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A brand-new rubber cushion is proposed in this paper, which is installed between hinged floating modules in order to reduce the
relative motion of the pitch; meanwhile, the cushion can be used as a fender for anti-impact in the docking process. Using the
linear wave potential method, the structural dynamic model is formulated where the equivalent stiffness matrix for the rubber
cushion is obtained by an integrating method employing linear assumption in addition to considering the heterogeneity of rubber.
A numerical analysis is presented for a two-module semisubmersible floating structure. *e hydrodynamic responses and
connector loads of the floating structures with a rubber cushion are analyzed by using the frequency domain approach in both
regular and irregular waves. *e topological design and stiffness parameter selection of the rubber cushion is studied. *is work
may provide a new idea for suppressing the pitch motion of multiple hinged floating structures.

1. Introduction

Owing to the growth in population and the expansion of
urban cities in coastal areas, it needs land reclamation from
the sea for human activities and freeing valuable land sites
for commercial and housing projects. With these points in
mind, very large floating structures (VLFSs) have been
proposed to acquire ocean space, which can be used in
different practical applications such as floating bridges,
emergency bases, airports, cities, energy farms, fuel storage
facilities [1–6], etc. *e design of a VLFS with efficient safety
and performance is the key issue for successful imple-
mentations, operations, and further development [7].

Since the VLFSs perform in a harsh ocean environment
that changes with time, it is very important to perform
dynamic analysis of the VLFS to improve the design for
meeting a required safety and span of a lifetime. In the mat-
type VLFS, draft to length ration is small enough, and the
hydroelastic theory is widely used to predict dynamic be-
haviors. In this class of problem, a common approach is
modeling the entire VLFS as a single plate, and the study is
investigated on the basis of the classical thin or thick plate

theory [8]. *e VLFSs linked with connectors are the best
choice owing to the convenience in construction, trans-
portation, and deployment. *us, the connector becomes a
key element for the design of the VLFS [9]. Hinge con-
nection (namely, semirigid connector), which allows the
relative pitch motion of the modules, is used to reduce the
connector loads and the bendingmoment on cross section of
the modules. For a floating barge structure serially and
longitudinally connected by a hinge connector, Newman
[10] analyzed the relative motions between adjacent modules
and the shear loads in the connectors by using the gener-
alized modes. *e results showed that, in general, the largest
loads occur on the interior hinges and the maximum hinge
loads increase with the increase of the number of modules.
Yoon et al. [11] proposed a numerical method to analyze
modular floating structures coupled with longitude and/or
transverse directional multiple hinge connectors. *e de-
flection of the plate structures and maximum bending
moment are investigated via the directly coupled governing
equations discretized by the finite element method for plates
and the boundary element method for fluid. *e numerical
results showed that the number of hinge connections has a
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great effect on the deflection of the floating plate structures.
Instead of the box-shaped pontoon as reviewed above, the
semisubmersible type is an optimal choice in order to reduce
the hydrodynamics responses in the deep-sea area. Lee and
Newman [12] studied the effects of linear or second-order
waves on VLFS consisting of five modules connected by
simple hinge connectors. *e vertical motions, structural
defections, and hinge shear forces were analyzed in different
wave conditions where the structural stiffness parameters
were considered to evaluate the effect of the hydroelasticity.

