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Mechanical vibrations have been an important sustainable energy source, and piezoelectric cantilevers operating at the resonant
frequency are regarded as one of the effective mechanisms for converting vibration energy to electricity. ,is paper focuses on
model and experimental investigations of multiple attached masses on tuning a piezoelectric cantilever resonant frequency. A
discrete model is developed to estimate the resonant frequencies’ change of a cantilever caused by multiple masses’ distribution on
it. A mechanism consisted of a piezoelectric cantilever with a 0.3 g and a 0.6 g movable mass along it, respectively, is used to verify
the accuracy of the proposed model experimentally. And another mechanism including a piezoelectric cantilever with two 0.3 g
attached masses on it is also measured in the designed experiment to verify the discrete model. Meanwhile, the results from the
second mechanism were compared with the results from the first one in which the single attached mass is 0.6 g. Two mechanisms
have wildly different frequency bandwidths and sensitivities although the total weight of attached masses is the same, 0.6 g. ,e
model and experimental results showed that frequency bandwidth and sensitivity of a piezoelectric cantilever beam can be
adjusted effectively by changing the weight, location, and quantity of attached masses.

1. Introduction

,e mechanical vibration is one of the most important
sustainable energy sources for several decades and it can be
converted to electricity by electrostatic, electromagnetic, and
piezoelectric transductions. Among all these conversion
mechanisms, piezoelectric transduction is attracting more
and more attention because of its higher power density,
simpler design, and smaller size [1–4]. Many studies have
been done on the applications of piezoelectric materials as
energy converters collecting energy from ambient envi-
ronmental vibrations, such as ocean, buildings, vehicles, etc.
[5–9]. Comparing all piezoelectric structural forms, canti-
lever energy harvesters can collect much energy because
cantilever has larger deflection and a larger deflection in-
duces a higher output voltage and power. ,erefore, pie-
zoelectric cantilever has been being intensively studied for

many years [10]. Many research studies demonstrated that
tuning the resonant frequency of the piezoelectric device to
match the frequency of vibration sources can increase the
efficiency of harvesting energy. To adapt energy converters
to any generic applications in many kinds of areas regardless
of surrounding conditions, many researchers have tried to
find out a variety of approaches to widen the converters’
frequency band. Building up piezoelectric cantilever array or
bulk, which is consisted of cantilever beams in different sizes
with various resonant frequencies and thus can widen the
operation bandwidth [11, 12], is an effective way to accu-
mulate much energy. Although piezoelectric array can in-
crease the total amount of collecting energy, this is at the
expense of the device size and efficiency, because a part of
beams will not operate in resonance and hence will not
contribute to the harvested energy, which drastically reduces
the potential energy density of the device. In order to get
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compact and high harvesting efficiency harvester, many
research groups have investigated a variety of methods.
,ose methods include tryouts of different geometric shapes
of piezoelectric cantilevers and active self-adjustable
mechanism of resonant frequencies [13–19]. Resonant fre-
quency tuning for piezoelectric cantilever beams through
self-adjustable mechanism is regarded as one of the most
competent methods. Different methodologies have been
developed to adjust the resonant frequencies of piezoelectric
devices [10, 20–23]. Among those methods, attaching a
proof mass on the cantilever beam is preferred due to the
simple structure. By changing the proof mass properties,
resonant frequencies (including the first mode, the second
mode, and so on) can be adjusted correspondingly. It is also
one of the most attractive methods for vibration control
whose performance mainly depends on the voltage range
[24–26]. Studies have proved that the piezoelectric cantilever
harvester operating at the first two resonant frequencies is
able to provide high voltage and energy [11, 27].,erefore, it
is much critical to tune a piezoelectric cantilever working on
the first two resonant frequencies through adjusting the
attached proof mass. Some research investigated the influ-
ence of a mass location on the cantilever frequency and some
showed the relationship between a mass weight and canti-
lever frequency [26–30]. Although plenty of papers have
illustrated that an attached mass can tune the frequency
wideband of a piezoelectric cantilever, attached multiple
masses tuning piezoelectric cantilever resonant frequencies
have not been well studied yet. In this paper, a systematic
approach will be proposed, and amodel will be established to
identify frequencies of multimodes for a cantilever beam
with multiple movable attaching masses. It provides an
efficient and accurate means to estimate the resonant fre-
quencies of a cantilever beam. With this approach, variation
of resonant frequencies can be measured when various
weight masses move along the cantilever structure. ,us,
when fine-tuning of resonant frequency is necessary, en-
gineers can determine proper locations to attach the masses
so that the resonant frequencies in different modes can be
shifted to desired regions. ,is simple approach provides a
quick reference to evaluate the change of resonant fre-
quencies due to the masses attached on the structure.
,eoretical results of the proposed model are verified by
experimental tests. ,e compared results demonstrate a
good match between actual measurements and estimated
outcomes.

