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(e coil spring is an important element in the suspension system of railway vehicles, and its structural vibration caused by the
mass distribution can deteriorate the dynamic performance of the vehicle. However, the coil spring is usually modelled as a simple
linear force element without considering the dynamic characteristics in multibody dynamic simulations of railway vehicles. To
integrate the dynamic characteristics of the coil spring into the simulation, three equivalent dynamic models of the coil spring are
established by treating the coil spring as multimass spring series, Timoshenko beam, and flexible spring, respectively. (e
frequency-sweep method is applied to obtain the dynamic response of the proposed models of coil spring, and the accuracy of the
models’ results has been compared and verified by the laboratory test. Results show that all of these three equivalent models can
reflect the influence of the spring mass distribution on its dynamic responses. Compared with the mass-spring series and beam
element equivalent models, the flexible spring model can better reflect the dynamic stiffness and stress of the coil spring changing
with the exciting frequency. (us, the flexible spring model proposed in this paper is more applicable to railway vehicle system
dynamics and the fatigue analysis.

1. Introduction

For modern railway vehicles, multibody vehicle dynamics
simulation has become a very common and important design
instrument, allowing the assessment and optimization of
vehicle performance from the early stage of the design pro-
cess. (e accuracy of rail vehicle multibody models is mainly
affected by the wheel–rail contact model and the suspension
component model [1].(e suspension systemmainly consists
of the coil spring, rubber spring, air spring, and hydraulic
damper. In the previous multibody dynamics analysis of
railway vehicles, most suspension components are considered
as linear force elements. (e models of the air spring, in-
cluding the linear Nishimura model, spring and dash model,
Berg model, thermodynamic model, and TPL-ASN model,
have been established in recent years [2, 3]. For the rubber
spring, the one-dimensional model, multidimensional model,
and friction model have been established [4]. Nevertheless, it
is hard to establish the accurate model for the rubber spring
because of its significant nonlinear characteristics, and the

neural network model starting from the experimental results
has been exploited for vehicle dynamics simulations. In terms
of the hydraulic damper, the Maxwell model, consisting of a
linear spring in series with a linear dashpot, is widely used in
railway vehicle dynamics and has been integrated into the
simulation software (SIMPACK, ADAMS/RAIL, etc.) [5, 6].

In terms of the coil spring, the stiffness will change with the
exciting frequency due to its dynamic characteristics deter-
mined by the mass distribution of the spring itself [7]. As the
random track irregularities cover the entire frequency spec-
trum, the structural modes of the coil spring can be excited at a
specific frequency from the track excitation, which can sig-
nificantly change the stiffness of the coil spring and leads to the
deterioration of the vehicle performance and spring fatigue life
[8, 9]. Zhou et al. [10] studied the failure phenomenon of
primary springs for the metro vehicle and found that an ob-
vious resonance phenomenon of the coil spring exists.(e field
test and finite element analysis were carried out to obtain the
modal frequency of the spring under the constraint state. Lee
and(ompson [7] used the dynamic stiffness matrix approach
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to obtain the natural frequencies and dynamic stiffness of coil
springs. (e results exhibit the significant dynamic stiffening
effect on coil springs. Combined with the deformation char-
acteristics of the slender spring structure, Zhang et al. [11]
studied the nonlinear characteristics of the stiffness of the coil
spring with circular section on the basis of the accurate spring
beam element model. Sun et al. [12, 13] established the finite
element model of the coil spring and analyzed the dynamic
stiffness characteristics of the spring by using the mode su-
perposition method. (e spring exhibits a strong internal
resonance at the frequency around 50–60Hz, and large stresses
arise. Fu andWang [14] simulated the high frequency vibration
of vehicle with coil spring suspension using shock wave theory.
Liu and Zhang [15] established the finite element model of the
central suspension spring and proposed the method of mul-
tidegree of freedom equivalent spring model to obtain the
dynamic stiffness. Most studies about fatigue breakage of coil
springs focused onmaterial and processing procedures [16, 17],
while the measures to increase the service life of the coil spring
have not been given enough attention. Furthermore, the origin
of the occurrence of the high stresses should be clarified, es-
pecially for the phenomenon of resonance. However, the dy-
namic stress of the coil spring in the case of resonance has been
rarely studied in multibody dynamic simulations.

