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-e equivalent filter characteristics of variational mode decomposition (VMD) are fully evaluated when applied to the fractional
Gaussian noise (fGn) and the application in separating closely spaced modes of vibration system is performed in this paper. VMD
is a newly proposed signal decomposition technique, which nonrecursively decomposes a signal into a given number of subsignals
(modes), and each mode is mostly compact around a center pulsation. -e filter performance of VMD is largely dependent on the
constraint parameter and the initialization of center frequencies. In order to extract the desired modes, criteria for the de-
termination of decomposition parameters are established. -e initial center frequencies could be simply determined by prior
estimatedmodal frequencies of the analyzed signal, while the constraint parameter is optimized utilizing a genetic algorithm (GA).
A two-degree-of-freedom parametric system is considered to evaluate the capability of VMD in the separation of closely spaced
modes. Compared with the noise-assisted versions of empirical mode decomposition (EMD) and wavelet packet transform
(WPT), the parameter-optimized VMD can successfully separate the closely spaced modes while recovering the most modal
information simultaneously. When introduced to the ground vibration test (GVT) of a horizontal tail, the proposed method
successfully extracted the first five oscillation modes and identified the modal parameters accurately.

1. Introduction

Empirical mode decomposition (EMD) introduced by
Huang et al. [1] is widely used to adaptively decompose a
signal into separate spectral bands with different oscillation
modes. EMD is a data-driven decomposition technique with
a self-adaptive expansion basis and can interpret the physical
meanings of data generated by nonlinear and nonstationary
processes [2]. -e subsignals obtained from EMD called
intrinsic mode functions (IMFs) are ideally a collection of
complete, adaptive, and orthogonal representation for the
analyzed signal. -e instantaneous modal information of
each IMF thus can be derived through the Hilbert transform.
Many EMD-based modal parameter identification methods
have been proposed and had great impact on a variety of
engineering applications [3–6].

Despite the advantages, EMD is limited by lacking
thorough mathematical understandings and some other
obvious shortcomings such as sensitivity to noise and
sampling. Some noise-assisted versions of EMD such as
Ensemble EMD (EEMD) [7], Complementary EEMD
(CEEMD) [8], and Complete EEMD with Adaptive Noise
(CEEMDAN) [9] have been proposed to refine the de-
composition performance. Nevertheless, those attempts to
overcome the limitations of EMD do not fundamentally
change the essence of EMD as a dyadic filter bank [10]. If the
center frequencies of two oscillation modes are close
enough, EMD will be incapable of generating desirable
IMFs. Two or more oscillation modes sharing the same
spectral band in the frequency domain of a single IMF is the
so-called mode mixing phenomenon [1], which is inevitable
when multiple modes are closely spaced with each other.
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Efforts including adaptive filter [11], wavelet packet trans-
form (WPT) [3], and frequency shifting [12] alleviate the
mode mixing phenomenon in an ad hoc manner at the cost
of the completeness and self-adaptability of EMD.

Variational mode decomposition (VMD) [13] is a newly
developed signal decomposition technique well founded on
a sound theoretical background and much more robust to
sampling and noise. Contrary to EMD, VMD is an entirely
nonrecursive algorism where modes are extracted concur-
rently. In particular, VMD searches for a given number of
modes and their respective center frequencies adaptively.
Each mode is band-limited around the center frequency
which, to some extent, narrows the bandwidth of the
extracted modes and eliminates the mode mixing phe-
nomenon. Experiments have shown the superior perfor-
mance of VMD with regard to tone detection, tone
separation, and noise robustness compared to EMD [13].

In practical applications, however, the number of modes
is required to be predefined. And the selection of the pa-
rameter that controls the tightness of the band limits is
partially based on experience. Inappropriate combination of
critical parameters will have predictable impact on the
nature of detected modes. -e suggestion proposed by the
author in [13] is checking the spectral overlap or orthog-
onality between modes, or looking at the residuals.

Recent developments of the VMD method mainly
concentrate on the field of fault diagnosis. With the assis-
tance of the particle swarm optimization [14–16], multi-
kernel support vector machine [17], the k-nearest neighbour
algorithm [18], and other novel algorithms [19–21],
promising results have been obtained. In a similar manner
with the EMD denoising, the VMD has also been introduced
to signal denoising based on the detrended fluctuation
analysis [22, 23]. Moreover, the applicability of the VMD in
identifying the electromechanical oscillatory modes has also
been demonstrated in [24]. -e identification process is
based on the time-frequency analysis of nonlinear signals
which arise after a large disturbance. -e oscillatory power
signal is converted into monocomponents through VMD
and then the instantaneous modal characteristics are ob-
tained via Hilbert transform.

Without loss of completeness, it is worthwhile to point
out that, in addition to the aforementioned methods, other
advanced decomposition techniques exist in the literature.
Alternatively, the digital Taylor-Fourier transform (DTFT)
could also be used to identify low-frequency electrome-
chanical modes in power systems [25]. Instead of solving a
variational problem in VMD, the DTFTdecomposes a signal
into monocomponents by spectral analysis using a filter
bank. Some recent works related to chirp mode decompo-
sition (CMD) are also concentrated on the signal decom-
position. But the CMD and its improved versions mainly
focus on the early fault detection andmultifeature extraction
of vibration signal with a fast fluctuating instantaneous
frequency [26, 27]. Likewise, some time-frequency analysis
methods [28–30] could also filter the target signal into
desired monocomponents but with their own limitations.

