter dynamic model with 29 degree-of-free-
dom is proposed considering the transverse, torsional, and
rocking vibration, and equations of motion are derived. In
the third section, the introduced model is adopted to discuss
the amplitude-frequency characteristics of torsional vibra-
tion for the coupling system by sweep frequency response
analysis numerically. In the fourth part, an experiment is
performed to validate the feasibility of the considered model
and analyze the effect of torque fluctuation on the ampli-
tude-frequency characteristics of torsional vibration. As the
final part, a conclusion is offered.

2. Dynamic Modeling of Powertrain

As shown in Figure 1, the powertrain discussed in this paper
consists of engine, transmission, drive shaft system, and rear
axle. Considering the complexity of the system, a series of
simplifying processes are adopted to establish the dynamic
model of the system by using lumped-parameter method.
,ereby, a generalized model with twenty-nine degree-of-
freedom (29DOF) is proposed as shown in Figure 2, in which
U-joint dynamic actions, intermediate support stiffness,
time-varying mesh stiffness, gear backlash, static trans-
mission error, and other factors are considered.

,e generalized coordinate vector of the dynamic model
is given by

S{ } �
θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8, θ9, θ10, θ11, θ12, θ13, θ14, θ15, θ16, θ17,

θpy, θpz, θgx, θgz, ym, zm, xp, yp, zp, xg, yg, zg

⎧⎨

⎩

⎫⎬

⎭

Τ

, (1)

where θi(i � 1 − 5) represents the torsional displacement of
the equivalent element as their coordinates; ym and zm are
the translations of the intermediate support along the axes y

and z; xpx, xpy, and xpz are the translations of the pinion
along the axes x, y, and z; xgx, xgy, andxgz are the trans-
lations of the gear along the axes x, y, and z; θpx is the
torsional displacement of the pinion around the x axis;
θpy and θpz are the rocking displacements of the pinion
around the y and z axes; and θgx and θgz are the rocking
displacements of the gear around the x and z axes,
respectively.

,e equivalent mass and moment of inertia are denoted
by mi and Ji.

2.1. Engine. In order to satisfy limitations of experimental
bench, parameters of engine are replaced by ones of input
motor, which is processed as two equivalent moments of
inertia corresponding to the equivalent moments of inertia
of the motor, flywheel, and clutch.

Output torque of engine, as a main external excitation of
the system, is written as in Fourier series form:

Transmission
Intermediate

drive sha�

Half-sha�

Main drive sha�

Intermediate support

Main reducer and
differential

U-joint

U-jointU-joint
Engine

and clutch

Figure 1: Schematic of the automotive powertrain system dis-
cussed in this paper.
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TD � Tm + 􏽘
N

i�1
Tdi cos iωft + φi􏼐 􏼑, (2)

where Tm is mean output torque; Tdi is the amplitude of ith
harmonic term; ωf is output speed of engine; and φi is phase
angel of ith harmonic term.

Based on previous research [14], only mean component
and the second-order harmonic term are considered here:

TD � Tm + Td2 cos 2ωft + φ2􏼐 􏼑. (3)

2.2. Transmission. ,e transmission is simplified as a
chained system with six equivalent moments of inertia, and
i1 is introduced to describe the drive ratio of transmission.
Furthermore, gears are assumed as rigid, and gear mesh
characteristics, frictions, etc. are neglected. Without loss of
generality, the case of i1 � 1.350 is employed as an example in
the present work.

In order to simplify a multimesh gear train into a
chained system, a shaft should be chosen as the main body
firstly as illustrated in Figure 3, in which Ji (i� 1–4) and
Ji
′(i � 3 − 4) are equivalent moments of inertia and Ki
(i� 1–4) and Ki

′(i � 3 − 4) denote equivalent stiffness of gear
shaft.

Kinetic energy of output shaft for the original system and
chained system can be calculated as follows:

E �
J3ω2

2 + J4ω2
2

2
,

E′ �
J3′ω2

1 + J4′ω2
1

2

, (4)

where E is the kinetic energy of output shaft for the original
system; J3 and J4 are the equivalent moments of inertia for
the original system, which are derived by dynamic balance
theory; ω1 and ω2 are the angular velocities; E′ is the kinetic
energy of output shaft for the original system; and J3′ and J4′
are equivalent moments of inertia for the chained system.

From the conservation law of energy, the following
relationships are obtained:

E � E′,

J3′ �
J3

i2
;

J4′ �
J4

i2
,

(5)

where i is drive ratio.

(a)

(b) (c)

Figure 2: ,e dynamic model of the powertrain shown in Figure 1: (a) dynamic model of powertrain without rear axle; (b) torsional model
of rear axle; (c) dynamic model of the main reducer in rear axle.
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From the conservation of strain energy, an equation is
derived:

1
2
K3′φ

2
1 �

1
2
K3φ

2
2, (6)

where K3′ andK3 are torsional stiffness of output shaft for the
chained system and original system, respectively, and
φ1 andφ2 are torsional angels of driving and driven shaft.

Owing to the assumption concerning a gear as rigid, the
gear meshing stiffness, K2′ and K2, is treated as infinite
quantities. ,e following equations are derived:

K3′ �
K3

i2
, i �

φ1
φ2

, T2′ �
T2

i
,􏼨 (7)

where T2′ is the input torque of output shaft and the T2 is the
output torque of input shaft.