(e numerical method of dynamic stiffness can only get
the approximate solution of coil spring [12, 18–21], while the
finite element model of the coil spring can obtain the accurate
solution under the premise of sacrificing computing efficiency
[22]. In order to consider the changes of stiffness and stress
with frequency caused by spring mass and vibration in the
multibody vehicle dynamics simulation, three equivalent
dynamic models of coil spring are established by using, re-
spectively, three methods of mass-spring series, Timoshenko
beam, and flexible body substructure. (en the frequency
domain characteristics of coil spring are introduced into time
domain integral calculation. In the multi mass-spring
equivalent model, to consider the mass and self-vibration of
the spring, the continuous coil spring is discretized into
several mass blocks.(e Timoshenko-beam equivalent model
is based on the Timoshenko beam theory and the dynamic
stiffness matrix to discretize the coil spring into beam ele-
ments.(emass and geometry of the spring are considered in
the beam element properties. (e equivalent dynamic model
of flexible spring is obtained by reducing the degree of
freedom of the finite element model, which includes material
properties and modal information. In addition, the dynamic
stress of flexible spring is obtained by modal stress recovery
method. (e dynamic response of coil spring under different
frequencies is obtained by loading sweep excitation on three
equivalent models. Finally, the dynamic characteristics of the
spring and the accuracy of the three equivalent models are
verified by the dynamic characteristics test.

2. Equivalent Dynamic Model of Coil Spring

In the previous multibody dynamics analysis of vehicles, the
coil spring is considered as a linear force element. Due to the

mass distribution of the spring and the characteristics of self-
vibration, the stiffness of the spring changes with frequency.
Especially, when the frequency is high or in the resonance
region, the change of stiffness is very significant. However,
the excitation frequency of the coil spring distributes in a
wide range during the vehicle operation. In order to analyze
the variation of the dynamic stiffness of a coil spring with the
exciting frequency, the following three equivalent spring
models have been proposed to present its dynamic char-
acteristics in the multibody dynamics.

2.1.Mass-Spring SeriesModel. Vehicle dynamic performance
simulation is based on time domain. However, the rela-
tionship between spring dynamic stiffness and excitation
frequency is based on frequency domain. To reflect the fre-
quency-dependent characteristics of spring in time domain,
the continuous coil spring is replaced by mass-spring series
model with multiple degrees of freedom. (e equivalent
model is composed of N− 1 linear supporting force elements
andNmass body in series.(e number of mass discretization
N depends on the order of spring modes or the cut-off fre-
quency of analysis to be reflected in the equivalent model. In
order to reflect the self-contact phenomenon of coil spring in
abnormal vibration, contact force elements of spring are
established between mass bodies, as shown in Figure 1.

(e equivalent model consists of several supporting
force elements and contact force elements.(e support force
element is used to connect two continuous mass bodies,
which are made up of the linear spring and the damper in
parallel. (e contact force element of the coil spring is used
to connect the mass bodies that may be touched.When these
mass bodies contact, the element force provides the cor-
responding contact force.

(e relationship for the support force can be written as
follows:

Fz � ki · ri + ci · ui, (1)

where Fz denotes the damping force in z direction, ki
(1≤ i≤N− 1) is the stiffness coefficient, ci is the damping
coefficient, ri is the relative displacement between two mass
bodies, ui is the relative velocity between two mass bodies,
and its calculation formula is as follows:

ri � st(i) − st(i − 1) − Δz0

ui � std(i) − std(i − 1)
􏼩, (2)

where Δz0is the nominal length of twomass bodies; st (i), std
(i) are the state displacement and state velocity of i mass
body; st (i− 1), std (i− 1) are the state displacement and state
velocity of i− 1 mass body.

(e relationship for the contact force can be written as
follows:

FN � kNpi, (3)

where FN denotes the contact force in z direction, kN is the
contact stiffness coefficient, and pi is the contact penetration
depth. (e contact penetration depth is calculated as
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pi � z(i) − z(i − 1) − Δzo − L( 􏼁 − ztol, (4)

where z (i) is the state displacement of the contact point, and
z (i− 1) is the state displacement of the contacted point. Δzo
is the nominal distance between the coils, L is the positive
sum of the distances between the respective contact location
and associated marker, and ztol is the adjustment parameter
of the contact distance.

In order to ensure that the static stiffness and modal of
the equivalent model are equal to the actual spring, the
following conditions should be satisfied:

ki � (N − 1) · Ks

mi �
Ms

N

⎫⎪⎪⎪⎬

⎪⎪⎪⎭

, (5)

where Ks is the static stiffness of the coil spring andMs is the
total mass of the coil spring. When the natural frequencies
and modes of the equivalent model are calculated, the in-
fluence of the damping and contact force elements can be
neglected, and the free vibration equation of the spring can
be simplified as follows:

M €x + Kx � 0. (6)

When sinusoidal excitation is applied,

u(t) � A sin(ωt + θ). (7)

Substituting equation (7) into equation (8), we obtain

K − ω2
M􏼐 􏼑A sin(ωt + θ) � 0. (8)

In order for equation (8) to have a non-zero solution, it is
necessary for the determinant of the matrix [K − ω2M] to
vanish. (e constrained frequency ωN and movement mode
of the multi-mass-spring series model are obtained as shown
in Table 1.