It is obvious that the study on the articulated floating
structures reviewed above adopted the pure hinge con-
nection which can ensure the continuity of displacements at
the connector points of adjacent decks. But there is no
restraint of relative pitch motions of adjacent modules.
However, stringent tolerance on the deformation of the
VLFS is significant in some applications, such as floating
airports. *erefore, the reduction of the hydroelastic re-
sponse of modular floating structures is significantly con-
cerned. Except for liquid-contained rectangular tanks [13],
several approaches have been proposed for mitigating the
hydroelastic response of the VLFS under wave action, such
as arranging breakwater in the periphery of VLFS [14],
imposing control strategy [15], and equipping with wave
energy conversion system. Another innovative method for
the reduction of the hydroelastic response of the VLFS is to
use flexible-hinge hybrid connectors instead of pure hinge
connectors [16]. Fu et al. [17] presented a hydroelastic theory
of floating structures consisting of two flexible, inter-
connectedmodules with rotation stiffness. In their paper, the
effects of connector and module stiffness as well as the
behaviors of the bending moment distribution on the
hydroelastic response of the structure were studied. *e
numerical analysis showed that the rotation stiffness of the
connector has a significant impact on the hydroelastic re-
sponse of the structure. With the purpose of minimum
hydroelastic response, Riyansyah et al. [18] studied the
parameters’ design of the connectors for a two-module
floating beam structure based on the frequency domain
approach in which the BEM and the FEM are applied to
solve the boundary value problem for fluid motion and the
dynamic problem for beammotion, respectively.*ey found
the optimum location and rotational stiffness of the con-
nector between the two-module beam structures. Zhao et al.
[19] studied the influence law of the connection conditions
on the hydroelastic response of the floating structures
coupled with torsion spring connectors. *eir numerical
results showed that the hydroelastic response of the plate
can be mitigated effectively by choosing the appropriate
spring stiffness and hinge position. Reviewing the earlier
research works as mentioned above and many others not
listed here, we can conclude that almost all of the mod-
eling methods adopt the idealized torsion stiffness instead
of concrete physical structure for hinged connection. In
addition, the docking process of multiple modules floating
system is complicated due to the changeable and rough sea
conditions. How to avoid collision damage of the floating
structures in the docking process is one of the most
important concerns.

In this study, we propose installing rubber cushions
between two consecutive hinged floating structures to re-
duce the relative pitch motion and ensure the smoothness
between adjacent modules; they can also be used as an anti-
impact buffer pad in the docking process. Based on linear
wave theory, the dynamic model is formulated in which the
equivalent stiffness matrix for the rubber cushions is derived
by integrating method based on linear assumption con-
sidering the heterogeneity of rubber. A numerical experi-
ment of a two-module semisubmersible structure is carried
out. *e performance of the rubber cushion on the con-
nector loads and the hydrodynamic responses are analyzed
by means of the frequency domain approach in regular and
irregular waves. *e topological design and stiffness pa-
rameter selection of the rubber cushion is evaluated. At last,
the strength of the rubber cushion is computed. *e results
obtained in this paper can provide a theoretical base for
designing the hinged floating platform systems.

2. Model of Multiple Floating Modules
Coupled with Hinges and Rubber Cushion

For the modeling of the present problem, two coordination
systems are set up firstly, shown in Figure 1. In the global
coordinate system (X, Y, Z), the X-Y plane is on the calm
water surface, the X-axis is consistent with the longitudinal
direction of the module, and the Z-axis is vertical water
surface upward. *e local coordination system (xi, yi, zi) is
fixed on the i-th module, where the origin point sets on the
center of gravity (CG) of the module. *e xi, yi, zi axes
coincide with the directions of X, Y, Z axes, respectively.

*e rigid module and flexible connector (RMFC) model
in which each module has only six degrees of freedom
(DOFs) is used for simulation. *e displacements and ro-
tations at the CG of each module are the usual choice for the
DOFs, shown in Figure 1. In this paper, the small dis-
placement assumption is adopted for initial design and
parameter studies such that linear kinematic theory is valid.