Considering the modal parameter identification of a
vibration system, however, the aforementioned successful

applications may not be suitable. In addition, few researches
on the selection of decomposition parameters that are ap-
plicable to the separation of modes and parameter identi-
fication have been found in the literature. Based on that
concern, this paper emphasizes the accurate modal pa-
rameter identification taking advantage of the filter char-
acteristics of the VMD algorithm.

-e outline of this paper is as follows. Section 1 is the
introduction. Section 2 introduces the primary mathemat-
ical principles of VMD and evaluates the filter performance
when applied to fractional Gaussian noise (fGn). -e pre-
dictable impact of the decomposition parameters on the
nature of detected modes is also thoroughly investigated.
Criteria for the selection of proper decomposition param-
eters that are applicable to the separation of modes and
parameter identification of vibration system are established
in Section 3. Section 4 extends the results to the ground
vibration test (GVT) of a horizontal tail. Conclusions are
listed in the last section.

2. VMD Analysis on fGn

2.1. Fractional Gaussian Noise. Fractional Gaussian noise
(fGn) is defined as the increment process of fractional
Brownian motion [31]. It is a zero-mean Gaussian stationary
process whose autocorrelation sequence
rH[k] :� E xH[n]xH[n + k]􏼈 􏼉 reads

rH[k] �
σ2

2
|k − 1|

2H
− 2|k|

2H
+|k + 1|

2H
􏼐 􏼑, (1)

where k is a variable that denotes the time lag at which the
autocorrelation is measured.

As is well known, the special case H� 0.5 reduces to
white noise, whereas other values induce nonzero correla-
tions, either negative if 0<H< 0.5 or positive if 0.5<H< 1.
-e description of fGn is mainly determined by the value of
Hurst exponent, H, while the variance σ2 is merely a scale
parameter.

Taking the discrete Fourier transform of equation (1), the
power spectrum density of fGn is obtained:

SH(f) � Cσ2 e
i2πf

− 1
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 􏽘

∞

k�−∞

1
|f + k|2H+1, (2)

with |f|≤ 0.5. If H≠ 0.5, then SH(f) ∼ Cσ2|f|1− 2H when f

approaches zero. It, therefore, follows that fGn is a conve-
nient model for power-law spectrum at low frequencies [32].
If 0<H< 0.5, the spectrum is high-pass having SH(0)� 0. On
the other hand, if 0.5<H< 1, a “1/f”-type spectral divergence
is delineated with SH(0)�∞.

2.2. Brief Review of VMD. -e goal of VMD is to decompose
a real-valued input signal f into a given number of modes
uk􏼈 􏼉 and each is assumed to be mostly compact around a
center pulsation ωk􏼈 􏼉. -e definition of mode uk in VMD is
an amplitude-modulated-frequency-modulated (AM-FM)
signal, written as

uk(t) � Ak(t)cos φk(t)( 􏼁, (3)
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which is more mathematically rigorous than the so-called
IMF. -e search for uk􏼈 􏼉 and ωk􏼈 􏼉 results in a constrained
variational problem as follows:

min
uk{ }, ωk{ }

􏽘
k

zt δ(t) +
j

πt
􏼐 􏼑uk(t)􏽨 􏽩e− jωkt

�����

�����
2

2

⎧⎨

⎩

⎫⎬

⎭,

s.t. 􏽘
k

uk � f,

(4)

where uk􏼈 􏼉 :� u1, . . . , uk􏼈 􏼉 and ωk􏼈 􏼉 :� ω1, . . . ,ωk􏼈 􏼉 are
shorthand notations for the set of all modes and their center
frequencies, respectively. In order to render the problem
unconstrained, both a quadratic penalty and Lagrangian
multipliers λ are used. -e augmented Lagrangian L is in-
troduced as

L uk􏼈 􏼉, ωk􏼈 􏼉,λ( 􏼁 � α􏽘
k

zt δ(t) +
j

πt
􏼒 􏼓uk(t)􏼔 􏼕e

−jωkt
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�������
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uk(t)

���������
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2
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+〈λ(t),f(t) − 􏽘
k

uk(t)〉,

(5)

where α denotes the constraint parameter of the data fidelity
that controls the tightness of the band limits.-e saddle point
of the augmented Lagrangian L is the solution to the original
minimization problem of equation (4). Detailed imple-
mentation can be found in [13]. Particularly, the modes are
updated by simpleWiener filtering directly in Fourier domain
whichmakes the algorismmore robust to sampling and noise.

2.3. Filter Performance of VMD on fGn. Similar to some
previous studies [10, 32, 33], extensive simulations are
carried out on fGn processes with H being set to three
typical values 0.2, 0.5, and 0.8, and the variance σ2 being
fixed to 1 for all samples. -e data length is taken to be
N � 1024 and, for each value ofH, 1000 independent sample
paths of fGn are generated via the Wood and Chan al-
gorithm [34]. Given the data sets, the VMD is realized for
all sample paths resulting in a collection of modes. Spectral
analysis is carried out for each mode of each realization.
-e Fourier spectra of each mode uk are averaged and
arranged mode by mode in Figure 1. -e number of modes
K is set to 5 with uniformly distributed initial center fre-
quencies. -at is, ω1

k􏼈 􏼉 � 0, 0.1, 0.2, 0.3, and 0.4Hz{ }.
For comparison purposes, the averaged Fourier spectra

of IMFs for EMD realizations are also displayed in Figure 2.
As evidenced in Figures 1 and 2, the collection of the
extracted modes uk􏼈 􏼉 by VMD tends to self-organize in a
filter bank structure which is similar to what is classically
observed in wavelet packet decomposition rather than the
wavelet-like structure exhibited in EMD [32]. Practically, all
the extracted modes uk􏼈 􏼉 are equivalent band-pass filters,
which are different from EMD where the filter associated
with the 1st mode is essentially high-pass. -e spectral band
of the analyzed sample paths of fGn is divided into five
discrete subfrequency regions almost evenly. -at is to say,

the bandwidth of each filter is practically identical to each
other evolving with the uniformly distributed predominant
center frequencies. Moreover, the increase of constraint
parameter α narrows the pass-band of each filter and thus
minimizes the overlap between the separated modes
simultaneously.