According to preceding derivation, the equivalent mo-
ments of inertia for the chained system are calculated by

J3 � Ia1 +
Ia2

2
,

J4 �
Ia2

2
+ Ig1,

J5 �
Ib1 + Ig2 + Ib2/2􏼐 􏼑

i22: 1
,

J6 �
Ib2/2( 􏼁 + Ig3 + Ib3 + Ig4 + Ig11/i211: 4􏼐 􏼑 + Ib4 + Ig5 + · · · + Ig12/i212: 5􏼐 􏼑 + Ib5 + Id + Ib6 + Ig8 + Ig9 + Ig15/i215: 9􏼐 􏼑/i29: 8􏼐 􏼑 + Ib7􏽨 􏽩

i22: 1
,

J7 �
Ic1 + Id + Ig10 + Ic2 + Ic3 + Ic4/2􏼐 􏼑 + Id􏼐 􏼑

i210: 3 · i22: 1( 􏼁
,

J8 �
Ic4/2 + Ig13 + Ig6/i26: 13 + Ic5 + Ig14 + Ig7/i27: 14 + Ic6 + Ic7 + Id􏽨 􏽩

i210: 3 · i22: 1( 􏼁
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(8)
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Figure 3: ,e schematic diagram of equivalent principle for simplifying a multimesh gear train into a chained system.
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where Iaj(j � 1, 2) is the equivalent moment of inertia of the
jth node of input shaft; Ibj(j � 1, 2, . . . , 7) is the equivalent
moment of inertia of the jth node of middle shaft; Icj(j �

1, 2, . . . , 7) is the equivalent moment of inertia of the jth
node of output shaft; Igj(j � 1, 2, . . . , 15) is the equivalent
moment of inertia of jth gear; Id is the equivalent moment of
inertia of the synchronizer ring; and im: n is the drive ratio of
the mating gear pair.

2.3. Drive Shaft System. Drive shaft system comprises in-
termediate drive shaft, main drive shaft, three universal
joints, and intermediate support. In this paper, the rotational
inertia of shaft is equivalent to the universal joint by the
lumped-mass method averagely. ,e lubrication, clearance,
friction, manufacturing, and assembly errors, and flexibility
of universal joint are not considered.

In order to describe the dynamics of a U-joint, a set of
parameters are introduced as follows:

Ai �
1 + cos2αi

2 cos αi

;

Bi �
1 − cos2αi

2 cos αi

;

i � 1, 2, 3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

where αi(i � 1, 2, 3) is the intersection angel between shafts
linked by a universal joint (U-joint).

According to kinematics analysis, the following equa-
tions are derived:

θ9 � arctan
tan θ8
cos α1

,

θ9′ �
θ8′

A1 − B1 cos 2θ8
,

θ9″ �
θ8″

A1 − B1 cos 2θ8
−

2B1 sin 2θ8
A1 − B1 cos 2θ8( 􏼁

2 θ8′( 􏼁
2
,

T2 � A1 − B1 cos 2θ8( 􏼁T1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ11 � arctan
tan θ10
cos α2

,

θ11′ �
θ10′

A2 − B2 cos 2θ10
,

θ11″ �
θ10″

A2 − B2 cos 2θ10
−

2B2 sin 2θ10
A2 − B2 cos 2θ10( 􏼁

2 θ10′( 􏼁
2
,

T4 � A2 − B2 cos 2θ10( 􏼁T3,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ13 � arctan
tan θ12
cos α3

,

θ13′ �
θ12′

A3 − B3 cos 2θ12
,

θ13″ �
θ12″

A3 − B3 cos 2θ12
−

2B3 sin 2θ12
A3 − B3 cos 2θ12( 􏼁

2 θ12′( 􏼁
2
,

T6 � A3 − B3 cos 2θ12( 􏼁T5,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)
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where α1 is the intersection angel between output shaft of
transmission and intermediate drive shaft; α2 is the inter-
section angel between main drive shaft and intermediate
drive shaft; α3 is the intersection angel between main drive
shaft and input shaft of rear axle.

,e equivalent moments of inertia for intermediate drive
shaft and main drive shaft are calculated by

J9 � J10 �
1
2i21

Jids,

J11 � J12 �
1
2i21

Jmds,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(11)

where i1 is the drive ratio of transmission; Jids is the moment
of inertia of intermediate drive shaft; and Jmds is the moment
of inertia of main shaft.

Equivalent torsional stiffness k and damping coefficient c

of shaft are given by

k �
M

ϕ
�

Gapπ D4 − d4( 􏼁

32L
,

c � 2ζ

������
kJaJb

Ja + Jb

􏽳

,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(12)

where ζ is the damping ratio and Ja and Jb are the equivalent
moment of inertia of shaft end.

2.4. Rear Axle. In this paper, the main reducer system is
simplified as a geared rotor-bearing system with bending-
torsional-lateral-rocking coupled vibration. Pinion shaft is
simplified as two lumpedmasses linked by a spring-damping
pair with infinite stiffness, and the differential assembly is
modeled as a rigid part with a concentratedmass. Half-shafts
are described by twomass-spring-damping pairs. Otherwise,
pinion and gear are treated as rigid bodies within torsional
vibration analysis.

