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,e study of the nonlinear dynamic behaviour of friction systems in general and of clutch systems in particular remains an open
problem. Noise and vibrations induced by friction in the sliding phase of a clutch are very sensitive to design parameters.,e latter
have significant dispersions. In the study of the system stability, the problem is not only to know if the parameter values lead to the
appearance of unstable equilibrium points; the real challenge lies in estimating the vibration levels when such unstable equilibrium
points occur.,is estimation is analyzed using the limit cycles.,is article aims to study the ability of robust approaches based on
developments in nonintrusive generalized polynomial chaos and a constrained harmonic balance method to estimate the vi-
bration levels through the limit cycles of a clutch system in the presence of uncertainty. ,e purpose is to provide a low-cost, high
precision approach, compared to the classic Monte Carlo method.

1. Introduction

In the sliding phase of clutch systems in vehicles, self-os-
cillations may be caused by frictional forces and thereby
generate noise. ,ese phenomena can be classified into two
main categories depending on whether they are related to
tribological aspects or to the geometric and structural
characteristics of the systems [1]. For high-frequency os-
cillations, such as squeal noise (up to several kHz), the mode
coupling instabilities inherent in the structure of the system
are more likely to be responsible for this phenomenon [2].
,erefore, the system stability is determined from the ei-
genvalues whose real parts are used to analyze the system
stability, while the imaginary parts give the frequency of the
corresponding modes.

Numerous studies have shown that the dynamic be-
haviour of dry friction systems in general and clutch systems
in particular is very sensitive to design parameters. ,ese

studies focused on the analysis of the system stability from
the eigenvalues. For example, the effects of friction and
damping on the phenomenon of mode coupling in a finite
element squeal model of a brake were presented in studies by
G. Fritz [3, 4]. For clutch systems, B. Hervé also studied the
effects of these parameters on stability, focusing on the
destabilizing paradox [5]. In addition, design parameters
such as the friction coefficient and damping admit signifi-
cant dispersions which may be due inter alia to the
manufacturing process. It is therefore necessary to take
account of the dispersion of uncertain parameters to ensure
the robustness of the analysis of the dynamic behaviour of
friction systems. However, the Monte Carlo (MC) method
which is conventionally used to achieve this requires pro-
hibitive calculation time, especially for systems with many
degrees of freedom (DOF).

,e study of the dynamic behaviour of friction systems
consists of two steps which are, respectively, the analysis of the
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system stability and the determination of vibration levels when
the system is unstable. ,e present study will focus on the
second step. ,e vibration levels can be estimated through the
limit cycles which are generally determined from a temporal
integration of differential equations of the motion system.
However, this is a difficult and costly process for industrial
systems with many DOF (such as the finite element model). To
overcome the insufficiencies of the conventional numerical
integration of nonlinear friction systems, alternative solutions
have been proposed in the literature, such as the central variety
method, the complex nonlinear modes method, or the har-
monic balance method [4]. Similarly, to take uncertain pa-
rameters into account, other methods based on polynomial
chaos have been proposed [6]. However, few studies have
tackled the problem of the prohibitive costs due to both the
consideration of the uncertainties (Monte Carlo method) and
temporal integration in friction systems. For example, Nechak
et al. [7, 8] combined the central variety method with poly-
nomial chaos to take uncertainties into account in initial
conditions terms. Similarly, Sarrouy [6] associated the con-
strained harmonic balance method with polynomial chaos in a
braking system. However, these studies have three major
limitations. First, the models used only allow two DOF. Second,
the number of uncertain parameters is very low (1 or 2). ,ird,
in Sarrouy’s study, polynomial chaos is used in an intrusive
approach.,is approach can easily be applied to simple systems
but becomes very slow for systems with many DOF. However,
the literature contains no works in which the dynamic be-
haviour of a clutch system has been studied through the limit
cycles, with the consideration of parametric uncertainties.

,erefore, themain objective of this article is to explore the
possibility of an approach combining Nonintrusive Gener-
alized Polynomial Chaos (ngPC) and the constrained har-
monic balance method (CHBM) to take into account of the
uncertainties in the estimation of limit cycles of a clutch system
with an increasing number of uncertain parameters. ,e re-
sults are compared with the classic Monte Carlo approach for
validation. ,e aim is to propose an effective method for
determining the dispersion of limit cycles at a low cost and
with high accuracy in order to overcome the difficulties of the
time integration method and the classic MC method.

,e novelty of this paper lies in the demonstration of the
ability of the methods (CHBM+ngPC) to properly estimate
the dispersion of limit cycles of a clutch system with an
increasing number of uncertain parameters. Another main
interest of this paper is the results obtained with the study of
uncertain clutch system.

,is paper is organized as follows: Section 2 presents a
squeal model of a clutch system, Section 3 is dedicated to the
theoretical foundations of the methods applied in the esti-
mation of the system’s limit cycles, and the results and
discussions of the limit cycles analysis are given in Section 4,
followed by a conclusion in Section 5.

2. Squeal Model of the Clutch System

2.1. System Description. In friction systems with unstable
modes, the limit cycles evaluation is rather delicate. Nu-
merical integration often leads to an increase in the

vibration levels which does not exist in practice [9]. In the
works dedicated to the study of an analytical model of an
aircraft braking system with 15 DOF, how the presence of
nonlinearities in the model helps to obtain limit cycles
during the vibration levels analysis with unstable modes
was shown [10]. In the model, the nonlinearities occur in
the normal contact forces in terms of stiffness with a
polynomial law of an order 3 displacement. It is important
to note that this model was validated in an experimental
approach.