In a detailed investigation, the averaged center frequencies
and the energy distribution of the extracted five modes are
calculated and plotted against the modal order in Figures 3
and 4, respectively. Regardless of the value of α, the energy
distribution shown in Figure 4 successfully characterizes the
power spectrum density of fGn. As mentioned in the previous
subsection, in the case of H� 0.2, the spectrum is high-pass
and, therefore, follows an increasing trend of energy pro-
portion versus the modal order; while in the case of H� 0.8,
the “1/f”-type spectral divergence is captured; for the special
case of H� 0.5, the power spectrum density is a constant
which is also true for the energy distribution. -e impact of
the constraint parameter α on the center frequencies ωk􏼈 􏼉

may not be convincing as depicted in Figure 3, yet it still drops
some results.-e center frequencies ωk􏼈 􏼉 skewed either to the
right or left characterizing the spectrum of fGn for a small
value of α are forced to converge to the uniformly initialized
center frequencies ω1

k􏼈 􏼉 with the increase of α.

2.4. Impact of Initialization and Constraint Parameter α on
Filter Performance. In order to further verify the impact of
constraint parameter α on the convergence, the normalized
center frequencies are initialized randomly as

ω1
k ω1

k

􏼌􏼌􏼌􏼌 � Nεk− 1

2εk , εk ∼ U(0, 1)
, k � 1, . . . , K􏼨 􏼩, (6)

where N is the data length which is 1024 in all simulations of
this paper. Statistically, the base-2 logarithm of the initial
center frequencies is uniformly distributed, as shown in
Figure 5, whereas the regular values are concentrated in the
low-frequency band.

Distinguished from the results obtained where the
center frequencies are initialized uniformly, the averaged
Fourier spectra, as illustrated in Figure 6, tend to organize
in disorder with merely no statistical law to find, in the
case of a larger value of α. Whereas the filter bank
structures observed in the case of α� 1e3 coincide with
those generated in the previous realizations as the dashed
lines depicted in Figure 6 overlap with the blue ones
except for the case of H � 0.8. Scatter diagrams of the
initial center frequencies ω1

k􏼈 􏼉 versus the converged center
frequencies ωn

k􏼈 􏼉 as shown in Figure 7, where each mode is
denoted by a corresponding color, demonstrate a growing
linear relationship between each other with the increase of
α. Linear stripe patterns that are distinct from each other
are visible in Figure 7(a), indicating that the adaptability is
successfully recovered regardless of the initialization in
the case of a small value of α. Moreover, the histograms
plotted in Figure 8 also suggest the same result since the
empirical probability density distribution of the con-
verged center frequencies ωn

k􏼈 􏼉 gradually evolves to that of
the ω1

k􏼈 􏼉, with an increasing value of α. While only the
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convergence analysis in the case H � 0.2 is demonstrated
here, the same results could be observed regardless of the
Hurst exponent.

In summary, the filter performance of VMD does de-
pend on the initialization as well as the value of constraint
parameter α, suggesting that the algorithm does not
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Figure 2: -e averaged Fourier spectra of IMFs for EMD realizations, in the case of three typical Hurst exponents: (a) H� 0.2, (b) H� 0.5,
and (c) H� 0.8.
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necessarily converge to a global minimum. From a different
point of view, the selection of α and initial center frequencies
ω1

k􏼈 􏼉 could be refined to extract a collection of desired
modes.

3. Separation of Modes Based on VMD

3.1. Parameter-Optimized VMD. Inspired by the conclusion
of the previous section, criteria for the optimization of α and
the initialization of center frequencies ω1

k􏼈 􏼉 are proposed in
this section, in order to extract a collection of desired modes
of vibration system. For an actual dynamic structure con-
taining closely spaced modes, the identification of modal
frequency is much more efficient and accurate than the
damping ratio, since each significant peak in frequency do-
main could be roughly taken as one natural mode. Hence, the
predominant center frequencies of the equivalent band-pass
filters in VMD realization are to be initialized by the prior
identifiedmodal frequencies utilizing the simple peak-picking
method and there follows the number of modes K. However,
the desired value of α must be able to separate the coupled
spectrum of closely spaced modes and retain the most modal
information simultaneously. -e strategy suggested here is
optimizing the value of α through genetic algorithm (GA).
-e constructed fitness function is described as

fitness � 1 − 􏽘
K

k�1

􏽒 u(t)2kdt

􏽒 f(t)2dt
⎛⎝ ⎞⎠ 1 − min r uk, f( 􏼁, k � 1, . . . , K􏼈 􏼉( 􏼁 + ε,

(7)

where r(uk, f) denotes the correlation coefficient between
a mode uk, f and the analyzed signal f; ε denotes the
penalty factor that is taken as the number of duplicate
modes by checking the matrix of correlation coefficients
for the extracted modes uk􏼈 􏼉. Duplicate modes are de-
tected when the correlation coefficient r(ui, uj) between
two separated modes is extremely large. -e optimal value
of αopt satisfies αopt � argminα(fitness). -e instantaneous
modal information of each monocomponent subsignal uk

thus can be derived through the Hilbert transform. Pri-
mary steps of the parameter-optimized VMD realization
are as follows:

Step 1. Preestimate the modal frequencies
ωi, i � 1, 2, . . . , M􏼈 􏼉 of the analyzed signal f using
simple peak-picking method.
Step 2. Initialize the center frequencies ω1

k􏼈 􏼉 � ωi􏼈 􏼉 and
there follows the number of modes K�M.
Step 3. Search for the optimal value
αopt � argminα(fitness) through GA.
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Figure 3:-e averaged center frequencies ωn
k􏼈 􏼉 of each mode uk, in the case of three typical Hurst exponents: (a)H� 0.2, (b)H� 0.5, and (c)

H� 0.8. -e dashed lines denote the uniformly initialized center frequencies plotted as a function of modal order.
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Figure 4:-e averaged energy proportion of eachmode uk plotted as a function of modal order, in the case of three typical Hurst exponents:
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Step 4. Decompose the signal f into a desired number of
modes uk􏼈 􏼉 with the parameter-optimized VMD.
Step 5. Derive the analytic signal uk,A of each mode by
Hilbert transform and obtain uk,A(t) � Ak(t)ejϕ(t).
Supposing the signal f is the impulse response of a small
damping vibration system, we have ω(t) � dϕ(t)/dt �

ωk

�����

1 − ζ2k
􏽱

and lnAk(t) � −ζkωkt + c. -us, the modal
frequency ωk and damping ratio ζk are identified by
least squares method.

3.2. Numerical Experiment. A 2-dof parametric system as
shown in Figure 9 is designed to evaluate the performance of
the proposed method on the separation of modes. -e
dynamics of the system are described by equation (8):

m 0

0 m
􏼢 􏼣

€u1

€u2
􏼢 􏼣 +

c1 + c2 −c2

−c2 c2 + c3
􏼢 􏼣

_u1

_u2
􏼢 􏼣

+
(1 + μ)k −μk

−μk (1 + μ)k
􏼢 􏼣

u1

u2
􏼢 􏼣 �

δ(t)

0
􏼢 􏼣,

(8)
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H� 0.2, (b)H� 0.5, and (c)H� 0.8.-e center frequencies ω1

k􏼈 􏼉 were initialized randomly, for three different values of α (α�1e3 (blue lines),
1e4 (red lines), and 1e5 (yellow lines)). -e dashed lines denote the averaged spectra illustrated in Figure 1 in the case of α� 1e3.
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where the δ(t) is the impulsive load. -e two natural fre-
quencies derived are

ω1 �

��

k

m

􏽳

,

ω2 �

���������

(1 + 2μ)
k

m

􏽳

� ω1
�����
1 + 2μ

􏽰
,

(9)

c≜
ω1

ω2 � 1/
�����
1 + 2μ

􏽰 ∈ (0, 1). (10)

By changing the value of μ, the ratio c of the two natural
frequencies is altered. Given the designed values of
damping ratio (ζ1, ζ2), the damping matrix C is recon-
structed as

C � aM + bK,

a

b

⎛⎝ ⎞⎠ �
2ω1ω2

ω2
2 − ω2

1

ω2 −ω1

−
1
ω2

1
ω1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ζ1

ζ2
⎛⎝ ⎞⎠,

(11)

whereM denotes the mass matrix andK denotes the stiffness
matrix.

In the present numerical experiment, the displacement
response u2 is recorded as the output signal with a sampling
frequency Fs � 1024Hz. -e structural parameters are
chosen with m� 1 kg, k� 8000N/m, c � 0.8, ζ1 � 0.01, and
ζ2 � 0.015. Besides, an additional zero-mean Gaussian white
noise is added to the output response simulating the mea-
surement noise. -e signal-to-noise ratio (SNR) is set to
20 dB.

-e EEMD and CEEMDAN are realized on the con-
taminated response signal. Eliminating the first two IMFs
containing high-frequency noise and the last several trends,
the primary modes are plotted in Figures 10 and 11, re-
spectively. -e results are unsatisfying because both reali-
zations not only fail to separate the two oscillationmodes but
also generate additional pseudocomponents. Contrary to the
noise-assisted versions of EMD realizations, the wavelet
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packet transform (WPT) identifies the situation as a single
AM-modulated signal as evidenced in Figures 12(b) and
12(c). -e best tree is shown in Figure 12(a) corresponding
to the decomposition result down to level 5 using the db4
wavelet. In this case, the best tree reduces to the wavelet tree,
and the WPT merely plays the role of signal denoising.

Different from the failed attempts to decompose the
signal into separate monocomponents, the proposed pa-
rameter-optimized VMD successfully captures the two os-
cillation modes. As illustrated in Figure 13(b), although
there is a slight mixture of modal contribution considering
the relative amplitude, the decomposed results obtained by
the optimized VMD outperform the implementation of
EEMD, CEEMDAN, and WPT. -e desired two oscillation
modes are extracted concurrently while preserving the dy-
namics of the signal. Both resonances and antiresonances
remain at the same frequency lines, which is not the case of
the obtained usingWPT in Figure 12; even this appears to be
the smoother and better reconstructed spectra. -e Poly-
MAX identification results in Figure 14, which will be
discussed later, further support the argument since the
antiresonance is present, apparently at the same frequency
line as identified by the two extracted modes in Figure 13.
Compared with the theoretical time history of the desired
modes in Figure 13(a), the error is mainly concentrated on
the left boundary due to the simple mirror extension of the
signal as suggested in [13]. -e boundary issues are also
classically observed in EMD which could be only partially
alleviated by more mathematically attempts. Furthermore,
the obtained Hilbert spectrum as shown in Figure 13(c)
manages to reflect the true frequency pattern of the

inspected signal. -e identified modal frequencies are
f1 � 14.23Hz and f2 �17.81Hz with the percentage error of
0.01% and 0.1%, respectively. -e damping ratios are
ζ1 � 1.01% and ζ2 �1.47% with the percentage error of 1.42%
and 2.31%. For comparison purpose, traditional modal
parameter identification is conducted utilizing the PolyMAX
method in frequency domain with the aid of stabilization
diagram [35]. -e results are illustrated in Figure 14. -e
identified modal frequencies are f1 � 14.29Hz and
f2 �17.83Hz with the percentage error of 0.38% and 0.18%.
-e damping ratios, however, are ζ1 � 2.00% and ζ2 � 2.97%
with the considerable percentage error of 100.42% and
97.81%.