,e equivalent moments of inertia for rear axle are
calculated by

J13 �
1/5Jps

i21
,

J14 �
4/5Jps

i21
,

J15 �
Jd + 0.5Jhs

i21i
2
2

,

J16 � J17 �
0.5Jhs + Jhs

i21i
2
2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(13)

where i1 (i1 � 1.350) is the drive ratio of transmission, i2
(i2 � 4.1) is the drive ratio of the main reducer; Jps is the
moment of inertia of pinion shaft; Jd is the moment of inertia

of differential assembly; and Jhs is the moment of inertia of
half-shaft.

Equivalent stiffness of bearing is expressed as [27]

Kr �
7.253l0.8

1 z0.9
1 cos2.0α1 · F0.1

a0
cos0.1α1

,

Ka � 29.011l0.8
1 cos1.9α1 · F0.1

a0 ,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(14)

where Kr is the equivalent radial stiffness of bearing; Ka is
the equivalent axial stiffness of bearing; l1 is the nominal
contact length; z1 is the number of rolling element;α1 is the
pressure angle; and Fa0 is the pretightening force.

In addition, a new model for pinion shaft is proposed,
which is different from previous works. Owing to negligible
elastic deformation, pinion shaft is modeled as rigid body.
Bearing is modeled as a spring-damping pair. Without loss
of generality, the derivation procedure on displacements of
the mounting point in the x-o-y plane is used as an example.

In Figure 4, Xpx and Xpy are introduced to represent
translational displacements for centroid of pinion shaft; θpz

denotes rocking displacement around the z axis.
From the geometry deformation relationship and pro-

posed concepts, the displacement for mounting point is
calculated by

xpy1 � xpy − lp1 tan θpz,

xpy2 � xpy − lp2 tan θpz.

⎧⎨

⎩ (15)

,ereby, the following expressions are derived:

xpy1′ � xpy
′ − lp1

θpz
′

cos2θpz

, xpy2′ � xpy
′ − lp2

θpz
′

cos2θpz

.􏼨

(16)

Static transmission error e(t) [22–26, 28] is simulated in
Fourier series form by

e(t) � em + 􏽘
N

i�1
eAi cos iωmt + φe( 􏼁, (17)

where em is the average value of transmission error; eAi are
the amplitude of the ith order harmonic; φe are the initial
phase angle of the ith order harmonic; and ωm is the meshing
frequency.

,e dynamic meshing stiffness is the periodically time-
varying parameter with respect to the mesh frequency as
shown in Figure 5, which can be simulated by means of a
Fourier expansion [13, 14, 22–26]:

km(t) � km + 􏽘
N

i�1
kAi cos iωmt + φk( 􏼁, (18)

where km is the mean value of meshing stiffness, kAi is the
fluctuation amplitude of ith order meshing stiffness, ωm is
the mesh frequency, and φk is the initial phase of meshing
stiffness.

Defining me denotes mean mass of pinion and gear:

6 Shock and Vibration



me �
1

1/mp􏼐 􏼑 + 1/mg􏼐 􏼑
�

mpmg

mp + mg

. (19)

,e following equation can be derived:

ωn �

���
km

me

􏽳

, (20)

where ωn is the equivalent natural frequency of pinion and
gear.

Equivalent mesh damping coefficient is calculated, which
is different from Wang and Lim’s analysis [25]:

cm � ξ ∗ 2meωn � 2ξ
��������������

km

1/mp􏼐 􏼑 + 1/mg􏼐 􏼑

􏽳

, (21)

where ζ is the damping ratio, generally set as a range of 0.03
to 0.17 [25];mp andmg are equivalent mass of pinion and gear,
respectively.

,e relative displacement along the normal direction at
the meshing point xn is given as follows:

xn � xpx + Eyθpz􏼐 􏼑 − xgx + Ezθgy + lg3θgz􏼐 􏼑􏽨 􏽩

· cos αn sin βm cos δ1 + sin αn sin δ1( 􏼁

+ xpy + lp3θpz􏼐 􏼑 − xgy + Ezθgx − Exθgz􏼐 􏼑􏽨 􏽩

· −cos αn sin βm sin δ1 + sin αn cos δ1( 􏼁

+ xpz − Rpθpx + lp3θpy􏼐 􏼑 − xgz − lg3θgx − Rgθgy􏼐 􏼑􏽨 􏽩

· cos αn cos βm( 􏼁 − e(t)

� ε1 xpx − xgx − Ezθgy + Eyθpz − lg3θgz􏼐 􏼑

+ ε2 xpy − xgy − Ezθgx + lp3θpz + Exθgz􏼐 􏼑

+ ε3 xpz − xgz − Rpθpx + lg3θgx + lp3θpy + Rgθgy􏼐 􏼑

− e(t).

(22)

,e backlash function is expressed as [23]

f xn( 􏼁 �

xn − b, xn ≥ b,

0, −b≤xn ≤ b,

xn + b, xn ≤ − b,

⎧⎪⎪⎨

⎪⎪⎩
(23)

where b is half of gear backlash.
,e dynamic meshing force along the line of action Fn

can be calculated by
Fn � km(t)f xn( 􏼁 + cmxn

′ , (24)

wherecm represents thevalueof equivalentmeshdampingcoefficient.
,e components of dynamic mesh force along the co-

ordinate directions are expressed as
Fx � Fn cos αn sin βm cos δ1 + Fn sin αn sin δ1,

Fy � −Fn cos αn sin βm sin δ1 + Fn sin αn cos δ1,

Fz � Fn cos αn cos βm,

⎧⎪⎪⎨

⎪⎪⎩
(25)

where δ1 is cone angle of the pinion; αn is the normal pressure
angle, and βm is the helix angle at the midpoint of the pinion.