In another study [11] dedicated to a clutch system with 2
DOF, the author used a nonlinear model of the normal
contact forces between the flywheel and the friction disc to
obtain the limit cycles. In this model defined from experi-
mental studies, the normal forces also possess a nonlinear
polynomial of an order 3 displacement.

Otherwise, Wickramarachi and Singh [2] proposed a
model of a clutch system with 6 DOF to study the insta-
bilities due to mode couplings induced by friction. ,is
model based on experiments helped to study the system’s
stability state from an analysis with eigenvalues. However,
it is not possible to estimate the vibration levels as limit
cycles cannot be obtained with this model. ,erefore, this
paper proposes to extend the Wickramarachi model by
introducing a nonlinear part in the normal contact forces in
terms of stiffness with an order 3 displacement
(kNL

A , kNL
B , kNL

C , kNL
D ) and a damping part to take account of

the damping differences in the system (cA, cB, cC, cD)

(Figure 1).
,emodel used in this paper is a mass/springmodel with

6 DOF. ,e contact between the flywheel and the friction
surface of the clutch disk is determined at points A′, B′, C′,
and D′ by a progressive spring kp which is divided into 4
stiffnesses kA, kB, kC, and kD. Dampings cA, cB, cC, and cD are
placed, respectively, in the same positions as the springs kA,
kB, kC, and kD. Points A, B, C, and D are the projections of
contacts on the average surface of the pressure plate. ,e
pressure plate is deformable and modelled by the bending
stiffness and damping (kf, cf ). Points E, F, G, and H are fixed
points of the flywheel.

In a state of static equilibrium, progressive stiffnesses kA,
kB, kC, and kD are assumed to be static at a constant value kp/4.
Due to the vibration of the pressure plate around the axis Ox,
pointsA andB vibrate with low amplitudes, and the stiffnesses
kA and kB vary according to a hyperbolic curve around a
constant value kp/4. ,e stiffnesses kA and kB are then, re-
spectively, multiplied and divided by a ratio c1. Similarly, the
stiffnesses kC and kD are, respectively, multiplied and divided
by a ratio c1 (see (6) and (7)) [2].

To model the nonlinear forces in the clutch system, the
cubic nonlinear stiffnesses kNL

A , kNL
B , kNL

C , kNL
D are introduced

in the same positions as those of the linear stiffnesses kA, kB,
kC, and kD (see (8)).

,e DOF of the pressure plate are the rotations θx and θy
around the fixed axes x and y and the translation movements
ZA, ZB, ZC, and ZD of points A, B, C, and D along the fixed
axis z.

,e described equation of the dynamic behaviour of the
clutch system is

2 Shock and Vibration



M
d2u
dt2

+ C
du
dt

+ Ku + FNL � 0, (1)
with

u � θx θy ZA ZB ZC ZD􏽨 􏽩
T
, (2)

M �

Ix 0 0 0 0 0

0 Iy 0 0 0 0

0 0
Mp

4
0 0 0

0 0 0
Mp

4
0 0

0 0 0 0
Mp

4
0

0 0 0 0 0
Mp

4
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, (3)

K �

r2 kA + kB + 4kf􏼐 􏼑 −μlr kC + kD( 􏼁 r kA + 2kf􏼐 􏼑 −r kB + 2kf􏼐 􏼑 μlkC −μlkD

μlr kA + kB( 􏼁 r2 kC + kD + 4kf􏼐 􏼑 −μlkA μlkB r kC + 2kf􏼐 􏼑 −r kD + 2kf􏼐 􏼑

r kA + 2kf􏼐 􏼑 0 kA + 2kf 0 −kf −kf

−r kB + 2kf􏼐 􏼑 0 0 kB + 2kf −kf −kf

0 r kC + 2kf􏼐 􏼑 −kf −kf kC + 2kf 0
0 −r kD + 2kf􏼐 􏼑 −kf −kf 0 kD + 2kf
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, (4)

C �

r2 cA + cB + 4cf􏼐 􏼑 −μlr cC + cD( 􏼁 r cA + 2cf􏼐 􏼑 −r cB + 2cf􏼐 􏼑 μlcC −μlcD

μlr cA + cB( 􏼁 r2 cC + cD + 4cf􏼐 􏼑 −μlcA μlcB r cC + 2cf􏼐 􏼑 −r cD + 2cf􏼐 􏼑

r cA + 2cf􏼐 􏼑 0 cA + 2cf 0 −cf −cf

−r cB + 2cf􏼐 􏼑 0 0 cB + 2cf −cf −cf

0 r cC + 2cf􏼐 􏼑 −cf −cf cC + 2cf 0

0 −r cD + 2cf􏼐 􏼑 −cf −cf 0 cD + 2cf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)
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Figure 1: Squeal model of the clutch system.
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kA �
c1 · kp

4
;

kB �
kp

c1 · 4
,

(6)

kC �
c2 · kp

4
;

kD �
kp

c2 · 4
,

(7)

where r� (r1 + r2)/2 with r1 and r2 which are theminimal and
maximal sliding radii; μ is the friction coefficient; and l is the
half thickness of the pressure plate.