2.1. Modeling of Single Floating Module. *e governing
equations of the motion for the floating module i are for-
mulated based on Newton’s second law:

Mi
€Xi + SiXi � Fi,W + Fi,C + Fi,R, (1)

where Xi � [xi, yi, zi, αi, βi, ci]
T denotes the displacement

vector of module i. *e symbols xi, yi, zi, αi, βi, and ci cor-
respond with surge, sway, heave, roll, pitch, and yaw (see
Figure 1), and the superscript symbol T denotes the trans-
pose. *e mass matrix Mi is defined as

Mi �

mi 0 0 0 0 0

0 mi 0 0 0 0

0 0 mi 0 0 0

0 0 0 Jix 0 0

0 0 0 0 Jiy 0

0 0 0 0 0 Jiz

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2)
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where mi denotes the mass of the i-th floating module. *e
quantities Jix, Jiy, and Jiz represent themoments of inertia of
the i-th module about the xi, yi, and zi axes, respectively,
where

Jix � B
V

x
2
i dm + B

V
z
2
i dm,

Jij � B
V

z
2
i dm + B

V
x
2
i dm, Jiz � B

V
x
2
i dm + B

V
y
2
i dm.

(3)

In equation (1), Si is the hydrostatic restoring coefficient
matrix, which is given as follows [20]:

Si � −

0 0 0 0 0 0

0 0 0 0 0 0

0 0 Siz 0 0 0

0 0 0 Miα 0 0

0 0 0 0 Miβ 0

0 0 0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4)

where the coefficients Siz, Miα, andMiβ are given by

Siz � − ρgAiw, (5)

Miα � − ρgVizib − ρg 􏽚 􏽚
Aiw

y
2
i dA, (6)

Miβ � − ρgVizib − ρgB
Aiw

x
2
i dA, (7)

In equations (5)–(7), g denotes the acceleration of
gravity, zib indicates the z-coordinates of the center of
buoyancy (CB) of module i, Aiw is the area in contact with
water, and Vi represents the displacement.

*e three quantities Fi,W, Fi,C, andFi,R in equation (1)
denote the wave load, connector load, and the load produced
by the rubber cushion, respectively, to be derived later.

2.2. Hydrodynamic Model. By applying linear wave theory,
the wave potential is expressed as Φ � Re[φe− &ImaginaryI;ωt]

where ω indicates regular frequency, and φ denotes the
spatial velocity potential. In the system with N numbers of
floating modules, the space velocity potential of the whole
system can be written as

φ � φI + φD + iω􏽘
N

i�1
􏽘

6

q�1
X

q

i φ
q

i , (8)

in which i �
���
− 1

√
, and φI andφD denote incident and dif-

fraction potentials, respectively. Furthermore, φq
i denotes

the unit radiation potential due to the q-th modal motion of
the i-th module. X

q

i represents the complex amplitude of the
i-th module which satisfied the displacement vector
Xi � Xie

− &ImaginaryI;ωt, and Xi � [X
1
i , X

2
i , . . . , X

6
i ].

For the present problem, the foregone incident potential
φI can be written as

φI �
iga

ω
cosh k(z + h)

cosh kh
exp[ik x cosϕ + y sinϕ􏼈 􏼉], (9)

where a denotes the wave amplitude, h is the water depth,
ϕ indicates the incident wave angle, and k is the wave-
number which satisfied the dispersion relationship
ω2 � gktanh(kh).

*e diffraction and unit radiation potential φD and φq
i

satisfy the Laplace equation and the linearized boundary
conditions, which are given by

∇2φD � 0,

zφD

zz
−
ω2

g
� 0,

zφD

zn
� −

zφI

zn

zφD

zz
� 0, z � − h,

lim
r⟶∞

�
r

√ zφD

zr
−

iω2

gφD

􏼠 􏼡 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇2φq
i � 0,

zφq

i

zz
−

ω2

gφq
i

� 0,

zφq
i

zn

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
Si � 0, n

q

i ,

zφq

i

zn
, (i≠m),

zφq
i

zz
� 0, z � − h,

lim
r⟶∞

�
r

√ zφq
i

zr
−

iω2

gφq
i

􏼠 􏼡 � 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

αi

βi

γi

X

Y

ϕ

Z

Center of Gravity

Module 1
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i
...

zi

xi

yi

Incident wave

Figure 1: Sketch of the coordination systems, in which (X, Y, Z)

denotes the global coordinate, (xi, yi, zi) illustrates the local co-
ordinate, and ϕ is the incident wave angle.
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where n
q
i is the generalized outward normal vector of the

q-th modal of the i-th module. r denotes the displacement
between the field point and source point.