In additional, the following equations are derived by
introducing the parameter εi:

ε1 � cos αn sin βm cos δ1 + sin αn sin δ1,

ε2 � −cos αn sin βm sin δ1 + sin αn cos δ1,

ε3 � cos αn cos βm.

⎧⎪⎪⎨

⎪⎪⎩
(26)

Substituting equations (26) into (25), the expressions of
dynamicmesh force applied on pinion and gear can bewritten as

Fpx � −Fgx � ε1Fn,

Fpy � −Fgy � ε2Fn,

Fpz � −Fgz � ε3Fn,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)

where the subscript p is the label for pinion and the subscript
g is the label for gear.

Mesh impact due to teeth separation is neglected in this paper.

2.5. Equations of Motion. From the preceding derivations,
the equations of motion considering bending-torsional-
lateral-rocking vibration are expressed as

Fpz

kpz2 cpz2

kpx

cpx

θpy

Xpx

kpz1 cpz1

Fpx
Fpy

Op1

cpy2

θpz

mp

kpy2
cpy1

Lp1

Lp2 Lp3

Op2 Op0

kpy1
y

x

z

Xpy1 Xpy2

Xpy

Op

Op3 Ey

θpz

θpx

Figure 4: ,e dynamic model of pinion shaft.
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J1θ1″ + c1 θ1′ − θ2′( 􏼁 + k1 θ1 − θ2( 􏼁 � TD,

J2θ2″ + c1 θ2′ − θ1′( 􏼁 + k1 θ2 − θ1( 􏼁 + c2 θ2′ − θ3′( 􏼁 + k2 θ2 − θ3( 􏼁 � 0,

J3θ3″ + c2 θ3′ − θ2′( 􏼁 + k2 θ3 − θ2( 􏼁 + c3 θ3′ − θ4′( 􏼁 + k3 θ3 − θ4( 􏼁 � 0,

J4θ4″ + c3 θ4′ − θ3′( 􏼁 + k3 θ4 − θ3( 􏼁 + c4 θ4′ − θ5′( 􏼁 + k4 θ4 − θ5( 􏼁 � 0,

J5θ5″ + c4 θ5′ − θ4′( 􏼁 + k4 θ5 − θ4( 􏼁 + c5 θ5′ − θ6′( 􏼁 + k5 θ5 − θ6( 􏼁 � 0,

J6θ6″ + c5 θ6′ − θ5′( 􏼁 + k5 θ6 − θ5( 􏼁 + c6 θ6′ − θ7′( 􏼁 + k6 θ6 − θ7( 􏼁 � 0,

J7θ7″ + c6 θ7′ − θ6′( 􏼁 + k6 θ7 − θ6( 􏼁 + c7 θ7′ − θ8′( 􏼁 + k7 θ7 − θ8( 􏼁 � 0,

J8θ8″ + c7 θ8′ − θ7′( 􏼁 + k7 θ8 − θ7( 􏼁 �
−T1

i1
,

J9θ9″ + c8 θ9′ − θ10′( 􏼁 + k8 θ9 − θ10( 􏼁 �
T2

i1
,

J10θ10″ + c8 θ10′ − θ9′( 􏼁 + k8 θ10 − θ9( 􏼁 �
−T3

i1
,

J11θ11″ + c9 θ11′ − θ12′( 􏼁 + k9 θ11 − θ12( 􏼁 �
T4

i1
,

J12θ12″ + c9 θ12′ − θ11′( 􏼁 + k9 θ12 − θ11( 􏼁 �
−T5

i1
,

J13θ13″ + c10 θ13′ − θ14′( 􏼁 + k10 θ13 − θ14( 􏼁 �
T6

i1
,

J14θ14″ + c10 θ14′ − θ13′( 􏼁 + k10 θ14 − θ13􏼁( 􏼁 �
−FpzEy

i1
,

J15θ15″ + c11 θ15′ − θ16′( 􏼁 + k11 θ15 − θ16( 􏼁 + c12 θ15′ − θ17′( 􏼁 + k12 θ15 − θ17( 􏼁 �
FgzEx + FgxEz