2. Modelling of Cantilever Beam-Attached
Multiple Masses

2.1. Continuous Model of Cantilever Beam. To model the
resonant frequency of a cantilever beam, Rayleigh’s method
is usually adopted. Generally, the resonant frequency ω of a
cantilever (fixed-free structure) without a proof mass can be
expressed in terms of the flexural rigidity EI by [31]

ω �
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where vn is the dimensionless nth-mode eigenvalue, l is the
length of cantilever, E is the elasticity modulus, I is the area
moment of inertia about the neutral axis, and m’ is the mass
per unit length of the cantilever beam. However, this
equation can only identify the resonant frequency of a
cantilever beam with fixed configuration. If the frequency
needs to be changed with an attached mechanism, it is no
longer applicable. To change the resonant frequency of a
cantilever beam, one easy approach is to add a proof mass at
desired locations, which might be difficult to estimate the
corresponding fundamental frequency with the above
equation. To expand the Rayleigh energy method, the res-
onant frequency ω can be obtained with a series of lumped
masses. ,at is,
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where y is the deflection at any point, x is the distance
between the point and the end tip of a cantilever, y1 is the
deflection caused by homogeneous cantilever mass, Δm is
the mass of lumped mass, and y2 is the deflection caused by
the attached mass.

Rayleigh’s method is highly recommended for deriving
fundamental frequencies of uniform cantilever beams with
multiple masses at various positions in terms of computa-
tional efficiency [32]. Equation (2) demonstrates that the
deflection at every point can be critical to determine the
resonant frequencies. However, Rayleigh’s method can be
efficient only if fundamental mode is considered. Once
multimodes’ vibration needs to be taken into consideration,
the advantage of Rayleigh’s method will no longer exist since
it is difficult to get deflection at all positions. In this case,
Newton’s second law will be adopted to obtain resonant
frequencies of multimodes’ vibration.

2.2. Discrete Modelling. Instead of the continuous approach
of Rayleigh’s method, the cantilever beam can be separated
into multiple segments with Newton’s second law to derive
the equations of motion for individual segments. With this
discrete approach, the resonant frequencies can be obtained
by lumping all the segments into a matrix representation.

A cantilever is assumed as a uniform and homogeneous
beam without any attached mass and a discrete model is
started by separating the beam into n segments with equal
length. ,e mass of each segment is concentrated at its
midpoint. As an example, a cantilever beam divided into
four segments is shown in Figure 1. ,ese four segments are
named as A, B, C, and D and their corresponding midpoints
are called stations 1, 2, 3, and 4. Station 5 is the root of the
cantilever beam.,e total length of the cantilever is l and the
length of each segment is l/4. ,e mass of the whole can-
tilever is m and the mass of each segment (m1, m2, m3, and
m4) is m/4.

To model a discrete cantilever, the n-DOF linear me-
chanical system by neglecting damping can be written as

m€x + kx � 0{ }, (3)
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where m is the mass matrix, x is the displacement of every
point on the cantilever beam, and k is the stiffness matrix.
Substituting the function of x with harmonic functions:

x � A sin(ωt + ϕ), (4)

and then multiplying (3) with a matrix a� k−1, it can be
represented as

−ω2
· a · m · A + I · A � 0{ }. (5)

Replacing λ with 1/ω2, the following equation can be
obtained:

(a · m − λI) · A � 0{ }. (6)

,us, the characteristic determinant of (a · m − λI)
becomes
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From (3), the eigenvalues λ1, λ2, . . . , λn can be deter-
mined, and the frequencies of nmodes can be determined as
well.