(e equivalent model is one-dimensional mass-spring
series, so each mass body has only vertical degrees of
freedom. (e spring stiffness is established by linear spring
and damping between the springs.(e contact force element
of the coil spring is used to connect the mass bodies that may
be touched. (e equivalent spring model can only reflect its
own vertical vibration, so the dynamic stiffness calculated is
only suitable for one-dimensional model.

2.2. Timoshenko-Beam Model. For the convenience of the
spiral spring calculation, the global coordinate system is
transformed into the helical curve coordinate system. After
the coordinate transformation, the coil spring can be
regarded as a simple beam for calculation.(e helix radius is
R and the helix angle is α. (e variable s is used to measure
the distance along the wire and is related to the angle ϕ by

ϕ � s ·
cos α

R
. (9)

At any point on the helix, local coordinates are defined as
shown in Figure 2, with u radial, w tangential, and v

binormal to the other directions. (e displacements (u, v, w)
in these local coordinates are related to those in global
coordinates (ux, uy, uz) by
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(10)

Consider the situation in which the spring is subjected to
an arbitrary load F1. (en at any cross-section the wire is
subjected to three components of force Pu, Pv, Pw and three
momentsMu, Mv, Mw about the u,v and w directions. (ese
forces and moments result in the linear displacements δ and
rotations θ. According to Timoshenko beam theory, the
relationship between load and deformation is as follows [7]:

z
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δ
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, (11)

m1
c1 k1 kcontact

m2
c2 k2 kcontact

mN – 2
cN – 2 kN – 2 kcontact

mN – 1

mN

cN – 1 kN – 1 kcontact

m3
c3 k3 kcontact

Figure 1: Mass-spring series equivalent model.
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where E is the Young’s modulus, G is the shear modulus, A is
the cross-sectional area of the wire, c is the shear area cor-
rection, and Iu and Iv are the second moments of area of the
section about the directions u and v. Upon rearranging by
components of displacements and forces, this can be written as
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. (12)

When subjected to dynamic loads, the mass and vi-
bration of the spring need to be considered in the balance
equation. Introducing the inertia forces into equation (12)
yields the governing partial differential equations for the
dynamic equilibrium as
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(13)

where T21 is a diagonal matrix related to density, cross-
sectional area, and the second moments of area. (e wave in
the spring contains spatial and transient variables, which are
functions of wave number k and angular frequency ω. If the
response is harmonic in time, we write the displacements
and forces for a particular free wave as
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Substituting equation (14) into equation (15) gives a set
of 12 homogeneous linear simultaneous equations:
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S11
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Δ

Θ

Π

Λ

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

� 0, (15)

where S21 � −ω2T21 and I is the unit matrix. In order for
equation (15) to have a non-zero solution, it is necessary for
the determinant of the matrix (k [I]− S) to vanish. In order
to obtain the point stiffness and transfer stiffness of the coil
spring, the force and displacement vectors of the spring are
as follows:

F � P(0) P(L)􏼂 􏼃
T

U � δ(0) δ(L)􏼂 􏼃
T

⎫⎬

⎭, (16)

where 0 and L are the two ends of the spring, respectively,
and the dynamic stiffness of the spring is defined as

K � FU
− 1

. (17)

(e coil spring is considered as Timoshenko beam for
dynamic stiffness matrix analysis. (e mass distribution and
self-vibration of the coil spring are introduced into the
dynamic stiffness analysis, and the relationship between the
stiffness of the spring and the frequency is obtained. Based
on this theory, the Timoshenko beam equivalent dynamic
model of coil spring is proposed. (e parameters of the coil
spring calculated in this paper are shown in Table 2.

According to the above parameters of the spiral coil
spring, the expression under the Cartesian coordinate sys-
tem of the coil spring is as follows:

xi �
D

2
cos

2π
n

i􏼒 􏼓,

yi �
D

2
sin

2π
n

i􏼒 􏼓; i � 0, 1, 2 · · · N · n,

zi �
S

n
i,
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(18)

where n is the discrete number of each cycle spring, and the
other parameters are shown in Table 2. (e Cartesian co-
ordinates of the key points of the center line of the coil spring
are obtained by using the helix equation, and the helix is
generated according to the key points in the cylindrical
coordinates. (e helix of the coil spring is shown in
Figure 3(a). (e continuous coil spring is discretized by
beam element, then the discrete element is given material
and section properties to ensure that the mass distribution of
the beam element model is consistent with the real coil

Table 1: (e constrained modes of the coil spring.