i1i2
,

J16θ16″ + c11 θ16′ − θ15′( 􏼁 + k11 θ16 − θ15( 􏼁 �
−TRL

i1i2
,

J17θ17″ + c12 θ17′ − θ15′( 􏼁 + k12 θ17 − θ15( 􏼁 �
−TRR

i1i2
,

mmym
″ + cmyym

′ + kmyym � Fmy,

mmzm
″ + cmzzm

′ + kmzzm � Fmz,

mpxpx
″ + kpxxpx + cpxxpx

′ � −Fpx,

mpxpy
″ + kpy1 xpy − lp1 tan θpz􏼐 􏼑 + cpy1 xpy

′ − lp1
θpz
′

cos2θpz

􏼠 􏼡 + kpy2 xpy − lp2 tan θpz􏼐 􏼑 + cpy2 xpy
′ − lp2

θpz
′

cos2θpz

􏼠 􏼡 � Fpy,

mpxpz
″ + kpz1 xpz − lp1 tan θpy􏼐 􏼑 + cpz1 xpz

′ − lp1
θpy
′

cos2θpy

􏼠 􏼡 + kpz2 xpz − lp2 tan θpy􏼐 􏼑 + cpz2 xpz
′ − lp2

θpy
′

cos2θpy

􏼠 􏼡 � Fpz,

Jpyθpy
″ − lp1kpz1 xpz − lp1 tan θpy􏼐 􏼑 − lp1cpz1 xpz

′ − lp1
θpy
′

cos2θpy

􏼠 􏼡 − lp2kpz2 xpz − lp2 tan θpy􏼐 􏼑 − lp2cpz2 xpz
′ − lp2

θpy
′

cos2θpy

􏼠 􏼡 � Fpzlp3,

Jpzθpz
″ − lp1kpz1 xpy − lp1 tan θpy􏼐 􏼑 − lp1cp1 xpy

′ − lp1
θpz
′

cos2θpz

􏼠 􏼡 − lp2kpy2 xpy − lp2 tan θpz􏼐 􏼑 − lp2cpy2 xpy
′ − lp2

θpz
′

cos2θpz

􏼠 􏼡 � −FpxEy + Fpylp3,

mgxgx
″ + kgx1 xgx − lg1 tan θgz􏼐 􏼑 + cgx1 xgx

″ − lg1
θgz
′

cos2θgz

􏼠 􏼡 + kgx2 xgx + lg2 tan θgz􏼐 􏼑 + cgx2 xgx
′ + lg2

θgz
′

cos2θgz

􏼠 􏼡 � Fgx,

mgxgy
″ + kgyxgy + cgyxgy

″ � −Fgy

mgxgz
″ + kgz1 xgz + lg1 tan θgx􏼐 􏼑 + cgz1 xgz

′ + lg1
θgx
′

cos2θgx

􏼠 􏼡 + kgz2 xgz − lg2 tan θgx􏼐 􏼑 + cgz2 xgz
′ − lg2

θgx
′

cos2θgx

􏼠 􏼡 � −Fgz,

Jgxθgx
″ + lg1kgz1 xgz + lg1 tan θgx􏼐 􏼑 + lg1cgz1 xgz

′ + lg1
θgx
′

cos2θgx

􏼠 􏼡 − lg2kgz2 xgz − lg2 tan θgx􏼐 􏼑 + lg2cgz2 xgz
′ − lg2

θgx
′

cos2θgx

􏼠 􏼡 � Fgzlg3 − FgyEz,

Jgzθgz
″ + lg1kgx1 xgx + lg1 tan θgz􏼐 􏼑 + lg1cgx1 xgx

′ + lg1
θgz
′

cos2θgz

􏼠 􏼡 − lg2kgx2 xgx − lg2 tan θgz􏼐 􏼑 + lg2cgx2 xgx
′ − lg2

θgz
′

cos2θgz

􏼠 􏼡 � Fgxlg3 − FgyEx,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (28)
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where TD is the input torque of motor; T1 is the output
torque of transmission; T2 andT3 are the input and output
torque for intermediate drive shaft; T4 andT5 are the input
and output torque for main drive shaft; T6 is the input
torque of rear axle; ki(i � 1, 2, . . . , 7) are the equivalent
torsional stiffness; ci(i � 1, 2, . . . , 7) are the equivalent tor-
sional damping; ki(i � 8, 9) are the equivalent torsional
stiffness; ci(i � 8, 9) are the equivalent torsional damping;
mm is the mass of transmission shaft; ki(i � 10, 11, 12) are
the equivalent torsional stiffness for pinion shaft and dif-
ferential axle; ci(i � 10, 11, 12) are the equivalent torsional
damping for pinion shaft and differential axle; cmy and cmz

are the equivalent damping of intermediate support along
axes y and z; kmy and kmz are the equivalent stiffness of
intermediate support along axes y and z; Fmy and Fmz are
components of additional force Fi along axes y and z for
intermediate support; Ei(i � x, y, z) are coordinates of
meshing point along axes x, y, and z; and TRL andTRR are
load torque for wheels.

2.6. Numerical Solution Procedure. ,e fourth-order adap-
tive step Runge–Kutta method which is generally applicable
to strong nonlinearity is adopted in the present work to solve

the equations. In order to program, a new state space is
needed.

In consideration of equations (12)—(14), it can be de-
rived that kinetic equations of 3 universal joints reduce the
number of degree-of-freedom from 29 to 26 for the whole
system. ,e following state space coordinate vector also
describes the dynamic behaviors of the system:

Ss{ } �
θ1, θ2, θ3, θ4, θ5, θ6, θ7, θ8 , θ10, θ12, θ14, θ15, θ16, θ17
θpy, θpz, θgx, θgz, ym, zm, xp, yp, zp, xg, yg, zg

⎧⎨

⎩

⎫⎬

⎭

Τ

.

(29)

In order to eliminate the difference in magnitude be-
tween parameters, which will reduce the solvability and even
lead to no convergence for solving equations of motion
mentioned above, b is defined as the characteristic length
and a new time parameter τ is introduced as follows:

τ � tωn, (30)

where t denotes time.
For the sake of nominalizing equations, a generalized

state space coordinate vector with 26 parameters is proposed
to characterize dimensionless equations as

st{ } � sr1, sr2, sr3, sr4, sr5, sr6, sr7, sr8, sr10, sr12, sr16, sr17, srpx, srpy, srpz, srgx, srgy, srgz, smy, smz, spx, spy, spz, sgx, sgy, sgz􏽮 􏽯
T
.