Nonlinear force FNL is given in the following equation:

FNL �

rkNL
A ZA + rθx( 􏼁

3
− rkNL

B ZB − rθx( 􏼁
3

+ μlkNLC ZC + rθy􏼐 􏼑
3

− μlkNLD ZD − rθy􏼐 􏼑
3

−μlkNLA ZA + rθx( 􏼁
3

+ μlkNLB ZB − rθx( 􏼁
3

+ rkNL
C ZC + rθy􏼐 􏼑

3
− rkNL

D ZD − rθy􏼐 􏼑
3

kNL
A ZA + rθx( 􏼁

3

kNL
B ZB − rθx( 􏼁

3

kNL
C ZC + rθy􏼐 􏼑

3

kNL
D ZD − rθy􏼐 􏼑

3
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. (8)

2.2. Configurations of Uncertain Parameters. Different
configurations of uncertain parameters will be addressed in
Section 4, each serving a different goal.,e dispersions of the
parameters Vi are assumed according to uniform laws. To
follow the formalism of polynomial chaos, each of these
parameters Vi is expressed in the functions of independent
random variables ξi which follow a uniform distribution in
the interval [−1, 1] such that

Vi � Vm,i + ΔVm,iξi, (9)

where Vm,i and ΔVm,iξi denote the nominal value and the
variation of uncertain parameters Vi.

For the studies of the limit cycles of the system, the 8
uncertain parameters μ, kp, kf, c1, c2, r1, r2, and l are
supposed uniform in the intervals [Vm,i − Vm,i ∗ΔVm,iVm,i +

Vm,i ∗ΔVm,i] to ensure an unstable static equilibrium for the
entire interval. All of the nonlinear stiffnesses and dampings
are assumed to be constant (Table 1).

3. Constrained Harmonic Balance Method and
Nonintrusive Generalized Polynomial Chaos
Applied to the Clutch System

3.1. Constrained Harmonic Balance Method (CHBM). ,e
self-excited nonlinear system studied in this paper tends to
lead to limit cycles when static equilibrium is unstable. ,e
system, being nonlinear, converges toward limit cycles
whose amplitude and frequency are unknown. To determine
their properties while avoiding a long direct integration

process, a well-known method is the harmonic balance
method which consists of a Galerkin approach using basic
trigonometric functions [12]. ,is method relies on the
decomposition of the solution u(t) in a Fourier series which
is truncated to a given order p1:

u(t) � A0 + 􏽘

p1

k�1
Ak cos(kωt) + Bk sin(kωt)( 􏼁, (10)

where ω � 2π/τ defines the fundamental frequency (un-
known period) of the limit cycles of nonlinear system. Ak

and Bk are real vectors of the same size as u(t). ,is evo-
lution is also imposed for du(t)/dt and d2u(t)/dt2.

Once these truncated Fourier series are reinjected into
dynamic (1), the time variable is eliminated by the projection
system of equations on the functions (1, cos(kωt), and
sin(kωt)) using the following scalar product:

〈f, g〉 �
2
T

􏽚
T

t�0
f(t)g(t)dt. (11)

,is generates a square equation system of size n
(2p1 + 1) with n the number of DOF of the system.

However, when the angular frequency ω is unknown, the
system is not square and it is generally necessary to add an
equation or to discard an unknown. ,e first solution is
exploited in a study [4] by adding a constraint on the real
parts of the eigenvalues of the system but this procedure
requires a great amount of calculations and does not cor-
respond to evolution when uncertainties are introduced.
,erefore, a study in [13] aims to explore the second solution
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by eliminating an unknown and fixing it at a given value.,e
method is then called constrained harmonic balance method
(CHB). ,is is an interesting improvement of the usual
procedure of this method which provides a means to de-
termine the limit cycles of nonlinear systems.

For the clutch system with 6 DOF, u(t) is developed with
a single harmonic of an unknown frequency (p1 � 1) and
without a constant term (for the central solution approxi-
mation only), and an unknown is eliminated by assigning a
given value a∗1 to the first component of vector a:

u(t) � a cos(ωt) + b sin(ωt),

a � a∗1 a2 a3 a4 a5 a6􏼂 􏼃
T
,

b � b1 b2 b3 b4 b5 b6􏼂 􏼃
T
.

(12)

Injecting the harmonic expression (see (12)) and its
derivatives in the dynamic (1) and projecting the resulting
set of equations onto cos(ωt) and sin(ωt) functions using
scalar product (see (11)), one finally gets a set of 12 algebraic
equations:

K − ω2M( 􏼁a + ωCb + FNL,cos � 0,

K − ω2M( 􏼁b − ωCa + FNL,sin � 0,

⎧⎨

⎩ (13)