Compared with some other adaptive signal decompo-
sition methods and the modal parameter identification
using PolyMAX in frequency domain, the proposed pa-
rameter-optimized VMD is superior in separating closely
spaced modes and retaining the most modal information
simultaneously. While only the case c � 0.8 at the noise
level of SNR� 20 dB is displayed in this section, more
complete numerical experiments within the range
0.5 ≤c≤ 0.9 under the noise condition of SNR � 20 dB and
10 dB are carried out. -e identified modal parameters are
listed in Table 1. It appears that the identification of modal
frequency is much more accurate than the damping ratio.
Despite that, the maximum percentage error of damping
identification is still within 5% which is acceptable in
engineering practice. -e complete investigation further
demonstrates the effectiveness of the presented method
based on VMD in separating closely spaced modes of vi-
bration system.
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3.3. Computational Complexity. -e computational com-
plexity of a VMD algorithm depends on the initialization of the
center frequency of each mode and the recursive Fast Fourier
Transform (FFT). As is well known, the computational com-
plexity of the FFT algorithm is O (N logN), where N is the
length of the transform domain signal or the number of points
in DFT. For the extraction of the k number of modes, the
computational complexity of the VMD realization will be the
sum of the required computations for the initialization of
center frequencies and k O(N logN) [24]. Besides, the pre-
sented optimized version of VMD adds an extra requirement,
which increases the computational cost and it is also subjective,
in terms of which optimization technique should be deployed,
not to mention its specific parametrization.

Table 2 shows the comparison of the computational cost of
the presented decomposition techniques. -e computational
complexity of the EMD/EEMD has proven to be equivalent to
that of the FFT but with a larger factor [36]. As an improved
version of EEMD, the CEEMDAN algorithm does not fun-
damentally change the core structure of EEMD but improves
the procedure of the noise-enhanced realization of EMD [9].
-erefore, in terms of computational complexity, the presented
versions of EMD along withWPTare identical to each other. It
should be noted that the specific computational complexity of
VMD has not been found in the literature and will not be given
in this paper, which is beyond the scope of this research.
Despite that, the complexity of the VMD algorithm exceeds
that of the presented decomposition techniques, not to
mention the optimized version.

A numerical experiment is performed to verify the actual
computational cost of the decomposition techniques in-
cluding the original VMD algorithm and the optimized
version. -e experiment is conducted on a laptop computer
with 2.6GHz CPU and 8GB memory under the MATLAB
environment. -e simulation is repeated 100 times for each
decomposition technique and the average execution time for
each implementation is obtained. -e test signal is the
displacement response of the 2-dof parametric system
recorded at the sampling rate of 1024Hz and the ratio of the
two natural frequencies c set to 0.8, which is the same as that
demonstrated in the previous section. Moreover, the specific
parameter settings are consistent with those demonstrated in
the previous section to obtain the same results as illustrated
in Figures 10–13.

As shown in Table 2, without considering the decom-
position results, the EMD and WPT are both computa-
tionally efficient. -e execution time of EEMD and
CEEMDAN, however, differs greatly with that of EMD,
which is because both algorithms require extensive noise-
enhanced realizations of EMD to alleviate the mode mixing
phenomenon [7–9]. When it comes to each realization, the
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average execution time of each noise-enhanced EMD real-
ization for EEMD is 0.040 s while it takes 0.090 s on average
to realize a noise-enhanced EMD implementation for
CEEMDAN.-us, if we do not consider the influence of the
parameter NR on the increase of execution time, the
computational cost of the first four decomposition tech-
niques listed in Table 2 is also the same in terms of the order
of magnitude. Relatively, the execution time of the original
VMD implementation is increased by one order of mag-
nitude, where the parameter α is arbitrarily taken as
α� 2000. While only the case α� 2000 is demonstrated in
this section for the sake of readability, in a more complete
experiment, the value of α has little impact on the execution
time when the number of modes is fixed to K� 2. Compared
with the original VMD implementation, the presented op-
timized version increases the computational cost by two
orders of magnitude. -is means that after hundreds of
VMD realizations, the optimal parameter could be finally
determined, which is inevitable no matter what optimization
technique should be deployed, because, basically, the opti-
mization is the process of trial and error. Although the
presented optimized VMD consumes much more time than
other decomposition techniques, the decomposition results
of the optimized VMDoutperform the compared techniques
in the separation of closely spaced modes while preserving
the most modal information at the same time. Since the
priority of modal analysis is the accuracy of the identified
modal parameters, the additional computational cost of the
presented optimized VMD could be tolerant in practical

applications, whereas the compared methods lose their
validity in the same situation.