*e wave force of the i-th module in the p-th modal
direction of the i-th modules can be obtained by using
Bernoulli’s equation and is given by

W
p

i � B
S

zϕp
i

zn
− iωρ ϕI + ϕD + iω 􏽘

N

j− �1
􏽘

6

q�1
X

q

jϕ
q
j

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦ds,

� B
Si

n
p
i − iωρ ϕI + ϕD + iω􏽘

N

j�1
􏽘

6

q�1
X

q

jϕ
q
j

⎛⎝ ⎞⎠⎡⎢⎢⎣ ⎤⎥⎥⎦⎡⎢⎢⎣ ⎤⎥⎥⎦ds.

(11)

*e total wave force as in equation (11) can be expressed
as a vector form as follows:

Fi,W � Fi,We
− iωt

− 􏽘
N

j�1
Aij

€Xj + Bij
_Xj􏼐 􏼑, (12)

where the excitation force term Fi,We− iωt in equation (12)
is derived by scattering wave potential φS � φI + φD and
the other term denotes the radiation resistance of wave.
Aij andBij denote added mass and radiation damping
matrices, respectively.

Note that the software THAFTS (*ree-dimensional
Hydroelastic Analysis of Floating and Translating Structure)
is used to solve the boundary value problem (10) for the
exciting forces and the hydrodynamic coefficients in this
paper.

2.3. Modeling of Hinge Connector with Rubber Cushion.
In this study, two hinge connectors with rubber cushions are
arranged between two adjacent modules, as shown in
Figure 2.

*e rubber cushion is shown in Figure 2(b) which
consists of amounting base, multilayer rubber materials, and
two clamps. *e mounting base of the rubber cushion is
mounted on the left module and the clamps of the rubber
cushion dock into the locking device of another module.*e
beveled clamps of the cushions and beveled chucks of the
locking device are convenient for quick installation and
release for special circumstances.

Considering the linear assumption of the small dis-
placements described above, the principle of linear su-
perposition is applicative for the modeling of the hinge
connector and rubber cushion. In the modeling process,
only one part (either hinge or rubber cushion) of the
connection is effective while the other is removable. *en,
the whole model of the connection is obtained using the
linear superposition method. *ough it is worth noticing
that the rubber material has nonlinear and damping
properties firstly, we want to obtain the dynamic behaviors
of the whole system using the simple linear model.*en, we
carry out the strength analysis by using nonlinear FEM.

Firstly, the model of the hinge connector is derived. In
our model, we use two spherical hinges to represent the two
hinge connectors. One spherical hinge connector can

restrain three translational displacements, and thus, six
translational displacements will be constrained by two
spherical hinges. However, there are only five constraint
equations among adjacent modules. *erefore, applying
two spherical hinges in the connection among adjacent
modules results in an overconstrained problem. *us, we
have to release a translational displacement to solve this
problem. Hence, the right hinge is allowed to displace
along x, y, and z directions, whereas the left hinge is free
to move along x and z directions. Indeed, the equally
shared transversal loads in both hinges (due to the
symmetry) will be artificially transferred to the right
hinge. Considering the symmetry and rigidity of the
whole floating system, this transformation for the
transversal load does not affect the yaw moment at the CG
of a module. *e symmetry still remains in responses. *e
connection model is shown in Figure 3.