with

FNL,cos �

rkNL
A a3 + ra∗1( 􏼁

3
+ a3 + ra∗1( 􏼁 b3 + rb1( 􏼁

2
􏽨 􏽩 − rkNL

B a4 − ra∗1( 􏼁
3

+ a4 − ra∗1( 􏼁 b − rb1( 􏼁
2

􏽨 􏽩

+μlkNL
C a5 + ra2( 􏼁

3
+ a5 + ra2( 􏼁 b5 + rb2( 􏼁

2
􏽨 􏽩 − μlkNLD a6 − ra2( 􏼁

3
+ a6 − ra2( 􏼁 b6 − rb2( 􏼁

2
􏽨 􏽩

−μlkNL
A a3 + ra∗1( 􏼁

3
+ a3 + ra∗1( 􏼁 b3 + rb1( 􏼁

2
􏽨 􏽩 + μlkNLB a4 − ra∗1( 􏼁

3
+ a4 − ra∗1( 􏼁 b4 − rb1( 􏼁

2
􏽨 􏽩

+rkNL
C a5 + ra2( 􏼁

3
+ a5 + ra2( 􏼁 b5 + rb2( 􏼁

2
􏽨 􏽩 − rkNLD a6 − ra2( 􏼁

3
+ a6 − ra2( 􏼁 b6 − rb2( 􏼁

2
􏽨 􏽩

kNL
A a3 + ra∗1( 􏼁

3
+ a3 + ra∗1( 􏼁 b3 + rb1( 􏼁

2
􏽨 􏽩

kNL
B a4 − ra∗1( 􏼁

3
+ a4 − ra∗1( 􏼁 b4 − rb1( 􏼁

2
􏽨 􏽩

kNL
C a5 + ra2( 􏼁

3
+ a5 + ra2( 􏼁 b5 + rb2( 􏼁

2
􏽨 􏽩

kNL
D a6 − ra2( 􏼁

3
+ a6 − ra2( 􏼁 b6 − rb2( 􏼁

2
􏽨 􏽩
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.

(14)

,e algebraic equations (13) which have 12 unknown
variablesω, b1, a2, b2, a3, b3, a4, b4, a5, b5, a6, and b6 are solved
with the function “fsolve” in the Matlab software.

3.2. Nonintrusive Generalized Polynomial Chaos Method
(ngPC). ,e dispersions of the uncertain parameters

generate the dispersions in the displacements ui(t, ξ), the
velocities _ui(t, ξ), and so the dispersions of the unknown
variables ω(ξ) and bi(ξ) of the CHB method. ,ese quan-
tities of interest will be estimated from the Legendre
polynomial chaos which is best adapted to the treatment of
uniform uncertainties [7].

Table 1: Nominal values of the parameters of the clutch system
with 6 DOF.

Parameter name Unit Nominal value
Friction coefficient (μ) 0.25; 0.35; 0.5
Progressive stiffness (kp) MN·m−1 16
Bending stiffness (kf) MN·m−1 7
Coefficient (c1) 0.9
Coefficient (c2) 0.8
Minimum radius of flywheel (r1) m 0.075
Maximum radius of flywheel (r2) m 0.120
Half thickness of flywheel (l) m 0.0125
Nonlinear stiffness (kNLA ) MN·m−3 4∗105
Nonlinear stiffness (kNLB ) MN·m−3 12∗105
Nonlinear stiffness (kNLC ) MN·m−3 4
Nonlinear stiffness (kNLD ) MN·m−3 4
Progressive damping (cp) Nm−1·s−1 4
Bending damping (cf ) Nm−1·s−1 0.1
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y(ξ) � 􏽘

Np

j�0
yjϕj(ξ), (15)

where yj are the stochastic modes, ϕj are the Legendre
polynomials, andNp is the number of terms according to the
order p of the polynomial chaos and the number of un-
certain parameters r, such that

Np + 1 �
(p + r)!

p!r!
. (16)

,e representation with the generalized polynomial
chaos requires the determination of Np + 1 stochastic
modes (see (16)). Two implementation patterns may be
used: an intrusive approach and a nonintrusive approach.
In the first approach, a Galerkin projection technique is
used to generate a set of deterministic coupled equations
from the stochastic model, which keeps the same prop-
erties as the original random functions. ,e calculation of
stochastic coefficients then passes through the adaptation
of a calculation algorithm corresponding to the nature of
the resulting equation system. ,e interest of the intrusive
approach is that only one calculation is required to de-
termine the stochastic modes [6, 13]. However, this be-
comes rather expensive and/or impossible, particularly
when systems are highly nonlinear in many DOF with
several important uncertain parameters. In this case, the
second nonintrusive approach becomes an attractive al-
ternative, as it allows the calculation of the stochastic
modes without any alteration or modification of the
original uncertain model. ,e difficulty is only related to
the direct simulation of the original system in order to
obtain the Q points which are called the collocation points
needed to build the stochastic modes. Two methods can be
used to determine these points Q: the nonintrusive
spectral projection method (NISP) and the regression
method [6–8, 12, 14–16]. ,e authors have shown that the
best points are those constructed from the roots of the
Legendre polynomial of order p + 1. If we choose the same
order p for r random variables, the number of points is
(p + 1)r.

In terms of calculation amount, the regression ap-
proach offers an interesting alternative in particular
with respect to the NIPS method [6, 12, 15, 16]. ,e
authors have shown that the Q collocation points to
construct stochastic modes using the regression method
can be selected from the (p + 1)r points determined from
roots of the Legendre polynomial of order p + 1, with Q
equal to kNp (k � 2, 3). ,e present study proposes to
choose the Q collocation points according to the fol-
lowing criteria:

Q � min (p + 1)
r
, 2Np􏼐 􏼑. (17)

,us, the stochastic modes are estimated using the re-
gression method by minimizing, in the least square sense,
the difference ε between the solution y of the stochastic
model and its approximation in the base of polynomial
chaos:

ε � 􏽘

Q

q�1
y ξ(q)

􏼐 􏼑 − 􏽘

Np

l�0
yl · φl ξ(q)

􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦

2

, (18)

where ξ (q) are the Q collocations points determined from
the roots of the Legendre polynomial φl of order p + 1
according the criteria (see (18)).

4. Results and Discussion

,e coalescence phenomena which generate the system
instability occur between two wobbling modes, numbered 1
and 2, which correspond to the angular displacements θx
and θy. ,erefore, the study of the limit cycles of the system
will focus on these two modes only. Note that, in the system,
the limit cycles followed by θx and θy are similar, so only the
associated results with θx will be shown.