To calculate the resonant frequencies of a system con-
sisted of a cantilever and an attachedmass, the mass addition
to the cantilever beam is required to be considered as placing
a load at one of the stations. A flexibility matrix is obtained
through the moment diagrams with the area moment
method. ,e configurations of the system in which the
cantilever beam is divided into four segments are shown in
Figure 2.

With these configurations, as placing a unit load P at
station 1 (see Figure 2(a)), a11 is equal to the moment di-
agram taken at station 1, a21 is obtained by the area moment
between stations 2 and 5, a31 is gotten by the area moment
between stations 3 and 5, and a41 is gotten by the area
moment between stations 4 and 5. ,e mathematical rep-
resentation is as follows:
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where l1 � l/4 and l2 � l1/2. With the same method,
a12, a22, a32, and a42 can be determined by placing a unit load
at station 2 (see Figure 2(b)). ,ey are
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Figure 1: Configuration of a uniform cantilever system.
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All element values of matrix a can be obtained by re-
peating the same procedure. Table 1 lists the symbolic
representation of the matrix element values if the cantilever
is divided into 4 segments.

,e cantilever is assumed to be uniform and homoge-
neous beam, so each segment has the same mass. For the
cantilever divided into 4 segments, m1 �m2 �m3 �m4 �m/4
and the mass matrix can be written as

m �

m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4
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It is with only diagonal terms in the mass matrix. By
substituting the values in Table 1 into (7), the equation
becomes
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Figure 2: Moment diagrams of a cantilever beam. (a) Placing a unit load at station 1. (b) Placing a unit load at station 2. (c) Placing a unit
load at station 3. (d) Placing a unit load at station 4.

Table 1: Element values of the 4× 4 flexibility matrix a.

n 1 2 3 4
a1n 343/1536 25/192 27/512 5/768
a2n 25/192 125/1536 9/256 7/1536
a3n 27/512 9/256 9/512 1/354
a4n 5/768 7/1536 1/384 1/1536
All the values need to be multiplied by l3/EI.
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which can be further simplified to
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(12)

where λ� EI/(ml3ω2). ,us, the eigenvalues of the equation
can be derived. ,ey areλ1 � 7.86×10−2, λ2 � 1.86×10−3,
λ3 � 2.27×10−4, and λ4 � 5.03×10−5. ,e resonant fre-
quencies of the first 4 modes can be obtained easily from λ
�EI/(ml3ω2) and they are ω2

1 � 12.72·EI/(ml3), ω2
2

� 537.43·EI/(ml3), ω2
3 � 4397.79·EI/(ml3), and ω2

4
� 19875.47·EI/(ml3).

Other than a fixed number of divisions, the cantilever
beam can be divided into any number of segments. As long
as the cantilever is divided into enough segments with even
length, the model can approximate a continuous model and
the numerical results can have required accuracy. ,e ele-
ment value of the generalized flexibility matrix can be cal-
culated by

aij �

1
2

(n − j)l1 + l2􏼂 􏼃
2

×
2
3

(n − j)l1 + l2􏼂 􏼃 +(j − i)l1􏼚 􏼛
1
EI

i≤ j,

1
2

×
1
3

(i − j)l1 × (n − i)l1 + l2􏼂 􏼃
2

+
1
2

×
2
3

(n − j)l1 + l2􏼂 􏼃 × (n − i)l1 + l2􏼂 􏼃
2

􏼚 􏼛
1
EI

i> j,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(13)

where l1 � l/n and l2 � l1/2. Such a model can be applied to
the calculation procedure for the cantilever beam with at-
tached proof masses at desired locations.