*e force vectors FL
ci and FR

ci act on the pseudospherical
hinge and spherical hinge, respectively, which are placed
between module i and module (i+ 1). *us, the force vector
imposed on the CG of module i induced by the spherical
hinge connector can be expressed as

FR
i � DRT

Si F
R
ci − DRT

HiF
R
c(i− 1), 1< i<N,

FR
i � DRT

Si F
R
ci, i � 1,

FR
i � − DRT

HiF
R
c(i− 1), i � N.

(13)

In addition, the force vector of the pseudospherical hinge
connector imposing on the CG of module i is similarly
expressed as

FL
i � DLT

Si F
L
ci − DLT

HiF
L
c(i− 1), 1< i<N,

FL
i � DLT

Si F
L
ci, i � 1,

FL
i � − DLT

HiF
L
c(i− 1), i � N.

(14)

*e symbols DR
Si and DR

Hi as in equation (13) and DL
Si

and DL
Hi as in equation (14) denote the constraint ma-

trices of module i for spherical hinge connector and
pseudospherical hinge connector, respectively, and
the subscript S or H denotes the connection point on the
stem or head of the module. *e general form of the
constraint matrix for spherical hinge connector can be
expressed as
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DR
Θi �

1 0 0 0 z
R
Θi − y

R
Θi

0 1 0 − z
R
Θi 0 x

R
Θi

0 0 1 y
R
Θi − x

R
Θi 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (15)

For the pseudospherical hinge connection, the constraint
matrix is

DL
Θi �

1 0 0 0 z
L
Θi − y

L
Θi

0 0 1 y
L
Θi 0 x

L
Θi

⎡⎢⎣ ⎤⎥⎦, (16)

where the subscript Θ indicates S or H and
(xR
Θi, yR
Θi, zR
Θi) and (xL

Θi, yL
Θi, zL
Θi) indicate the coordinates in

the local coordinate system of the connection point of the i-
th module for the spherical hinge and pseudospherical
hinge, respectively.

*e total force applied to the i-th module by the hinged
connector can be written as

Fi,C � FL
i + FR

i . (17)

*e rigid hinge connector should satisfy the displace-
ment continuity condition. For the spherical hinge con-
nection, the equation can be written as

D
R
SiXi − D

R
H(i+1)Xi+1 � 0, i � 1, 2, . . . , N − 1. (18)

And for the pseudospherical hinge connector, it yields

D
L
SiXi − D

L
H(i+1)Xi+1 � 0, i � 1, 2, . . . , N − 1. (19)

Now, themechanical model of the twin hinge connectors
and the constitutive model for the rubber cushion are both
derived. Considering the principle of linear superposition,
the constraint of the hinge connector between the adjacent
modules is freed in the derivative process of the rubber
cushion.

It is assumed that the rubber cushion is only deformed
by tension and compression (the shearing deformation is
ignored because the hinges take the total shear loads). It is
worth noticing that the rubber is essentially a nonlinear
material. *e exact model should be established based on the
nonlinear finite element method (FEM) or other numerical
methods for structure modeling, while the entire nonlinear
mechanical model in the time domain is unbearable for the
global hydrodynamic analysis for the multiple floating
structures. Some simplified methods are necessary for the
dynamic response prediction at the early stage. *us, an-
other assumption is that the cushion possesses linear
property in stiffness. For this assumption, the rubber
cushion only provides rubber constraints for adjacent
modules in the directions of the surge, pitch, and yaw. In
what follows, the equivalent stiffness of the rubber cushion
will be formulated based on the assumption of linearity and
small rotation angle.

Based on the above hypothesis, when module i only has
pitch motion βi, module j has only the pitch motion βj (see
Figure 4). Surge displacements for the points Pi andPj on
the modules i, j whose distance from the CG is Z can be
written as

Module i Module j

Hinge

Rubber
X

Y

(a)

Module i Module j

X
Z

(b)

Figure 3: Sketch of floating modules coupled with hinges and rubber cushion.