(31)

,e following equations are derived as

sri � θi ×
Ri

b
, i � 1 ∼ 8, 10, 12, 16, 17,

srpx � θ14 ×
Rpx

b
,

srgy � θ15 ×
Rgy

b
,

srij � θij ×
Rij

b
, i � p, g; j � x, y, z,

six �
xi

b
, i � p, g,

siy �
yi

b
, i � m, p, g,

siz �
zi

b
, i � m, p, g,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(32)

where b is the half of backlash and Ri is the equivalent gyration
radius, which can be calculated by the following equation:

Ri �

���
Ji

mi

􏽳

, i � 1 ∼ 8, 10, 12, 16, 17,

Rij �

���
Jij

mi

􏽳

, i � p, g; j � x, y, z,

⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(33)

where Ji and Jij are the equivalent moment of inertia and mi

is equivalent mass.
A set of dimensionless parameters are defined as

xnτ �
xn

b
;

f xnτ( 􏼁 �
f xt

n( 􏼁

b
;

c(i,j,s) �
ci

mjRjRsωn

;

k(i,j,s) �
ki

mjRjRsω2
n

;

cmi �
cm

miωn

;

kmi �
km

miω2
n

;

T(x,j) �
Tx

mjRjω2
nb

;

lijτ �
lij

b
.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(34)

As equations (30), (32), and (34) are substituted into
equation (28), the dimensionless equations of motion can be
derived.
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,e equivalent inertia parameters are obtained in UG,
and stiffness parameters of powertrain are calculated by
using the relationships given in modeling section as listed in
Table 1. Subsequently, equivalent damping coefficients can
be obtained. ,e parameters of the main reducer can be
calculated by substituting system parameters listed in Table 2
into equations (17)–(31). ,e solution procedures for di-
mensionless parameter are carried out by using preceding
calculated parameters and the relationships proposed in
previous parts.

,e exciting and configuration parameters are set as
θ1 � 1500 rpm, Td2 �100N·m, km � 9.697e8N/m, i1 � 1.35,
i2 � 4.1, 2b� 0.15mm, em � 0, α1 � 1.695 degree, α2 �1.3044
degree, and α3 �1.554 degree, respectively. Without signif-
icant loss of accuracy, the fundamental harmonic form is
adopted for time-varying mesh stiffness and static trans-
mission error function whose initial phases are set at 0,
respectively.

3. Numerical Results

3.1. Analysis of Coupled Torsional Vibration. In order to
analysis coupled interaction of automotive powertrain,
Fourier spectrums of torsional vibration response are cal-
culated at the initial parameters as shown in Figure 6. Two
peaks and their sidebands are observed. ,e torsional vi-
brational responses are governed by the component of 50Hz
which equals with exciting frequency of input torque as
shown in equation (3) (ωf �1500/60 ∗ 2� 50Hz). ,is
implies that engine input excitation is responsible for tor-
sional vibration and a valuable approach to decreasing
torsional vibration of powertrain is inferred. In addition, the
component with a frequency of around 185Hz is observed
obviously for each considered part. As one knows, the
meshing frequency undergoing this condition is presumably
185.185Hz (f� 1500/60/1.35�185.185Hz) which is quite in
agreement with the frequency of the second peak. Coupled
vibration occurs between the torsional system and hypoid
gear set, and inner excitation caused by gear pair meshing
process which is affected by clearance and time-varying
meshing stiffness [25] accounts a lot for torsional vibration
at 185Hz of powertrain and affects torsional responses
slightly. After simply calculation, bandwidths reaching the
same value of around 37Hz of sidebands around two peaks
are got. U-joint is a transmission mechanism with non-
constant angular speed which will excite a doubled fre-
quency torsional vibration of input as shown in equations
(12)–(14). Under this condition, the doubled frequency
excited by U-joint is calculated:

fu−joint �
n

i1 ∗ 60
∗ 2 �

1500
1.35∗ 60

∗ 2 � 37.04. (35)

It can be conjectured that modulation phenomenon
appears when automotive powertrain works between exci-
tations attributed to input, U-joint, and gear pair. As one can
see in Figure 6, compared torsional response of gear with
that located front of meshing point, a lower value of tor-
sional angular is observed, and it is inferred that gear mesh
excitations reduce torsional vibration for components

located behind meshing point. It is noted that taking gear
mesh behaviors into account is quite necessary to when a
torsional characteristic analysis is conducted.

3.2. Amplitude-Frequency Response of Torsional Vibration for
Automotive Powertrain. ,e previous works [29] analyzed
torsional characteristics of the coupled system consisted of
drive shaft and rear axle, which denoted that resonance of
drive shaft at the first two-order nature frequency accounts
for dramatic torsional vibration responses undergoing high-
rotation-speed condition. However, it cannot reveal the
torsional vibration mechanism of automotive under low-
and middle-speed condition.

In order to obtain a more realistic understanding for
amplitude-frequency response of automotive powertrain
undergoing middle-speed condition theoretically, the pre-
ceding equations of motion are adopted. A sweep frequency
analysis procedure is carried out in a range from 1000 rpm to
3500 rpm, which, respectively, corresponds to frequency
internal of 16.6–58.3Hz for input speed, 33.33–116.7Hz for
input excitation, and 123.46–432.09Hz for meshing exci-
tation. ,e response at input end of rear axle is taken as an
example in this work.