To analyze the resonant frequencies of a cantilever beam
with attached masses, the mass matrix needs to be modified.
Instead of a diagonal matrix with identical coefficients, the
modified mass matrix is the combination of several matrices:
the original mass matrix without attached mass denoted

withmo and the attached mass matrices. Equation (14) is the
modified mass matrix with two attached masses ma and mb.
As shown in Figure 3, the attached masses are considered as
being concentrated on the cantilever at the ith station and
the jth station. ,e mass matrix of the characteristic
equation m needs to be changed to the equivalent mass
matrix meff, which is

meff � mo + ma + mb

�

m1 0 0 · · . . . 0

0 m2 0 · · . . . 0

0 0 mi · · . . . 0

· · · · · . . . ·

· · · · mj . . . 0

· · · · · . . . ·

0 · · · · . . . mn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0 · · · · . . . 0

· · · · · . . . ·

· · ma · · . . . ·

· · · · · . . . ·

· · · · · . . . 0

· · · · · . . . ·

0 · · · · . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

0 · · · · . . . 0

· · · · · . . . ·

· · · · · . . . ·

· · · · · . . . ·

· · · · mb . . . 0

· · · · · . . . ·

0 · · · · . . . 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

m1 0 0 · · . . . 0

0 m2 0 · · . . . 0

0 0 mi + ma · · . . . 0

· · · · · . . . ·

· · · · mj + mb . . . 0

· · · · · . . . ·

0 · · · · . . . mn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(14)
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where ma and mb are mass matrices attached ma and mb at
the ith station and the jth station, respectively,
m1 � m2 �, . . . , � mn � m/n. ,e characteristic equation
becomes

−ω2
· a · meff · A + I · A � 0{ }. (15)

,us, all the eigenvalues of above matrices can be found
by solving the characteristic equation. ,e corresponding
modes’ frequencies can be determined accordingly as well.

It is clear that this method can also be applied to in-
homogeneous cantilever beams as long as the mass distri-
bution is known and the mass matrix can be synthesized
accurately.

3. Experimental Validation of the Proposed
Model by Piezoelectric Cantilever

3.1. Experimental Setup. To validate the variation of reso-
nant frequency due to attached masses, a piezoelectric
cantilever beam that converts deflection caused by me-
chanical vibration into electricity is used to verify the de-
veloped model. ,e piezoelectric cantilever beam DT2-028K
produced by Measurement Specialties Inc. is adopted in this
experiment. Two cases of tests are conducted in this study. In
the first case, a single proof mass is moving along a canti-
lever. In the second case, two proof masses are attached on a
cantilever, one of the two masses is moving along the
cantilever beam while the other is fixed at any position. A
0.3 g clip and a 0.6 g clip are used as attached masses in these
two cases.

Figure 4 illustrates the physical setup of the experi-
mental platform, which includes a waveform generator, an
amplifier, a shaker, a data acquisition device, an oscillo-
scope, conditioning circuit, and piezoelectric cantilever
beam DT2-028K.,e properties of DT2-028K are provided
by the “Piezo Film Sensors Technical Manual.” Its nominal
length is 72mm as described in the manual. But due to the
mounting mechanism installing the cantilever onto the
shaker, the effective length of attached cantilever is a bit
shorter than its nominal value. ,e effective length is
70mm in this setup. ,e operating properties of DT2-028K
are listed in Table 2. In order to verify the calculated results
with actual responses of the cantilever beams, a swept
waveform from 1Hz to 200Hz is generated by the wave-
form generator.,e swept waveform is sent to the amplifier
of the shaker and converted to mechanical vibration which
induces the deflection of cantilever DT2-028K. Due to the
deflection, DT2-028K can generate voltage and current and
they are measured by a data acquisition device, PCI-6221,
manufactured by National Instrument.,e collected data is

then processed by MATLAB to verify its frequency
response.

Figure 5 illustrates both the frequency responses and the
output voltage of DT2-028K without any attached mass. ,e
lower part of this figure is the graph of voltage vs. time. It is
apparent that the voltage changes at all times. ,e value of
the voltage depends entirely on the deflection of DT2-028K
which changes with the swept waveform.,e voltage value is
measured by a data acquisition device and then processed by
MATLAB to obtain the frequency response (magnitude vs.
frequency) as shown in the upper part of Figure 5.