Order 1 2 3 4 5 6 7 8
Frequency (Hz) 65.8 129.2 187.4 237.7 247.7 277.2 301.9 302.4
Movement mode Expansion Expansion Expansion Expansion Expansion Expansion Expansion Expansion

y

x

z

φ
w

v

u

α

Figure 2: Coordinate system of a coil spring.
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spring. (en the dynamic response of the equivalent model
is calculated by using Timoshenko beam theory. (e
equivalent model of beam element is shown in Figure 3(b).

In order to consider the contact nonlinearity of the
spring in the equivalent model of beam element, the contact
force element is established between two upper and lower
nodes on the spring helix. (e method of establishing the
contact force element refers to Section 2.1.

(e lower end of the beam element equivalent model is
fixed, the non-zero displacement constraint is applied at the
upper surface, and the constraint mode of equivalent model
is obtained as shown in Table 3.

In Timoshenko beam equivalent model, structural ma-
terial properties and spirals are defined by beam element, but
the nonuniformity of spring structure is not included.
(erefore, all modes of coil spring can be covered. (e
modal frequencies and shape are basically consistent with
the results of finite element mode.

2.3. Flexible Spring Model

2.3.1. Dynamic ;eory of Flexible Bodies. (e model of
spring flexible body is mainly based on the fixed interface
modal synthesis method [23]. Firstly, a modal set is given
to the flexible body, which is expanded by modal method.
(e elastic displacement of the flexible body is represented
by the linear combination of modal vector and modal
coordinate. (e elastic displacement of the flexible body is
calculated at each moment to express its deformation. (e
interface of flexible components is fixed and the modal
matrix is established, then the modal matrix can be
expressed as

φr � φ1N,φ1C􏼂 􏼃, (19)

where φ1N is the main modal matrix and φ1C is the con-
strained modal matrix. (e main mode qN is the intrinsic
mode when the interface degrees of freedom are fixed, which
corresponds to the internal degrees of freedom. (e con-
strained mode qC is the static mode formed by the static
displacement distribution, which releases each boundary
degree of freedom in turn to produce unit displacement.
(en the displacement matrix s is as follows:

s �
I 0

φ1N φ1C

􏼢 􏼣
qC

qN

􏼢 􏼣, (20)

where I is unit matrices and 0 is zero matrices. (rough the
transformation, the flexible body equation of motion is
obtained:

􏽢M€s + 􏽢Ks � f(θ, t), (21)

where 􏽢M, 􏽢K are, respectively, transformed mass matrix and
stiffness matrix; f is a function of constrained modal force
and inherent modal force of flexible body; θ is a state variable
of multibody system; t is a time variable.

2.3.2. Modelling of Flexible Spring. In the multibody dy-
namics calculation, the equivalent model of the coil spring
should not only reflect the spring’s own vibration, but also
ensure the three-dimensional support stiffness of the spring.
Based on the theory of flexible body, a flexible body model of
coil spring is established to reflect the dynamic character-
istics caused by mass distribution and self-vibration of the
spring. (e spring flexible model can include both static
stiffness and dynamic characteristics. (e modeling process
is shown in Figure 4.

In order to accurately reflect the characteristics of the
coil spring, the geometric model of the spring is established
and given the corresponding material properties. (en the
geometric model is discretized by the solid element
SOLID92 with 6 degrees of freedom. (e finite element
model of the spring is obtained as shown in Figure 5. (e
lower surface of the finite element model is fixed, and the
non-zero displacement constraint is applied at the upper
surface. (e constraint mode of the finite element model is
obtained as shown in Figure 5.

In order to improve the efficiency of dynamic calculation of
coil spring, the finite element model is reduced in degrees of
freedom, and the complete spring structure with more degrees
of freedom is transformed into a structure with lower degree of
freedom by substructure reductionmethod.(e reducedmodel
has the same static and dynamic characteristics as the original
structure. In order to retain the stiffness information of springs,
the modes within 1000Hz are selected as the main modes, and
the substructures are generated based on the finite element
models. Before the dynamic calculation, the structural damping
of flexible spring is defined, and then the constraint mode of
flexible spring is obtained. (e constrained modes of the finite
element model are compared with those of the flexible body as
shown in Table 4.