3.4. Ground Vibration Test of a Horizontal Tail. Ground
vibration test (GVT) of a horizontal tail using a hammering
method is conducted to analyze the dynamic characteristics
of the structure. -e test horizontal tail as pictured in
Figure 15 consists of a metal beam and composite frames
that provide the airfoil shape. -e wing structure was
manufactured by 3D printing and covered with composite
skin. In order to check the vertical bending and torsion
modes, the acceleration sensor was fixed at a selected point
while the hammer excited the structure at different locations
to estimate the frequency response functions (FRFs).-e test
data obtained in the case of the distribution of acceleration
sensor and excitation point as illustrated in Figure 15 is
adopted to verify the effectiveness of the proposed method
based on VMD. -e sampling frequency of the test data is
1024Hz with a 5-second duration.

-e Fourier spectrum, or rather FRF, of the response
signal is shown in Figure 16(b) where only the first five
modes are considered here. A low-pass filter with the pass-
band frequency of 80Hz is designed to remove the high-
frequency response. -e selection of the filter band is a
manual process. -e modal frequencies of the five natural
modes are arbitrarily estimated by the peak-picking method

Table 1: -e identified modal parameters.

c Order
SNR� 20 dB SNR� 10 dB

f (Hz) Error (%) ζ (%) Error (%) f (Hz) Error (%) ζ (%) Error (%)

0.5 1 14.24 0.02 1.01 0.97 14.24 0.05 1.02 2.12
2 28.50 0.09 1.49 0.69 28.45 0.07 1.50 0.23

0.6 1 14.23 0.01 1.00 0.44 14.23 0.02 1.04 3.91
2 23.72 0.01 1.47 2.07 23.74 0.06 1.54 2.67

0.7 1 14.24 0.02 1.00 0.09 14.23 0.02 0.98 2.04
2 20.34 0.02 1.51 0.63 20.35 0.05 1.48 1.21

0.8 1 14.23 0.01 1.01 1.42 14.23 0.02 0.96 3.58
2 17.81 0.10 1.47 2.31 17.82 0.13 1.44 3.89

0.9 1 14.25 0.10 1.02 2.43 14.24 0.00 1.05 4.56
2 15.81 0.04 1.54 2.86 15.82 0.03 1.45 3.26

f denotes the modal frequency and ζ denotes the damping ratio.

Table 2: -e computational cost of the presented decomposition
techniques.

Decomposition
technique

Computational
complexity

Execution time (s)
(N� 4096)

EMD O (N logN) 0.031
EEMD O (N logN) 32.086 (NR� 800)
CEEMDAN O (N logN) 7.170 (NR� 80)
WPT O (N logN) 0.030 (db4, level 5)

VMD (original) — 0.180 (α� 2000,
K� 2)

VMD (optimized) — 84.514
N is the data length and NR denotes the number of realizations.

Excitation
point

Acceleration
sensor

Figure 15: Test horizontal tail.
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as indicated by dashed lines in Figure 16(b). -e initiali-
zation of the center frequencies ω1

k􏼈 􏼉 in VMD is thus realized
as ω1

k􏼈 􏼉 � 15.4, 19.0, 28.4, 45.4, and 55.6Hz{ }. Apparently,
the number of modes K is 5. -e optimized value of α
through GA is 1.31e5 in this case. Nevertheless, some state-
of-the-art optimization algorithms such as particle swarm
optimization (PSO), simulated annealing (SA), and immune
algorithm (IA) could also be utilized to search for the op-
timal value of α while no significant impact on the outcome
has been found by the author.

-e extracted modes and the corresponding Fourier
spectra are depicted in Figure 17 where obviously each
component contains a single oscillation mode. Despite the
boundary issues, the Hilbert spectrum as shown in Fig-
ure 18 further demonstrates that the frequency pattern is
successfully captured without overbinning or under-
binning. -e modal information of the extracted modes is
derived by Hilbert transform and detailed in Table 3. With

the purpose of comparison, the PolyMAX method in the
frequency domain is also employed to identify the modal
parameters of the low-pass filtered test data. -e results are
also listed in Table 3 and the stabilization diagram is plotted
in Figure 19.

Compared with the theoretical values calculated via the
finite element method (FEM), the first five modal fre-
quencies of a single test identified are quite accurate for both
methods where all the percentage errors are within 0.2%.
However, the performance of the two methods on the
identification of the damping ratio differs greatly. -e
identification errors of the proposed method are dramati-
cally small with the maximum value within 3%. -e Poly-
MAX identification in the frequency domain behaves
relatively badly for the vibration test. Again, the experi-
mental results demonstrate the effectiveness of the proposed
method in the separation of modes and recovering the most
modal information at the same time.
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Figure 18: Hilbert spectrum of the extracted five modes.

Table 3: -e identified modal parameters.

Order -eoretical values PolyMAX in the frequency domain Error (%) Proposed method based on VMD Error (%)

f (Hz)

1 15.507 15.487 0.129 15.482 0.159
2 18.941 18.916 0.135 18.911 0.159
3 28.513 28.511 0.007 28.496 0.059
4 45.526 45.431 0.012 45.452 0.162
5 55.646 55.659 0.023 55.639 0.012

ζ (%)

1 0.427 0.389 8.875 0.429 0.441
2 0.471 0.511 8.438 0.471 0.025
3 0.312 0.279 10.601 0.321 2.732
4 0.551 0.493 10.476 0.545 1.113
5 0.447 0.444 0.603 0.449 0.434
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4. Conclusions

In this paper, the equivalent filter characteristics of VMD are
studied when applied to the fGn, and the application in the
separation of closely spaced modes of vibration system is
performed. Extensive numerical simulations have been
carried out and demonstrated the differences in filter per-
formance between VMD and EMD.