With discrete modelling introduced in Section 2.2, the
resonant frequencies of a cantilever beam can be obtained by
lumping all the segments into a matrix representation. To
achieve an accurate estimation of resonant frequencies in
different modes, the number of segments n of the cantilever
beam which is one of the important factors needs to be
determined. ,is number is critical since it determines the
accuracy of the estimated frequencies value as well as the
computation speed. A small number of segments can result
in inaccurate estimation and a large value of n yields long
calculation time. ,us, the trade-off between the calculation
time and the frequency deviation is examined in this study.
,e frequency deviation is defined as the ratio of the dif-
ference between the estimated frequency calculated by
discrete model and the actual frequency to the actual fre-
quency, which is

1j 2nl2 l1 l2

mn mj mi m2 m1

mb ma

i
l

Figure 3: Configuration of a cantilever and attached masses
system.

Conditioning
circuit

Signal generator

Amplifier

Data acquisition
device

Shaker

Piezoelectric cantilever
beam DT2-028K

Figure 4: Experimental setup of vibration test of a single piezo-
electric cantilever beam.

Table 2: Properties of piezoelectric cantilever DT2-028K.

Properties Value
Length (mm) 72
Effective length (mm) 70
Width (mm) 16
,ickness (μm) 230
Density (kg/m3) 1450
Mass (g) 0.39
Elasticity modulus (GPa) 4.2
,e first mode frequency (Hz) 12.9
,e second mode frequency (Hz) 80.9
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fe − fa

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

fa

× 100%, (16)

where fe is the estimated frequency and fa is the actual
frequency. In this setup, the actual frequency of DT2-028K is
12.9Hz and 80.9Hz for the first mode and second mode,
respectively, as shown in Table 2. Figure 6 shows the vari-
ation of the calculation time and frequency deviation with
changes in the number of segments. It is obvious that the
increase of calculation time is always accompanied with the
growth of the segments number, yet the frequency deviation
steadily reduces. It is also clear that the deviation result can
converge to a constant as the number of segments increases.
As the figure indicated, the curve of mode 1 frequency
deviation and the curve of calculation time intersect at the
point where the number of segments is about 16. ,e cal-
culation time and the mode 1 frequency deviation achieve
the trade-off at this point. ,e trade-off between calculation
time and the mode 2 frequency deviation is gotten while the
number of segments changes to 18. Considering both re-
quired accuracy and computation load for both mode 1 and
mode 2, the number of segments n is suggested to be 18.
Under this condition, the calculation time is about 40 s and
the deviation for mode 1 and mode 2 is 0.16% and 0.25%
separately.

3.2. Experimental Validation of the Proposed Model

3.2.1. Case I: Variation of Resonant Frequencies with a Single
Attached Mass. To verify effectiveness of the proposed
model, experimental results of single attached mass and dual
attached masses are compared. In this case, a proof mass is
moved along the cantilever. To simplify the calculation, the
attached mass is assumed to be lumped or concentrated. In
other words, the attached mass is a point load. Based on the
results shown in Figure 6, the cantilever is divided into 18
segments. ,e attached mass is placed on the centre of each
segment, individually, and the configuration of each seg-
ment is similar to the configuration shown in Figure 3. To
estimate the adjusted resonant frequencies as the attached
mass moving along the cantilever beam, the matrix a is
modified accordingly. From the model developed in the

previous section, the estimated resonant frequencies of the
first four modes (mode 1, mode 2, mode 3, and mode 4) of
DT2-028K with a 0.3 g attached mass are illustrated in
Figure 7. For mode 1, the resonant frequency drops as the
attached mass moves to the tip of the free end of the can-
tilever beam. ,e resonant frequencies of modes 2, 3, and 4
can be increased or decreased depending on the locations of
the attached mass.

Due to the limitation of the hardware setup, only mode 1
and mode 2 frequencies are verified in this experiment.
Mazeika et al. [11] investigate in their research that fre-
quencies of mode 1 andmode 2 aremore essential than other
higher mode frequencies to be studied. ,e frequency re-
sponse in Figure 5 also illustrates the amplitude of output is
decayed significantly at higher modes’ frequencies. From the
view of harvesting energy, it is proved that cantilever can
generate much power as operating in mode 2 than mode 1,
and the power produced in mode 2 far outweighs that
produced in higher modes.