Comparing the constrained modal results of the full
degree of freedom spring with that of the flexible spring
(substructure), it can be found that the flexible spring in-
cludes the structure and modal properties of the spring. (e
substructure can match the modal frequencies and move-
ment modes with the full degree of freedom spring in the
frequency range considered.

2.3.3. Dynamic Stress Calculation of Coil Spring. (e tra-
ditional rigid-body dynamic model neglects the relative dis-
placement inside the structure. When the structure resonates in
the vibration, the calculated stress will be less than the actual
structural stress if the traditional static stress calculationmethod

Table 2: Parameters of the coil spring.

Notation Parameter SI unit Value
N Total number of cycles — 4.6
n1 Number of active coils — 3.8
D Wire diameter mm 40
D Mean coil diameter mm 240
α Helical angle deg 5.68
S Pitch mm 70
H0 Free height mm 315
G Shear modulus N·mm−2 78500
λ Poisson’s ratio — 0.3
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(a) (b)

Figure 3: Coil spring model. (a) Helix. (b) Beam element equivalent model.

Table 3: (e constrained modes of the coil spring.

Order 1 2 3 4 5 6 7 8
Frequency (Hz) 66.8 71.8 84.1 88.5 122.9 127.5 137.1 144.2
Movement mode Expansion Twist Bending Bending Bending Expansion Bending Twist

Geometric 
structure of coil

spring 

Finite element 
model 

Material properties 
Structural discretization

Substructure 
model 

Modal analysis
Reduced degrees of freedom

Flexible spring 
model

Selection of special modes 
Definition of structural damping

Defining boundary conditions
Calculating constraint mode

Comparing the modal results 
and modifying the model 

Equivalent 
dynamic model 

Figure 4: Modeling flow of flexible spring.

X1

(a)

5 6 8 7 

1 2 3 4 

(b)

Figure 5: (e FEM model and constrained modes of the coil spring.
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is used [24]. In order to calculate the structural dynamic stress
when the coil spring resonates, the structural stress is calculated
by modal stress recovery based on the structural modal dis-
placement. Modal displacement X of a node in a flexible body
can be obtained by superposition of several modes:

X � 􏽘
H

j�1
hjwj � Hw, (22)

where hj is the mode frequency of the jth order and wj is the
mode displacement corresponding to themode frequency of the
jth order. In the calculation of structural finite element method,
the strain εe

i and stress σ
e
i corresponding to node i are as follows:

εe
i � Be

i Xe
i( 􏼁ue

i ,

σe
i � De

i ε
e
i � De

i B
e
i u

e
i ,

􏼨 (23)

where Be
i is the strain field matrix of ith node, De

i is the elastic
matrix of ith node, and ue

i is the displacement of ith node.
(e stress and strain of ith node can be derived by the modal
displacement of the flexible body. Substituting equation (24)
into equation (25), we obtain

εe
i � Be

i Xe
i( 􏼁He

i w � Be
i Xe

i( 􏼁 􏽘

H

j�1
he

jiwj � 􏽘

H

j�1
heε

ji wj � Heε
i w,

σe
i � De

i B
e
i Xe

i( 􏼁He
i � De

i B
e
i Xe

i( 􏼁 􏽘

H

j�1
he

jiwj � 􏽘
H

j�1
heσ

ji wj � Heσ
i w,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(24)

where Xe
i is the modal displacement of ith node; he

ji is the jth
mode of ith node; heε

ji is the strain field generated by the jth
mode of ith node; heσ

ji is the stress field generated by the jth
mode of ith node.(erefore, as long as themodal displacement
of each node in the flexible body is obtained, the dynamic stress
response of each node in the flexible body can be calculated.

Based on the flexible spring model established in the
previous section, the dynamic stress of coil spring in time
domain is calculated bymodal stress matrix andmodal stress
recovery method using finite element software and multi-
body dynamics software. (e flexible model and stress cloud
diagram of the coil spring are shown in Figure 6.

3. Dynamic Characteristic Test of Coil Spring

3.1. Experiment Set-Up. In order to determine the accuracy
of the theoretical model and verify the dynamic charac-
teristics of the coil spring, a test bench was set up as shown in
Figure 7. It is equipped with an electrohydraulic servo
system that allows for an accurate testing at a frequency up to
70Hz. A controlled sinusoidal movement with varied am-
plitudes and frequencies was applied as the input. Mea-
surements were carried out by applying such deflections and

recording the corresponding forces along the spring axis
direction. (e lower surface of the spring is fixed, and the
sweeping excitation is applied to the upper surface of the
spring by a hydraulic servo actuator. Besides, in order to
eliminate the influence of inertia force on the actuator
tooling, the force sensor is placed in the spring restraint
position. By installing the force sensor and displacement
sensor in the axial direction of the coil spring, the defor-
mation s and force F of the spring in the test process are
measured, and then the relationship between the dynamic
stiffness of the coil spring and the excitation frequency is
obtained. In addition, strain rosettes are arranged at the
position where the stress of the coil spring may be large, and
the relationship between the dynamic stress of the spring
and the exciting frequency is obtained. In order to ensure the
consistency between simulation and test, the boundary
conditions of the tested spring are in good agreement with
those of simulation.