Figure 7 shows the amplitude-frequency response, in
which abscissa denotes torsion speed of input and ordinate is
RMS value of angular displacement. As one can see, three
obvious peaks which correspond to input speed at about
1000 rpm, 1600 rpm, and 2800 rpm, respectively, are ob-
served. Owing to the assumption that the dramatic responses
are attributed to resonance of the system, the first three-
order nature frequency respect to the second-order term of
input torque fluctuation is proposed at 33.3Hz, 53.3Hz, and
93.3Hz successively. It is noted that on the basis of previous
analysis, these three peaks also correspond to frequencies of
24.7Hz, 39.5Hz, and 69.1Hz for the U-joint excitation and
123.4Hz, 197.5Hz, and 345.6Hz for the meshing excitation.
Preliminary works [29] showed that resonance is attributed
to input excitation of drive shaft and the meshing excitation
of hypoid gear pair with higher exciting frequency than
input will not excite prominent resonance behaviors of drive
shaft as illustrated in Figure 8, i.e., meshing excitation has
slight influence on the torsional system, which reaches the
same conclusion with this work. According to analysis in
Section 3.1, the sidebands respect to each exciting frequency
are (8.6–58) Hz at 33.3Hz, (13.8–92.8) Hz at 53.3Hz, and
(24.2–162.4) Hz at 93.3Hz for input torque, and (98.7–148.1)
Hz at 123.4Hz, (158–237) Hz at 197.5Hz, and (276.5–414.7)
Hz at 345.6Hz for meshing behavior of the gear pair, re-
spectively. As listed in Table 3, the first peak can be attributed
to the first two-order resonances of drive shaft excited by
sideband around 123.4Hz. Sidebands at 53.3Hz and
197.5Hz result in the second-order resonance, which gen-
erates the second peak. Moreover, the second-order reso-
nances excited by the sideband at 93.3Hz and third-order
one caused by sideband at 345.6Hz explain the appearance
of the third peak. A typical phenomenon is observed that the
torsional vibration reduces a lot while one compares the
amplitude of the third peak with another two, which
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Table 1: ,e equivalent parameters of powertrain.

Equivalent mass (kg) Equivalent moment of inertia (kg·m2) Equivalent stiffness (N/m)
m1 � 2 J1 � 0.091125 k1 � 10023.75
m2 � 10 J2 � 0.3801735 k2 � 1640.25
m3 � 0.6150 J3 � 0.00008103 k3 � 27500
m4 � 1.3798 J4 � 0.001001 k4 � 1.0e11
m5 � 2.3581 J5 � 0.001323 k5 � 479000
m6 � 11.4323 J6 � 0.00249 k6 � 1.0e11
m7 � 4.5323 J7 � 0.001865 k7 � 21400
m8 � 7.5567 J8 � 0.002098 —
m9 � 1.284 J9 � 0.001695 k8 � 43921.799
m10 � 1.284 J10 � 0.001695 —
m11 � 1.3125 J11 � 0.00173 k9 � 41933.635
m12 � 1.3125 J12 � 0.00173 —
m13 � 0.4254 J13 � 0.00002772 k10 � 1.0e11
m14 � 1.7016 J14 � 0.0001109 km � 9.6965e8
m15 � 13.75 J15 � 0.034177 —
m16 � 8.45 J16 � 9.9 k11 � 12032.114
m17 � 8.45 J17 � 9.9 k12 � 12032.114

Table 2: ,e system parameters of the main reducer.

Parameter Pinion Gear
Number of teeth 10 41
Module (mm) 4.00
Mean pressure angle (deg.) 20 20
Helix angle at midpoint of the pinion (deg.) 50 27.13
Cone angle (deg.) 23.12 65.14
Tooth width (mm) 40.66 34.52
Tooth addendum (mm) 3.59 6.44
Pinion outset (mm) −38
Mounting distance (mm) 112 64
Pitch radius (mm) 40 108
Backlash (mm) 0.1536
Distance from pinion reference point to the x-o-z plane for pinion (mm) 40
Distance from pinion reference point to the y-o-z plane for gear (mm) 101
Distance between projection point and centroid of pinion shaft (mm) lp3 �10 lg3 � 5

Distance between bearing reference point and centroid of pinion shaft (mm) lp1 � 100 lg1 � 90
lp2 �17.5 lg2 � 93

Equivalent mass (kg) mg � 2.127 mp � 13.75
Jpx � J14 Jgx � 0.050315

Equivalent moment of inertia (kg·m2) Jpy � 0.002982 Jgx � J15
Jpz � 0.002982 Jpz � 0.037551

Meshing stiffness
of (i + 1)th tooth pair

Meshing stiffness
of ith tooth pair

t

k

Meshing stiffness
of (i – 1)th tooth pair

Total meshing
stiffness km(t)

Figure 5: Schematic diagram of time-varying meshing stiffness on hypoid gear.
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indicates that torsional behaviors of automotive powertrain
affect the vibration characteristics of the complete vehicle
under a low- or middle-input-speed condition. In order to
validate the preceding result, an experimental study is
necessary.