Contrary to EMD, the VMD possesses the filter charac-
teristics similar to WPT with almost identical bandwidth.
Moreover, the initialization alongwith the constraint parameter
α does have a great impact on the decomposition performance
of VMD. For a small value of α, the self-adaptability of VMD is
recovered. In addition, regardless of the initialization, the
spectral characteristics of the inspected signal are successfully
captured. Meanwhile, the increase of α reinforces the linear
relationship between the initial center frequencies and the
converged frequencies. In other words, the algorithm is forced
to converge to the local minimum in the case of a large value of
α. Taking advantage of the filter performance, criteria for the
optimization of α and the initialization of center frequencies
ω1

k􏼈 􏼉 are established to extract a desired collection of modes.
Center frequencies are to be initialized by the prior identified
modal frequencies utilizing the simple peak-picking method,
whereas the value of α is optimized through GA based on the
proposed fitness function. Both numerical simulations and
experimental tests have demonstrated the capability of the
proposed method based on VMD in the separation of modes
while retaining the most modal information at the same time.
However, the presented optimized VMD adds an extra re-
quirement which greatly increases the computational cost.
Considering the accuracy of the identified closely spaced
modes, however, the presented optimized VMD could be
applied in engineering practice, whereas the comparedmethods
lose their validity in the same situation.

Although all the analyzed response signals in this paper
are obtained under impulse excitation, for random

responses, techniques like random decrement technique
(RDT) and natural excitation technique (NeXT) could be
used to extract the free decaying response and thus complete
the applicability of the proposed method.

Data Availability

-e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

-e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-is research was partially supported by the National
Natural Science Foundation of China (Grant no. 51475228),
the Priority Academic Program Development of Jiangsu
Higher Education Institutions, and the Postgraduate Re-
search & Practice Innovation Program of Jiangsu Province
(KYCX19_0153).

References

[1] N. E. Huang, Z. Shen, S. R. Long et al., “-e empirical mode
decomposition and the Hilbert spectrum for nonlinear and
non-stationary time series analysis,” Proceedings Mathemat-
ical Physical & Engineering Sciences, vol. 454, no. 1971,
pp. 903–995, 1998.

[2] N. E. Huang and S. S. P. Shen,Hilbert-huang Transform and its
Applications, World Scientific, Singapore, 2005.

[3] Z. K. Peng, P. W. Tse, and F. L. Chu, “An improved Hilbert-
Huang transform and its application in vibration signal
analysis,” Journal of Sound and Vibration, vol. 286, no. 1-2,
pp. 187–205, 2005.

[4] M. Amarnath and I. R. Praveen Krishna, “Local fault detection
in helical gears via vibration and acoustic signals using EMD
based statistical parameter analysis,” Measurement, vol. 58,
pp. 154–164, 2014.

[5] X. H. He, X. G. Hua, Z. Q. Chen, and F. L. Huang, “EMD-
based random decrement technique for modal parameter
identification of an existing railway bridge,” Engineering
Structures, vol. 33, no. 4, pp. 1348–1356, 2011.

[6] J. Chen, Y. L. Xu, and R. C. Zhang, “Modal parameter
identification of Tsing Ma suspension bridge under Typhoon
Victor: EMD-HTmethod,” Journal of Wind Engineering and
Industrial Aerodynamics, vol. 92, no. 10, pp. 805–827, 2004.

[7] Z. Wu and N. E. Huang, “Ensemble empirical mode de-
composition: a noise-assisted data analysis method,” Ad-
vances In Adaptive Data Analysis, vol. 1, no. 1, pp. 1–41, 2009.

[8] J.-R. Yeh, J.-S. Shieh, and N. E. Huang, “Complementary
ensemble empirical mode decomposition: a novel noise en-
hanced data analysis method,” Advances in Adaptive Data
Analysis, vol. 2, no. 2, pp. 135–156, 2010.

[9] M. A. Colominas, G. Schlotthauer, and M. E. Torres, “Im-
proved complete ensemble EMD: a suitable tool for bio-
medical signal processing,” Biomedical Signal Processing and
Control, vol. 14, pp. 19–29, 2014.

[10] Z. Wu and N. E. Huang, “A study of the characteristics of
white noise using the empirical mode decomposition

Stabilization diagram

0

5

10

15

20

M
od

el
 o

rd
er

10–10

10–5

100

M
ag

ni
tu

de

10 20 30 40 50 600
Frequency (Hz)

Stable in frequency
Stable in frequency and damping
Not stable in frequency

Figure 19: Stabilization diagram utilizing PolyMAX identification
in the frequency domain.

Shock and Vibration 15



method,” Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, vol. 460, no. 2046,
pp. 1597–1611, 2004.

[11] H. Li, Z. Li, and W. Mo, “A time varying filter approach for
empirical mode decomposition,” Signal Processing, vol. 138,
pp. 146–158, 2017.

[12] J. Yang, P. Li, Y. Yang, and D. Xu, “An improved EMD
method for modal identification and a combined static-dy-
namic method for damage detection,” Journal of Sound and
Vibration, vol. 420, pp. 242–260, 2018.

[13] K. Dragomiretskiy and D. Zosso, “Variational mode de-
composition,” IEEE Transactions on Signal Processing, vol. 62,
no. 3, pp. 531–544, 2014.

[14] C. Yi, Y. Lv, and Z. Dang, “A fault diagnosis scheme for rolling
bearing based on particle swarm optimization in variational
mode decomposition,” Shock and Vibration, vol. 2016, Article
ID 9372691, 10 pages, 2016.