In this section, some studies are presented in which
the limit cycles are determined, on a sample of N � 100
parameter sets. ,e objective is to determine the dis-
persion of the limit cycles due to the dispersion of the
uncertain parameters. ,is number of sample N was
chosen to be sufficiently high so as to provide repre-
sentative results of the system behaviour, but not too
high either, to ensure reasonable calculation time. In
these studies, the limit cycles are calculated using dif-
ferent methods:

(i) Method 1: the displacements ui(t, ξ), velocities
_ui(t, ξ), and limit cycles are calculated by the direct
solution of the initial complete system (see (1))
through a Monte Carlo type study (results 1).

(ii) Method 2: the displacements ui(t, ξ), velocities
_ui(t, ξ), and limit cycles are modelled using the
developments in generalized polynomial chaos
(ngPC) (see (19)):

ui(t, ξ) � 􏽘

Np

j�0
uij(t)φj(ξ);

_ui(t, ξ) � 􏽘

Np

j�0
_uij(t)φj(ξ).

(19)

To do so, the stochastic modes uij(t) and _uij(t) of these
ngPC are determined from displacements and velocities
obtained with the regression method from direct simulation
of the initial complete system (see (1)). ,e limit cycles are
then calculated from the ngPC (see (19)) (results 2). ,e
objective is to determine the ability of applied ngPC on the
displacements and velocities to estimate the limit cycles of
the system.

(iii) Method 3: the (ω(ξ), ai(ξ), bi(ξ)) coefficients of the
CHBM are calculated directly from equation (see
(13)). ,e limit cycles are then calculated from the
equations (see (12)). Results 3 are obtained with
Monte Carlo simulations on coefficients of the
CHBM. ,e objective is to determine the ability of
the CHBM to estimate the limit cycles of the system.
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(iv) Method 4: the (ω(ξ), ai(ξ), bi(ξ)) coefficients of the
CHBM are modelled using the developments in
generalized polynomial chaos (see (20)):

ai(ξ) � 􏽘

Np

j�0
aijφj(ξ);

bi(ξ) � 􏽘

Np

j�0
bijφj(ξ);

ω(ξ) � 􏽘

Np

j�0
ωjφj(ξ).

(20)

To do so, (aij, bij,ωj) stochastic modes of these ngPC are
determined with the regression method from the values of
the (ω(ξ), ai(ξ), bi(ξ)) coefficients of the CHBM obtained
by solving the system of (13). ,e limit cycles are then
calculated from (12) and the ngPC coefficients 21 (results 4).
,e objective of this study is to determine the ability of the
combination of CHBM and ngPC to estimate the limit cycles
of the system.

,e results obtained with the last three methods are
compared for validation to those obtained with the first one
used as a reference. ,e three methods are then compared
with each other in the terms of accuracy and computation
time to determine the most effective one.

,e comparisons between the different results are made
on the evolution of the limit cycles and the relative errors of
the maximum and minimum amplitudes of the displace-
ments ui(t, ξ) and velocities _ui(t, ξ).

In the studies, the friction coefficient μm will be selected
with 3 values at increasingly higher distances of the Hopf
bifurcation point: μm� µ0 (1 + ε) with ε� 1.27 (μm� 0.25),
ε� 2.18 (μm� 0.35), and ε� 4.54 (μm� 0.50). From the Hopf
bifurcation point, the real part of a mode is positive and the
static equilibrium becomes unstable [14, 16]. Note that the
Hopf bifurcation point is μ0� 0.11.

4.1. Study of the Limit Cycles of the SystemwithOneUncertain
Parameter. ,is section presents a study of the limit cycles
of the system with one uncertain parameter (r� 1). ,e
friction coefficient is selected inN� 100 points in the interval
[μm − μmΔμ, μm + μmΔμ] with μm� 0.25 and Δμ� 0.05 (5%);
the other parameters are fixed at their nominal value. ,e
limit cycles are estimated using the four methods described
above. ,e objective of this study is to evaluate the ability of
these methods to estimate the dispersion of the limit cycles
of the system, in terms of accuracy and computational costs.

First, we compare these methods in terms of calculation
costs for N sets of parameters (Table 2). Each calculation
time written in Table 2 has been evaluated with one set of
parameters and allows reader to have an estimation of the
order of magnitude for the total calculation cost. ,e cal-
culation time of stochastic modes is, respectively, 41 s for
ngPC which is applied to displacements and velocities and is
7e− 4 seconds for ngPC which is applied to the coefficients
of the CHBM. ,e calculation time for the determination of

the coefficients of the CHBM is one to two seconds for one
set of parameters. One limit cycle determined with a ngPC
development is obtained in 3.96 s with previously deter-
mined stochastic ngPCmodes.,e time of calculation of one
cycle limit obtained with the CHBM is negligible (less than
2.10–3 s) when the coefficients are previously determined.
Except for the calculation time for the determination of the
coefficients of the CHBM which depends on the number of
DOF of the initial system, these calculation times do not
directly depend on the number of DOF of the system
studied. ,us, they are of the same order of magnitude with
the clutch system with 6 DOF or with a model with a high
number of DOF. However, to obtain one limit cycle by
performing a direct simulation takes about 17.71 s with the
clutch system with 6 DOF, but it can take several hours for
an industrial model (finite element model) with several
hundreds of DOF. So, if these methods are to be applied to
an industrial model, the comparison of the different
methods in terms of calculation costs also needs the com-
parison of the required number N of direct simulations
(limit cycles) with the initial model (column 1 of Table 2). If
this number is the same for both methods, the times in-
trinsically required for the methods (the calculations of
stochastic modes for ngPC; the determination of coefficients
for the CHBM) can then be compared.