1

2

(a)

3
4

5

(b)

6

7

8

(c)

Figure 2: Conceptual model of floating modules connected with hinges and rubber cushions: (a) floating modular structures, (b) rubber
cushion, and (c) locking device of a floating module (1, hinge connector; 2, rubber cushion; 3, mounting base; 4, rubber; 5, clamp; 6,
hydraulic cylinder; 7, chuck; 8, spring).
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ui � Zβi,

uj � Zβj.
(20)

Considering the infinitesimal volume (or element) for
the rubber cushion between the two points Pi, Pj and rubber
has linear tension-compression property with stiffness for
unit area k, thus the longitudinal force of a rubber element
can be expressed as

dFxij � k uj − ui􏼐 􏼑dS � kZ βj − βi􏼐 􏼑dS, (21)

where dS denotes the area of the element surface. *e
longitudinal force Fxij, on the whole rubber cushion can be
obtained from the following relation:

Fxij � 􏽚 df � 􏽚
Yr

􏽚
Zr

kZ βj − βi􏼐 􏼑dz dy. (22)

*e force exerted by the rubber cushion on the module
will cause torques to the CG of modules. *e torque due to
the infinitesimal volume for the rubber cushion can be
formulated as

dMβij � k uj − ui􏼐 􏼑ZydS � kZZyi βj − βi􏼐 􏼑dS, (23)

whereZyi denotes the force armof the longitudinal force acting
on the CG of i-thmodule and is of the formZyi � Z cos βi. It is
assumed that the rotational angle βi is small enough (i.e.,
cos βi � 1). *us, equation (23) is reduced to

dMβij � kZ
2 βj − βi􏼐 􏼑dS. (24)

*e torque on the whole rubber cushion can be obtained
from equation (24) and is as follows:

Mβij � βj − βi􏼐 􏼑􏽚
Yr

􏽚
Zr

kZ
2 dZ dY. (25)

Introducing equivalent compression-tension and twist
stiffness,

kxβe � 􏽚
Yr

􏽚
Zr

kZ dZ dY,

kβe � 􏽚
Yr

􏽚
Zr

kZ
2 dZ dY.

(26)

Similarly, the equivalent compression-tension and
twist stiffness due to yaw motion can be formulated as

kxce � − 􏽚
Zr

􏽚
Yr

kY dY dZ,

kce � 􏽚
Zr

􏽚
Yr

kY
2 dY dZ,

(27)

where the symbol Y denotes the horizontal distance from the
CG.

If the adjacent modules have only relative surge, the
equivalent stiffness can be derived as

kxe � 􏽚
Zr

􏽚
Yr

k dY dZ,

kβxe � 􏽚
Yr

􏽚
Zr

kZ dY dZ,

kcxe � − 􏽚
Yr

􏽚
Zr

kY
2 dY dZ,

(28)

where Yr, Zr denote the integral direction along the width
and height of the rubber cushion.

*us, the connector force can be expressed as

Fi,R � FR
i(i+1) + FR

i(i− 1) � KR Xi+1 − Xi( 􏼁 + KR Xi− 1 − Xi( 􏼁,

(29)

where the matrixKR indicates the equivalent rubber stiffness
matrix:

KR
�

kxe 0 0 0 kxβe kxce

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

kβxe 0 0 0 kβe 0

kcxe 0 0 0 0 kce

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

It should be noticed that rubber is a kind of polymer
composite material and its stiffness k depends on the
proportion of base materials. On the other hand,
the rubber cushion always consists of rubber material and
a metal skeleton. *e stiffness of the rubber cushion
can be adjusted by the structural design of the metal
skeleton.