3.2. Test of Dynamic Stiffness. In order to analyze the dy-
namic stiffness of the coil spring and verify the accuracy of
the equivalent dynamic model of the coil spring, the dy-
namic stiffness test of the coil spring is carried out, as shown
in Figure 8. (e lower surface of the spring is fixed, and the
sweeping excitation is applied to the upper surface of the
spring by a hydraulic servo actuator. (e displacement
excitation s is as follows:

s � s0 sin(2πf · t) + s1, (25)

where s0 is the loading amplitude, f is the loading frequency
(1–70Hz), and s1 is the preloading displacement.

(e loading displacement of the dynamic characteristic
test bench has a certain loss when the excitation frequency is
high. In order to accurately reflect the actual displacement
excitation of the upper surface of the coil spring, a dis-
placement sensor is installed on the lower surface of the
hydraulic actuator. In order to reflect the force response of
coil spring under different frequencies, the sweep excitation
of 1–70Hz is applied to the upper surface of the spring. (e
sweep excitation spectrum of the upper displacement is
shown in Figure 8(b). (e transfer force under sweep ex-
citation is shown in Figure 9. It is easy to obtain that the force
response of the spring does not change with the frequency in
the low frequency range. However, when the excitation
frequency is near the resonance frequency of the coil spring,
the transfer force of the spring has a significant change.

3.3. Test ofDynamic Stress. In order to analyze the relationship
between the dynamic stress and frequency of the coil spring and
verify the accuracy of the flexible body model of the coil spring,
the dynamic stress test of the coil spring is carried out, as shown

Table 4: (e constrained modes of the coil spring.

Order 1 2 3 4 5 6 7 8
Finite element model (Hz) 66.1 70.7 88.9 89.7 117.7 122.9 128.8 133.5
Substructure model (Hz) 66.1 70.6 88.7 89.4 117.3 122.3 128.2 132.7
Movement mode Expansion Twist Bending Bending Bending Expansion Bending Bending
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in Figure 7.(e constraint and load excitation of the coil spring
are consistent with the dynamic stiffness test. (e dynamic
stress of the coil spring under the sweep excitation is obtained by
arranging the stress rosette and stress collector on the coil
spring. According to the stress analysis of flexible spring and
field test research [12], the area with larger stress of the coil
spring appears at the position about 1.2 circles from the lower
end, so the measuring points of dynamic stress are arranged at
the position about 1.2 circle andmiddle circle at both ends of the
spring, each position is arranged with a three-way strain gauge,
and a group of spring has 3 stress measuring points and 9 stress
testing channels. (e layout of measuring points is shown in
Figure 7.

In this test, the adhesive metal strain gauge is used in the
spring stress test. (e resistance of the strain gauge is pro-
portional to the strain of the equipment.(erefore, the strain of
the test sample is directly transmitted to the strain gauge, which
causes the linearization of the resistance, and the strain mea-
surement value is obtained through conversion. (e direct
result of measurement is strain, which is transformed into
corresponding stress by using the following equation:

σ � E · ε, (26)

where σ is the stress value, ε is the strain value, and E is the
elastic modulus.

(a)

Equivalent stress
(von mises) ×106

576
538
499
461
422
384
346
307
269
230
192
154
115
77
38
0

(b)

Displacement Z
w.r.t. undeformed ×10–3

0.2
–4.2
–8.5
–12.9
–17.3
–21.6
–26.0
–30.3
–34.7
–39.0
–43.4
–47.7
–52.1
–56.4
–60.8
–65.1

(c)

Figure 6: Simulation of dynamic characteristics. (a) Equivalent model of flexible spring. (b)(e cloud diagram of Von Mises stress. (c) (e
cloud diagram of displacement.