In results 2, the displacements and velocities are directly
modelled with the ngPC (see (19)). ,e stochastic modes are
determined using the regression method. Here, the order p

of ngPC should be equal to 30 to be accurate (the related
errors of frequencies and amplitudes of the displacements
and velocities are below 10%). In the case of a single un-
certain parameter, only 31 simulations of the complete
system are required to build the stochastic modes. Similarly,
3.96 s only is required to determine a limit cycle for one set of
parameters. ngPC (particularly with the regression method)
is efficient in terms of calculation costs.

In results 3, the displacements and velocities are de-
termined using the CHBM. It takes 1.43 s to determine the
coefficients of the CHBM and a negligible time (less than
2.10–3 s) to determine one limit cycle. ,e CHBM is
therefore more efficient in terms of calculation costs than
ngPC.

In results 4, the displacements and velocities are de-
termined using the CHBM (see (12)) but with coefficients
modelled using ngPC (see (20)). To obtain the necessary
accuracy with ngPC, an order p � 2 is sufficient. So, for
one uncertain parameter, only three resolutions of the
system (see (13)) are sufficient to determine the stochastic
modes of the coefficients of the CHBM and it just takes
1.98 s to calculate them. It must be noted that once the
stochastic modes are calculated, it is not necessary to solve
the system of equations (see (13)). ,e CHBM (see (12))
provides the limit cycles in a negligible time (less than
2.10−3 s). ,us, the CHBM combined with the ngPC is
much more efficient in terms of calculation costs than
ngPC alone, the CHBM alone, or the direct MC method.
As no simulation of the initial system is necessary, this
performance is even more pronounced when the number
of samples is high. In the present study, 100 sets of
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parameters were calculated, but it may be necessary to
perform 1,000 or 10,000 calculations.

Figure 2 shows the relative errors, in percentage, of
maximum and minimum frequencies (ω) and of maximum
and minimum amplitudes of the displacements (θ1) and
velocities (dθ1) between the direct calculation (MC) and the
CHBM+ngPC according to the order p of the chaos (p� 1 to
10). ,e relative errors of the frequencies are very low
(<0.3%). ,e relative errors of the amplitudes are less than
10.5%. In addition, the relative errors remain constant when
p increases. ,e error is in this case due to the limited
accuracy of the CHBM (see (13)) in reproducing the solution
of (1). ,erefore, order p � 2 is selected.

Figure 3 shows the dispersion of 100 calculated limit
cycles due to the dispersion of the uncertain parameters,
with the 4 methods: direct simulation (MC-a-green),
ngPC for displacement and velocities with order p � 30
(Sim + ngPC-b-green), constrained harmonic balance
(CHBM-a-blue), and constrained harmonic balance with
ngPC for the coefficients with order p � 2
(CHBM+ ngPC-b-blue). ,e calculated limit cycles, re-
spectively, MC-a-green and Sim +CHBM-b-green, are
virtually coincident. Similarly, the limit cycles deter-
mined, respectively, with CHBM-a-blue and
CHBM+ngPC-b-blue are also very close. ,ese results
show that the use of ngPC, directly either for the dis-
placements and velocities or for the coefficients of the
CHBM, does not harm the precision of the limit cycles.
However, a slight difference is observed between
Sim + ngPC-b-green and CHBM+ ngPC-b-blue curves
and between MC-a-green and CHBM-a-blue curves. ,is
shows that the use of CHBM whether with or without
ngPC generates a relatively small error (Table 3).

,e results obtained with the 4 methods are compared in
Table 3. ,ey show the maximum and minimum amplitudes
of the displacements and velocities and their relative errors
in comparison with MC. ,e relative errors between the
results calculated with MC and Sim+ngPC are very close
(<1%).,e relative errors results, respectively, obtained with
the CHBM and with the combination of CHBM and ngPC,
in comparison with MC, are similar and below 10%.

Finally, among the different methods studied, the
method based on the combination of the CHBM and ngPC is
the most efficient one in terms of calculation costs and great
accuracy.

4.2. Study of the Limit Cycles of the System with Several Un-
certain Parameters. In the studies below, several uncertain
parameters (from 1 to 8) are taken into account in the
estimation of the limit cycles of the system. ,e objective is
to evaluate the ability of the method based on the com-
bination of the CHBM and ngPC to estimate the limit
cycles with an increasing number of uncertain parameters.
,e results obtained are compared with those obtained
with the classic MC method applied to the initial system. In
addition, the influence of the nominal values and the width
of the interval dispersions of the uncertain parameters are
investigated.

4.2.1. Study of the Limit Cycles with Different Nominal Values
of the Friction Coefficient. ,e objective of this section is to
investigate, respectively, the influence of the nominal value μ
of the friction coefficient and the dimension of the width of
the uncertainty parameters intervals other than that of the
friction coefficient Δμ on the effectiveness of the method
based on the CHBM and ngPC to estimate the limit cycles of
the clutch system.

In this study, the friction coefficient is again chosen in
N� 100 random points of the interval
[μm − μmΔμ, μm + μmΔμ] with three different nominal values
of the friction coefficient μm� 0.25; 0.35; and 0.5 and with
the variation Δμ� 0.05 (5%). ,ese values correspond to
points which are increasingly farther from the Hopf bi-
furcation point μ0 (here μ0� 0.11). ,e other parameters are
considered as uncertain randoms (N� 100 points) in the
intervals [Vm,i − Vm,iΔVm,i, Vm,i + Vm,iΔVm,i], Vm,i is the
nominal value of the ith uncertain parameter, and ΔVm,i is
successively equal to 0.01 (1%) and 0.05 (5%).