[15] X. Wang, Z. Yang, and X. Yan, “Novel particle swarm op-
timization-based variational mode decomposition method for
the fault diagnosis of complex rotating machinery,” IEEE/
ASME Transactions on Mechatronics, vol. 23, no. 1, pp. 68–79,
2018.

[16] S. Fei, “-e hybrid method of VMD-PSR-SVD and improved
binary PSO-KNN for fault diagnosis of bearing,” Shock and
Vibration, vol. 2019, Article ID 4954920, 7 pages, 2019.

[17] Z. Lv, B. Tang, Y. Zhou, and C. Zhou, “A novel method for
mechanical fault diagnosis based on variational mode de-
composition and multikernel support vector machine,” Shock
and Vibration, vol. 2016, Article ID 3196465, 11 pages, 2016.

[18] P. Zhang and J. Zhang, “Application of variational mode
decomposition and k-Nearest neighbor algorithm in the
quantitative nondestructive testing of wire ropes,” Shock and
Vibration, vol. 2019, Article ID 9828536, 14 pages, 2019.

[19] T. Han and D. Jiang, “Rolling bearing fault diagnostic method
based on VMD-AR model and random forest classifier,”
Shock and Vibration, vol. 2016, Article ID 5132046, 11 pages,
2016.

[20] B. Xu, H. Li, F. Zhou, and B. Yan, “Fault diagnosis of variable
load bearing based on quantum chaotic fruit fly VMD and
variational RVM,” Shock and Vibration, vol. 2019, Article ID
8213056, 20 pages, 2019.

[21] Y. Wang, R. Markert, J. Xiang, and W. Zheng, “Research on
variational mode decomposition and its application in
detecting rub-impact fault of the rotor system,” Mechanical
Systems and Signal Processing, vol. 60-61, pp. 243–251, 2015.

[22] Y. Liu, G. Yang, M. Li, and H. Yin, “Variational mode de-
composition denoising combined the detrended fluctuation
analysis,” Signal Processing, vol. 125, pp. 349–364, 2016.

[23] S. Hu, H. Xiao, and C. Yi, “A novel detrended fluctuation
analysis method for gear fault diagnosis based on variational
mode decomposition,” Shock and Vibration, vol. 2018, Article
ID 7045127, 11 pages, 2018.

[24] M. R. A. Paternina, R. K. Tripathy, A. Z. Mendez, and
D. Dotta, “Identification of electromechanical oscillatory
modes based on variational mode decomposition,” Electric
Power Systems Research, vol. 167, pp. 71–85, 2019.

[25] J. A. de la O Serna, J. M. Ramirez, A. Zamora Mendez, and
M. R. A. Paternina, “Identification of electromechanical
modes based on the digital Taylor-Fourier transform,” IEEE
Transactions on Power Systems, vol. 31, no. 1, pp. 206–215,
2016.

[26] S. Chen, Y. Yang, Z. Peng, X. Dong, W. Zhang, and G. Meng,
“Adaptive chirp mode pursuit: algorithm and applications,”

Mechanical Systems and Signal Processing, vol. 116, pp. 566–
584, 2019.

[27] S. Chen, Y. Yang, Z. Peng, S. Wang, W. Zhang, and X. Chen,
“Detection of rub-impact fault for rotor-stator systems: a
novel method based on adaptive chirp mode decomposition,”
Journal of Sound and Vibration, vol. 440, pp. 83–99, 2019.

[28] G. Yu, M. Yu, and C. Xu, “Synchroextracting transform,”
IEEE Transactions on Industrial Electronics, vol. 64, no. 10,
pp. 8042–8054, 2017.

[29] S. Wang, X. Chen, C. Tong, and Z. Zhao, “Matching syn-
chrosqueezing wavelet transform and application to aero-
engine vibration monitoring,” IEEE Transactions on
Instrumentation and Measurement, vol. 66, no. 2, pp. 360–
372, 2017.

[30] Z. Feng, X. Chen, and M. Liang, “Iterative generalized syn-
chrosqueezing transform for fault diagnosis of wind turbine
planetary gearbox under nonstationary conditions,” Me-
chanical Systems and Signal Processing, vol. 52-53, pp. 360–
375, 2015.

[31] B. B. Mandelbrot and J. W. Van Ness, “Fractional Brownian
motions, fractional noises and applications,” SIAM Review,
vol. 10, no. 4, pp. 422–437, 1968.

[32] P. Flandrin, P. Gonçalvès, and G. Rilling, “EMD equivalent
filter banks, from interpretation to applications,” in Hilbert
-Huang Transform and its Applications, N. E. Huang and
S. S. P. Shen, Eds., pp. 57–74, World Scientific, Singapore,
2005.

[33] P. Flandrin, G. Rilling, and P. Goncalves, “Empirical mode
decomposition as a filter bank,” IEEE Signal Processing Letters,
vol. 11, no. 2, pp. 112–114, 2004.

[34] A. T. A. Wood and G. Chan, “Simulation of stationary
Gaussian processes in [0, 1] d,” Journal of Computational and
Graphical Statistics, vol. 3, no. 4, pp. 409–432, 1994.

[35] J. Zeng and S. L. Kukreja, “Flutter prediction for flight/wind-
tunnel flutter test under atmospheric turbulence excitation,”
Journal of Aircraft, vol. 50, no. 6, pp. 1696–1709, 2013.

[36] Y.-H. Wang, C.-H. Yeh, H.-W. V. Young, K. Hu, and
M.-T. Lo, “On the computational complexity of the empirical
mode decomposition algorithm,” Physica A: Statistical Me-
chanics and Its Applications, vol. 400, pp. 159–167, 2014.

16 Shock and Vibration