Figures 8(a) and 8(b) compare the difference of resonant
frequencies between theoretical results and experimental
results for modes 1 and 2 with attached 0.3 g and 0.6 g mass
moving along the cantilever separately. From the figure, it is
easy to see that the experimental results demonstrate a good
match to the theoretical estimation.

,e variation range of the frequency for the adopted
piezoelectric cantilever devices is also shown in the figure.
Reduction of the mode 1 frequency is accompanied with the
attached mass moving far away from the boot of the can-
tilever whether the attached mass is 0.3 g or 0.6 g. When the
attached mass is 0.3 g, frequencies of mode 1 can be tuned to
the range from 6Hz to 13Hz, and the range is 50Hz to 81Hz
for mode 2 as shown in Figure 8(a). As the attached mass
changes to 0.6 g, the mode 1 and mode 2 frequency can be
adjusted in a range from 5Hz to 13Hz and 42Hz to 81Hz
separately. ,us, the resonant frequencies can be adjusted to
be in a desired range with a single attached mass.

3.2.2. Case II: Variation of Resonant Frequencies with Dual
Attached Masses. In this case, two conditions of vibration
modes of the adopted cantilever beam with two attached
proof masses are investigated. In the first condition, a 0.3 g
mass is fixed at the middle of the cantilever beam while
another 0.3 g mass is moving along it, as shown in Figure 9.
In the second condition, the identical 0.3 g mass is fixed at
the free end of the cantilever beam while another 0.3 g mass
is moving along it, as shown in Figure 10.

Figure 9 also illustrates comparison of the first two
modes between theoretical results and experiment results of
DT2-028K with a 0.3 g mass fixed at the middle of the
cantilever beam while another 0.3 g mass is moving along it.
,e first mode frequency changes from 6Hz to 11Hz and
the second mode frequency varies from 40Hz to 55Hz.
Figure 10 demonstrates the results when a 0.3 g mass is
placed at the end of DT2-028K and another same mass is
moving along the cantilever. As the figure shows, the first
mode frequency changes from 4.9Hz to 6.4Hz and the
second mode frequency varies from 38Hz to 64Hz. Both
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Figure 5: Frequency and time responses of the piezoelectric
cantilever beam DT2-028K.
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Figure 8: Modes frequencies comparison between theory and experiment for DT2-028K with single attached mass. (a) 0.3 g attached mass.
(b) 0.6 g attached mass.
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figures show that the experiment results can accurately
match the theoretical results. From the results, it is can be
seen that the applicable range of frequencies of the cantilever
beam can be quite different while the fixed attached masses
are placed at different positions, though the total weight of
attached masses is same. For instance, the first mode has
wider variation range while the fixed mass is attached at the
middle of the cantilever beam. On the contrary, it provides
wider variation range in the secondmode as the fixed mass is
attached at the free end of the cantilever beam. Although the

movable mass travels the same distance, the sensitivity of
frequency can be varied.

3.3. Fine-Tuning of Frequencies with Dual Attached Masses.
To fine-tune the resonant frequencies, multiple attached
masses can be used to make the applicable frequency
change in a desired range. It is sometimes difficult to place
a mass at certain locations on the cantilever beam in
practical applications. ,us, it can be an effective way to
fine-tune the resonant frequencies to the desired value
with two or more attached masses. ,is proposed discrete
model provides such a tool to estimate the ranges of tuned
frequencies for such a scenario by adjusting the mass
matrix. In this study, different conditions of vibration
modes of the adopted cantilever DT2-028K attached a
single mass of 0.6 g and two same masses of 0.3 g, re-
spectively, are investigated. With the total attached mass
0.6 g, the variation range of resonant frequencies can be
overlapped depending on how the attached masses are
distributed. ,ree scenarios are studied:

(a) A single 0.6 g mass moves along the cantilever beam

(b) One 0.3 g mass is located at the middle of the
cantilever while another 0.3 g mass moves along the
beam

(c) One 0.3 g mass is located at the free end of the
cantilever while another 0.3 g mass moves along the
beam