,e number of uncertain parameters is successively
equal to 1, 2, 5, and 8. ,e order of the polynomial chaos
used is equal to 2.,e results are given for the three nominal
values of the friction coefficient (Table 4).

In terms of calculation costs, it should be noted that the
number of resolutions for the system of equations (see (13))
ranges from 3 to 90.

,e comparison values are the maximum and minimum
amplitudes of displacement and velocity which are used to
determine the dispersion of the limit cycles. ,e dispersion
of the limit cycles naturally increases with the number of
uncertain parameters. For each value of the coefficient, the
relative errors for the maximum and minimum amplitudes
of displacement and velocity vary and slightly increase with
the number of uncertain parameters.

For ΔVm,i � 0.01, when μm increases (farther from the
Hopf bifurcation point), the relative errors will decrease
(from 7 to 10% for μm� 0.25, from 3 to 6% for μm� 0.35,
and from 1 to 4% for μm� 0.50). ,erefore, the calculation
precision of the limit cycles is increasingly high.

With μm � 0.25, the fact of increasing Vm,i to 0.05
instead of 0.01 implies small errors (7 to 11%) for a
number of uncertain parameters r < 5 but leads to im-
portant errors beyond (14% to 37%). ,e method is then
no longer effective. With μm � 0.35, for any uncertainty
interval, the relative errors lie in the range of 4 to 7%.
Similarly, with μm � 0.5 and for any uncertainty interval,
the relative errors lie in the range of 1 to 4%. ,us, the
combination of the constrained harmonic balance method
and ngPC is more effective for the estimation of the limit
cycles of the system as the area is far from the Hopf bi-
furcation point. ,is is because the vibration levels in-
crease in the same way. ,ese results are confirmed in
Figure 4 which represents the limit cycles of the system
determined with (CHB + gPC) for three values of the
friction coefficient.

In conclusion, except for the case of μm� 0.25 and the
uncertainty intervals admitting a dispersion of 5%, the
combination of the CHBM and the ngPC is effective with the
intervals of uncertainty parameters other than the friction
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Figure 2: ,e relative errors (%) of the maximum and minimum frequencies (ω) (a) of the maximum and minimum amplitudes of
displacements (θ1) and (b) of velocities (dθ1) (c) between the direct calculation (MC) and ngPC+CHBM with order p.
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Figure 3: Dispersion of limit cycles (μ� uncertain, μm � 0.25, and Δμ� 0.05).
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coefficient, admitting a dispersion of 1% or 5%, in any of
zones of the Hopf bifurcation point compared.

4.2.2. Study of the Limit Cycles with Different Dispersions of
the Friction Coefficient. ,e objective of this study is to
investigate the influence of the uncertainty interval di-
mension of the friction coefficient μ (the most important
parameter in friction systems) on the effectiveness of the
method based on the CHBM and ngPC to estimate the limit
cycles of the clutch system.

,is study is similar to the previous one with μm� 0.5
and ΔVm,i � 0.01, considering a variation Δμ equal not only
to 0.05 (5%), but also to 0.1 (10%).

Table 5 shows that the relative errors of the minimum
and maximum amplitudes of the displacements and ve-
locities obtained with a variation Δμ equal to 0.1 are of the
same order of magnitude as those obtained with a variation
Δμ equal to 0.05. When the uncertainty interval increases,
the dispersions of the vibration levels naturally increase.
Other trends with a variation Δμ equal to 0.1 are the same as
those obtained with a variation Δμ equal to 0.05. ,e same
conclusions can be drawn with a nominal value of the
friction coefficient equal to 0.25 or 0.35 (Figure 5).

In conclusion, the use of the combination of the CHBM
and ngPC is effective with a dispersion of 0.1 or 0.05 of the
friction coefficient, in any of the zones of the Hopf bifur-
cation point compared.

Table 3: Comparison of calculated limit cycles of a clutch system with 6 DOF, using different methods.

Methods MC Sim+ngPC CHBM CHBM+ngPC
Maximum amplitude of displacements (rad) 0.0216 0.0216 0.0232 0.0232
Relative error of the maximum amplitude of displacements (%) — 0.21 7.82 7.81
Minimum amplitude of displacements (rad) 0.0204 0.0204 0.0224 0.0224
Relative error of the minimum amplitude of displacements (%) — 0.04 9.92 9.93
Maximum amplitude of velocities (rads−1) 349.8 351.0 378.2 378.2
Relative error of the maximum amplitude of velocities (%) — 0.38 8.14 8.14
Minimum amplitude of velocities (rad/s) 330.4 330.4 364.4 364.4
Relative error of the minimum amplitude of velocities (%) — 0.04 10.24 10.24

Table 4: Comparison of the limit cycles of a clutch system with several uncertain parameters between the MCmethod and the combination
of the CHBM and ngPC: three different values of the friction coefficient and with different dispersions interval for uncertain parameters.