Hydraulic servo
actuator

Coil spring

(a)

Strain rosettes

(b)

Figure 7: Dynamic characteristic test of coil spring. (a) Dynamic characteristic test bench. (b) Installation status of coil spring.
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In the field measurement results, the main stress values
of strain rosette measuring points in 0°, 45° and 90° direc-
tions are calculated by using the following equations:

σ1 �
E

2
ε0 + ε90( 􏼁

(1 − ])
+

1
(1 + ])

������������������������

ε0 − ε90( 􏼁
2

+ 2ε45 − ε0 − ε90( 􏼁
2

􏽱

􏼢 􏼣,

(27)

σ2 �
E

2
ε0 + ε90( 􏼁

(1 − ])
−

1
(1 + ])

������������������������

ε0 − ε90( 􏼁
2

+ 2ε45 − ε0 − ε90( 􏼁
2

􏽱

􏼢 􏼣,

(28)

where σ1 and σ2 are the main stresses, ] is the Poisson’s ratio,
and ε0,ε45, and ε90 are the strain values of strain gauge in 0°,
45°, and 90 °directions, respectively.

After the principal stresses σ1 and σ2 are obtained, they
are synthesized into the normal form equivalent stress σv:

σv �

�������������������
1
2

σ21 + σ1 − σ2( 􏼁
2

+ σ22􏽨 􏽩

􏽲

. (29)

4. Results and Discussion

4.1. Comparison of Static Stiffness and Modal Frequency.
In order to ensure the consistency of the three models of
coil spring with the tested spring, these static stiffnesses of
the multi-mass-spring series model, beam element
equivalent model, and flexible spring equivalent model are
compared with the test results, as shown in Table 5. (e
above static stiffness is obtained when the excitation fre-
quency is very low. From Table 5, it can be seen that the
static stiffness of the three equivalent models differs slightly
from the experimental stiffness, which can meet the re-
quirements of the static stiffness of the coil spring in
multibody dynamics.

In order to analyze the consistency of dynamic re-
sponse of equivalent model in multibody dynamic cal-
culation, the constrained modes of three equivalent
models and finite element model were compared.
According to the installation status of the spring, the two
ends of the coil spring are constrained by displacement

Load sensor 
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Figure 8: Dynamic stiffness test of coil spring. (a) Dynamic stiffness test bench. (b) Sweep excitation of displacement.
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Figure 9: Dynamic response of transfer force of coil spring. (a) Time-domain response of transferring force. (b) Frequency-domain
response of transfer force.
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after precompression. (e constrained modes of the three
equivalent models of the spring are obtained as shown in
Table 6.

In the multibody dynamics, the mass and structure of
spring can be considered in three equivalent models, so
the three models can reflect their modal frequencies and
modes. Because the multi-mass-spring series model only
has axial stiffness and damping and does not consider the
structural heterogeneity, the equivalent model only has
the axial expansion mode, which is similar to the finite
element model. In Timoshenko beam equivalent model,
structural material properties and spirals are defined by
beam element, but the nonuniformity of spring structure
is not included. (erefore, all modes of coil spring can be
covered. (e modal frequencies and shape are basically
consistent with the results of finite element mode. (e
equivalent model of flexible spring contains all the ma-
terial and structural properties of coil spring, which can
accurately reflect the modal frequency and shape of
spring.

4.2. Comparison and Analysis of Dynamic Stiffness. In
multibody dynamics, the equivalent model of coil spring
takes into account its mass distribution and geometric
structure, so the equivalent model can reflect its modal
frequency and shape. When the frequency of the external
excitation is close to the spring modal frequency, the coil
spring will have abnormal vibration. Significant changes in
displacement and force response will lead to significant
changes in spring stiffness. In order to calculate the dy-
namic stiffness of the equivalent spring model, the point
stiffness Kp and the transfer stiffnessKt of the coil spring are
defined according to the load-displacement relationship
between the free surface and the constrained surface of the
coil spring:

Kp �
Fb

xb

,

Kt �
Ft

xb

,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(30)

where Fb and Ft are, respectively, the upper surface force
and the lower surface transfer force of the spring, and xb is
the displacement response of the upper surface of the
spring.

(e time-domain response and frequency-domain re-
sponse of the reaction force at the lower end of the spring
are obtained by applying the sine sweep excitation to the
equivalent model of the coil spring and the test piece, as
shown in Figure 10. Because the displacement excitation of
the test has displacement loss in the high frequency stage,
and the cut-off frequency of the test bench is 70Hz, the
simulation analysis frequency is 180Hz, so the comparative

analysis is only for the stiffness rather than the reaction
force.

From Figure 10, it can be seen that the reaction force
of the coil spring increases abnormally near the fre-
quency of expansion mode. From equation (30), the
relationship between the transfer stiffness of the coil
spring and the frequency can be obtained. (e com-
parison of stiffness among three equivalent models,
common linear spring models, and test results is shown
in Figure 11.