Figure 11 illustrates the variation of the mode 1 res-
onant frequencies while Figure 12 demonstrates the mode
2. In both figures, curve “a” represents resonant fre-
quencies of a single 0.6 g mass, curve “b” illustrates the
variation of frequency with a 0.3 g mass fixed in the middle
of the beam as another 0.3 g mass moves along the beam,
and curve “c” demonstrates the results with a 0.3 g mass
fixed at the free end when another 0.3 g mass moves along
the beam. It is expected that the three curves intersect as
the position of the attached masses changes. ,e simu-
lated results clearly demonstrate the same frequencies at
the middle and the end of the cantilever for the three
scenarios. As Figure 11 shows, the first mode frequency
band in scenario “a” is from 5Hz to 13 Hz as it is from
5Hz to 6.5 Hz in scenario “c.” It is clear that a wider
frequency band is available in “a,” and “c” is suitable for
the work of fine-tuning of frequency because frequency
change is not extremely sensitive to the location of the
movable mass.

A group of similar curves for the mode 2 frequency are
shown in Figure 12, the curve for scenario “a” also presents a
wider frequency range, and the range of mode 2 frequency
can be adjusted from 45Hz to 81Hz. Comparing with the
scenario “a,” scenario “b” and scenario “c” illustrate a
narrower frequency band. It is from 40Hz to 55Hz in
scenario “b” while it is from 38Hz to 64Hz in scenario “c.”
Being different from the results shown in Figure 11, “b”
instead of “c” is applicable to fine-tuning the mode 2
frequency.
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4. Conclusion

In this paper, the method of tuning multimodes resonant
frequency for piezoelectric cantilever beams using multiple
attached masses has been proposed. A discrete-type model
to predict and estimate the resonant frequencies of a can-
tilever beam with multiple attached masses has been also
presented. ,en an experiment is set up to verify the ac-
curacy of the model and a piezoelectric cantilever beam
DT2-028K is adopted in the experiment. ,e conclusions
can be summarized as follows.

,emethod of usingmultiple attachedmasses is effective
on adjusting the multimodes’ resonant frequency. ,e
amount, the weight, and the location of the attached masses
are critical to the effectiveness of the method. When
attaching a single 0.3 g mass, frequencies of mode 1 can be
tuned to the range from 6Hz to 13Hz, and the range is 50Hz
to 81Hz for mode 2. As the weight of the attached mass
changes to 0.6 g, the mode 1 and mode 2 frequency ranges
are adjusted to 5Hz to 13Hz and 42Hz to 81Hz separately.
Comparing the results of the case attaching a single 0.6 g
mass, the results are very different as attaching dual 0.3 g
masses. With a 0.3 g mass fixed at the middle of the can-
tilever beamwhile another 0.3 gmass moves along it, the first
mode frequency changes from 6Hz to 11Hz and the second
mode frequency varies from 40Hz to 55Hz. When a 0.3 g
mass is placed at the end of DT2-028K and another same
mass is moving along the cantilever, the first mode 1 fre-
quency changes from 4.9Hz to 6.4Hz and the mode 2
frequency varies from 38Hz to 64Hz.

Attaching multiple masses is an effective approach to fine-
tune the resonant frequencies and attaching an individual mass
is a goodway towiden the resonant frequency range.,emode
2 frequency can be adjusted from 45Hz to 81Hz using a single
0.6 g mass moving along the cantilever beam. ,e range sig-
nificantly shrinks while using two 0.3 g masses attached on the
cantilever and it is from 40Hz to 55Hz.

,e experimental results have also verified the accuracy
of the proposed model. ,e number of segments n of the
cantilever beam is critical, since it dominates the accuracy of
the estimated frequencies as well as the computation speed.
To consider both required accuracy and computation load
for both mode 1 and mode 2, the number of segments n is
suggested to be 18 in this study. ,us, the calculation time is
about 40 s and the deviation for mode 1 and mode 2 is 0.16%
and 0.25% separately.

,erefore, the method of using multiple attached masses
is a constructive way to adjust the multimodes’ resonant
frequency which can be settled into the desired range
through attaching proof masses. ,e weight, location, and
quantity of attached masses influence frequency bandwidth
and sensitivity apparently. Such a model can be a practical
and important means to help engineers to adjust resonant
frequencies for mechanisms to avoid undesired and utilize
desired excitations.
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