N

Number of uncertain parameters r 1 2 5 8

μ μ, kp
μ, kp, kf, c1,

c2,
μ, kp, kf, c1,
c2, r1, r2, l

Number of resolutions for the system of equations (see (13)) 3 9 42 90
ΔVm,i 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05

μ� 0.25

Maximum amplitude of displacements (∗10e− 4, rad) 216 216 216 220 218 254 218 240
Relative error of the maximum amplitude of displacements (%) 7.81 7.81 7.72 7.13 7.64 8.16 8.07 37.7

Minimum amplitude of displacements (∗10e−, rad) 204 204 204 198 200 180 198 168
Relative error of the minimum amplitude of displacements (%) 9.93 9.93 9.96 10.7 10.1 12.3 10.4 19.4

Maximum amplitude of velocities (rad·s−1) 350 350 352 360 354 398 362 410
Relative error of the maximum amplitude of velocities (%) 8.14 8.14 8.05 7.47 7.98 8.96 8.41 24.9

Minimum amplitude of velocities (rad·s−1) 330 330 330 320 324 286 320 274
Relative error of the minimum amplitude of velocities (%) 10.2 10.2 10.2 11.0 10.4 12.5 10.5 14.7

μ� 0.35

Maximum amplitude of displacements (∗10e− 4, rad) 256 256 256 262 258 276 258 282
Relative error of the maximum amplitude of displacements (%) 3.73 3.73 4.02 3.44 2.89 3.18 3.87 3.35

Minimum amplitude of displacements (∗10e− 4, rad) 244 244 244 238 240 224 236 212
Relative error of the minimum amplitude of displacements (%) 4.61 4.61 4.63 4.93 4.59 5.36 5.97 6.89

Maximum amplitude of velocities (rad·s−1) 416 416 418 426 420 454 428 494
Relative error of the maximum amplitude of velocities (%) 4.12 4.12 4.09 3.85 3.63 3.79 4.27 4.11

Minimum amplitude of velocities (rad·s−1) 396 396 396 384 388 356 386 338
Relative error of the minimum amplitude of velocities (%) 4.98 4.98 4.97 5.30 5.21 5.70 5.06 5.19

μ� 0.5

Maximum amplitude of displacements (∗10e− 4, rad) 304 304 304 310 306 322 306 330
Relative error of the maximum amplitude of displacements (%) 1.74 1.74 1.72 1.61 1.73 1.51 1.79 1.58

Minimum amplitude of displacements (∗10e− 4, rad) 290 290 290 284 290 272 286 260
Relative error of the minimum amplitude of displacements (%) 2.16 2.16 1.90 2.30 1.07 2.41 2.64 3.07

Maximum amplitude of velocities (rad·s−1) 494 494 496 506 496 528 508 574
Relative error of the maximum amplitude of velocities (%) 2.26 2.26 2.24 2.14 2.26 2.18 2.24 2.41

Minimum amplitude of velocities (rad·s−1) 470 470 470 460 470 434 460 410
Relative error of the minimum amplitude of velocities (%) 2.64 2.64 2.21 2.76 1.21 2.85 3.65 2.63
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Figure 4: Dispersion of the limit cycles determined with (CHBM+ngPC) (r� 8; Δμ� 0.05; ΔVm,i � 0.01; μm� 0.25; 0.35; 0.50).

Table 5: Comparison of the limit cycles of a clutch system with 6 DOF with different intervals of the friction coefficient (μ� 0.5;
ΔVm,i � 0.01).

Number of uncertain parameters r 1 2 5 8
Number of resolutions for the system of equations (see (13)) 3 9 42 90
Friction coefficient variation Δμ 0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1
Maximum amplitude of displacements (∗10e− 4, rad) 304 310 304 310 306 310 306 312
Relative error of the maximum amplitude of displacements (%) 1.74 1.57 1.72 1.56 1.73 2.57 1.79 1.67
Minimum amplitude of displacements (∗10e− 4, rad) 290 282 290 282 290 280 286 280
Relative error of the minimum amplitude of displacements (%) 2.16 2.42 1.90 2.46 2.07 2.39 2.64 2.39
Maximum amplitude of velocities (rads−1) 494 504 496 504 496 506 508 516
Relative error of the maximum amplitude of velocities (%) 2.26 2.10 2.24 2.10 2.26 2.11 2.24 2.21
Minimum amplitude of velocities (rads−1) 470 458 470 456 470 456 460 450
Relative error of the minimum amplitude of velocities (%) 2.64 2.88 2.21 3.15 1.21 2.53 3.65 2.85
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Figure 5: Continued.
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5. Conclusion

,is article has presented the analysis of the vibration be-
haviour of a clutch system with 6 DOF to take the uncer-
tainties of parameters into account. Two approaches have
been investigated. ,e first approach is to use ngPC directly
on the displacements and velocities in order to determine the
limit cycles. ,is method is only effective when there is one
uncertain parameter (friction coefficient). For more complex
systems with several DOF with a high number of uncertain
parameters, this approach becomes inefficient, because the
number of samples of direct simulations necessary to build
stochastic modes would be too high. ,e second approach
which combines the constrained harmonic balance method
and nonintrusive generalized polynomial chaos is proposed
as an alternative. ,e influence of the dimension of the
interval dispersion of the uncertain parameters, the nominal
value of the friction coefficient relative to the Hopf bifur-
cation point, and the number of uncertain parameters (from
1 to 8) has been studied.

,e results demonstrate the ability of the approach
which combines the CHB method with that of ngPC to
properly estimate the dispersion of the limit cycles of a
clutch system, especially for high values of the friction co-
efficient (far from the Hopf bifurcation point) when vi-
bration levels are high even with relatively important
uncertainties for the parameters. In this approach, the
calculation costs of the limit cycles are significantly reduced.
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