(e comparison of dynamic stiffness between equivalent
model and test results is shown in Figure 11. It is easy to
obtain the fact that, compared with the spring linear model,
the three equivalent models can reflect the dynamic stiffness
varying with frequency. When the external excitation fre-
quency is close to the natural mode frequency of the coil
spring, the spring stiffness changes dramatically. Due to the
limitation of the dynamic test bench, the maximum external
loading frequency is 70Hz. (e resonance effect of coil
spring is confirmed in this frequency range. As the multi-
mass-spring series model and Timoshenko-beam model
have not considered the structural heterogeneity including
the change of pitch and cross section at both ends of spring,
the results of stiffness between simulation and test have some
differences in modal frequency and amplitude, but the
difference is not significant. (e flexible spring is able to
reflect all of the material and structural characteristics of the
coil spring. Compared with the stiffness of the above
mentioned models, the dynamic stiffness of the flexible
spring has a better agreement with the test values.(e results
show that the flexible spring can better reflect the vibration
characteristics of the coil spring in the multibody dynamic
calculation.

4.3. Comparison and Analysis of Dynamic Stress. Under the
excitation of sweep frequency, the dynamic stress of the coil
spring changes obviously because of the sudden change of
the transmitted force in the resonance region. Figure 12
shows the equivalent stress response at the position about 1.2
circle and middle circle of coil spring under the excitation of
sweep frequency (0–70Hz). It can be seen that the equivalent
stress of coil spring near the first extensional frequency is
abnormally larger than that in nonresonance area. Com-
pared with the test results, the simulated dynamic stress is
completely consistent in frequency and approximate in
stress amplitude. (erefore, the flexible body model of coil
spring can reflect the change of spring stress in resonance
environment.

It can also be seen from the test and simulation that the
stress of the coil spring at the position of 1.2 circle is ob-
viously greater than that of the middle circle of the spring.
(erefore, it should be noted that the coil spring breaks at
the position of 1.2 circle during the actual operation of the
coil spring.
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Table 5: Comparison of the static stiffness.

Order Test result Mass-spring series Timoshenko-beam Flexible spring
Stiffness 0.475 0.4517 0.4482 0.467
Relation error — 4.91% 5.64% 1.68%

Table 6: (e constrained modes of the coil spring.

Order
(e finite element model Spring-mass series model Timoshenko-beam model Flexible spring model

Frequency Movement mode Frequency Movement mode Frequency Movement mode Frequency Movement mode
1 66.1 Expansion 65.8 Expansion 66.8 Expansion 66.1 Expansion
2 70.7 Twist 129.2 Expansion 71.8 Twist 70.6 Twist
3 88.9 Bending 187.4 Expansion 84.1 Bending 88.7 Bending
4 89.7 Bending 237.7 Expansion 88.5 Bending 89.4 Bending
5 117.7 Expansion 247.7 Expansion 122.9 Bending 117.3 Bending
6 122.9 Twist 277.2 Expansion 127.5 Expansion 122.3 Expansion
7 128.8 Bending 301.9 Expansion 137.1 Bending 128.2 Bending
8 133.5 Bending 302.4 Expansion 144.2 Twist 132.7 Bending
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Figure 10: Comparison of reaction forces of three equivalent models. (a) Time domain comparison. (b) Frequency domain comparison.
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5. Conclusions

In this study, in order to consider the dynamic character-
istics of coil springs in multibody dynamics calculation,
three equivalent dynamic models of multi-mass-spring se-
ries, Timoshenko beam, and flexible spring are proposed.
(e comparative analysis leads to the following conclusions:

(1) (ree equivalent models can reflect the nonlinear
relationship of spring dynamic response (force or
displacement) with exciting frequency. (e multi-
mass-spring series model only considers the axial
vibration mode of the spring axis, so the external
excitation can only excite the nonlinear charac-
teristics of the spring axial response with
frequency.

(2) Compared with the test results of dynamic charac-
teristics of the coil spring, the flexible spring
equivalent model can represent the relationship
between dynamic stiffness and frequency more ac-
curately than the spring-mass series model and the
beam element model. It can also reflect the rela-
tionship between dynamic stress and exciting fre-
quency of the coil spring. It can be concluded that the
dynamic stiffness and stress of coil spring increase
significantly in the resonance region.

(3) (e flexible spring equivalent model can not only
reflect the frequency-dependent characteristics of
dynamic stiffness in vehicle simulation, but also
obtain the frequency-dependent characteristics of
dynamic stress of spring structure. (is will provide
an effective way for vehicle dynamics simulation and
vibration fatigue analysis of coil spring.
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