4. Experimental Analysis

A test bench which can be used to test the vibration behavior of
a transmission system used for four-wheel drive vehicle be-
longing to the China Automotive Technology and Research
Center is adopted to perform this experiment. ,ere are five
motors in the test bench, and three of them are used in this
experiment. One of them drives automotive powertrain, which
can generate a high frequency input torque with fluctuation
varied in accordance with necessary, and others are used as
loads. In this test, two photoelectric sensors and two magne-
toelectric sensors are used to detect torsional vibration signals,
and other five accelerometers are mounted to monitor trans-
verse vibration. Installation site for each sensor can be found in
Figure 9. Signals are sampled and processed by LMS Test.Lab.

In order to validate the feasibility of the theoretical
model, the input torque simulated by input motor and loads
are consistent with parameters employed in numerical
analysis (mean value and the second-order term are con-
tained only, and fluctuation amplitude is set at 100N·M for
input torque). Within the experiment, the output speed of
motor varies from 1000 rpm to 3500 rpm to conduct a sweep
frequency response analysis experimentally.

As illustrated in Figure 10, the amplitude-frequency
responses of torsional vibration have the similar feature for

different parts of powertrain. Peaks can be observed for
carves at a similar input speed. It is inferred that a presume
resonance occurs at each peak. As a result, the first three-
order nature torsional frequencies can be predicted.
Meanwhile, the same results are reached. As shown in
Figure 10, each curve has a higher value nearby the first and
second peak. With the further increase in frequency, it
reaches a lower plateau value. Torsional behaviors have an
effect on the vibration characteristics under a low-input-
speed condition. Furthermore, the part located behind the
mesh point, such as output end of half-shaft, has a lower
RMS value than transmission and drive shaft, which can be
attributed to reduction effect of mesh excitation on torsional
vibration.

,e experimental result of input end of rear axle is
compared with the numerical one. As shown in Figure 11, a
quite consistency is observed and the first three-order fre-
quencies are inferred at 35Hz (1050 rpm), 55.7Hz
(1670 rpm), and 88.3Hz (2650 rpm) for experimental result
by the same way mentioned in preceding section. Compared
with numerical predictions, an acceptable difference of
about 5% (the difference is 5.1% at 33.3Hz, 4.5% at 53.3Hz,
and 5.36% at 93.3Hz) can be obtained. ,ese indicate that
the theoretical model is feasible for predicting nature tor-
sional frequencies. Moreover, numerical torsional dis-
placement is a little lower than the experimental one at the
same input speed which is below about 2450 rpm, and a little
higher with the further increase. ,is can be presumably
attributed to assumptions made in this present work with
respect to the complexity of the system and the limitations of
the lumped-mass method.
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Figure 6: ,e Fourier spectrum of torsional responses: (a) output shaft of transmission; (b) output end of the drive shaft system; (c)
torsional displacement of the pinion along the axis x; (d) torsional displacement of the gear along the axis y.
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,e previous section indicates numerically that excita-
tion of input dominates torsion vibration of the system and
gear set affects responses slightly. In order to validate the
correctness of numerical analysis and feasibility decreasing

torsional vibration by reducing input excitation, effect of
input torque fluctuation on torsional response is studied
experimentally. ,e mean value of input torque is set at
150N·M, and fluctuation of the second-order term is set at
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Table 3: ,e first six-order nature frequency of drive shaft [29].

Order 1 2 3 4 5 6
Frequency (Hz) 130.9 140.2 415.2 442.2 636.2 906.6
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25N·M, 50N·M, 75N·M, 100N·M, 125N·M, 150N·M,
175N·M, and 200N·M in order.

Together Figures 12 and 13 expectably show that the
torsional vibration is reinforced while increasing torque
fluctuation. Meanwhile an obvious increase in amplitude
occurs at the second peak when fluctuation is increased from
175N·M to 200N·M, which indicates that a limitation should

be considered. ,e accurate value can be determined by a
further study. In summary reducing torque fluctuation is a
beneficial approach for vibration damping. Furthermore, it is
noted that such a nonlinear phenomenon as natural fre-
quency shift occurs while changing torque fluctuation. Taking
the second-order torsional frequency as an example, the
frequency value decreases with elevating fluctuation of input
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Figure 9: ,e experiment bench and arrangement of sensors.
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torque, which shows that the torsional system has a stiffness-
softening characteristic with respect to torque fluctuation.
,is result can be accounted for a number of nonlinearities,
such as friction, clearance, and sliding, and the existence of
which sophisticates system nonlinear characteristics.

5. Conclusion

In the present paper, a lumped-parameter dynamic model
with 29 degree-of-freedom is proposed considering the
transverse, torsional, and rocking coupled vibration for a
better understanding of the automotive powertrain system
dynamics and equations of motion are derived. ,e nu-
merical result shows that gear mesh excitations have little
effects on torsional response for such components located
before the mesh point as transmission, transmission shaft,
and pinion but significantly reduce the torsional responses
for ones behind the mesh point. ,e amplitude-frequency
characteristics of torsional vibration graphically indicate that
torsional behaviors of automotive powertrain only affect the
vibration characteristics of complete vehicle under low-
speed condition, and predict the first three-order nature
torsional frequencies of the whole system. An experimental
examination is performed and validates the feasibility of the
considered model. ,e torsional vibration is reinforced
while increasing torque fluctuation. In addition, a stiffness
softening characteristic is observed for torsional vibration
experimentally. In order to reach a better understanding in
amplitude-frequency response at low- and middle-input-
speed condition, a procedure to analyze mode shapes of
automotive powertrain will be conducted in future works.
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