2.4. Dynamic Modeling of Hinged Floating Modules with
RubberCushions. If Nmodules are serially connected with
hinge connectors and rubber cushions, the governing
equation of motions can be deduced from integrating
the single floating body equation of motion as in equa-
tion (1) whereas the wave force, mechanics model
of hinge connector, mechanics model of the rubber
cushion, and the constraint conditions of hinge con-
nector can be obtained from equations (12), (17)–(19),
and (29), respectively. *us, the system of equations is as
follows:

pi0

oi (CG) oj (CG)

CG

zi zj

xi, xj

CG
βi βj

pj0

pi
pj

Z

ui

uj

δ

Figure 4: *e position and displacement relationship between
adjacent modules for rubber element (the dashed or solid line
triangles denote the initial or the deformation position and blue
lines indicate rubber element).
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Mi
€Xi + 􏽘

N

j�1
Aij

€Xj +
ij

B
j

_X
􏼐 􏼑 + SiXi � Fi,We

− iωt
+ Fi,C + Fi,R, i � 1, . . . , N,

DR
SiXi − DR

H(i+1)Xi+1 � 0, i � 1, 2, . . . , N − 1,

DL
SiXi − DL

H(i+1)Xi+1 � 0, i � 1, 2, ev . . . , N − 1.

(31)

*e governing equation of motions for the multiple
hinged floating structures is linear differential-algebraic
equations (DAEs) which can be solved in the frequency
domain.

3. Hydrodynamic Responses of the Multiple
Hinged Floating Structures

3.1. Floating System with Hinged Connection. Two semisub-
mersible platforms connected by hinge connecter are consid-
ered in this paper, shown in Figure 5. Module M1 and module
M2 are identical, and their detail parameters are listed inTable 1.
*e blue dots labeledwith C1 andC2 denote the spherical hinge
and pseudospherical hinge connectors, respectively. *e
transverse distance between the two hinge connectors is
δH � 20m, and the vertical distance of the hinge connector
away from the center of gravity is δV � 5m. *e gap between
adjacent modules is δ � 1m.

In order to simplify the calculation, a rectangular par-
allelepiped rubber cushion is arranged between adjacent up
hulls of the two modules. *e rubber cushion is centered
layout along the transverse direction with width Br � 10m.
*e total height of the rubber cushion is Hr � 2m, whose
distribution heights of the two sides along the vertical di-
rection are δV1, δV2, where Hr � δV1 + δV2.

In order to investigate the effect of topological properties
of rubber cushion, a stiffness distribution function is in-
troduced, given as

k(Y, Z) � k0Π(Y)Φ(Z) �
k0�������������������

1 + ΞZ Z − Z0/Hr/2( 􏼁
2

􏽱 ����������������

1 + ΞY Y/ Br/2( 􏼁( 􏼁
2

􏽱 , (32)

where k0 is the stiffness coefficient at the center of the rubber
cushion. *e symbols ΞY,ΞZ indicate the distribution co-
efficients, which can determine the gradients of the stiffness
along transverse and vertical directions, respectively.

3.2. Wave Spectrum for Irregular Sea. In this study, we use
the standard JONSWAP spectrum S(ω) with choosing
frequency spreading parameter c � 3.3 to simulate irregular
waves:

S(ω) � βJH
2
s T

− 4
p

ω
2π

􏼒 􏼓
− 5

exp − 1.25
Tpω
2π

􏼠 􏼡

− 4
⎡⎣ ⎤⎦c

exp − Tpω/2π− 1( 􏼁
2
/2σ2􏽨 􏽩

, (33)

where

Table 1: Principal characteristics of a single module.

Items Values

Upper hull
Length (m) 30
Breadth (m) 25
Depth (m) 3.2

Columns

Horizontal section (m2) 5.5× 5.5
Depth (m) 7.5

Longitudinal spacing (m) 21
Transverse spacing (m) 20

Lower hull
Length (m) 26
Breadth (m) 5.5
Depth (m) 3.5

Others

Displacement (t) 1827
Ix (kg·m2) 1.484×108

Iy (kg·m2) 1.976×108

Iz (kg·m2) 2.125×108

C1

C2
X

Y

X
Z

O

O

M1 M2

δ

δ H B r

Rubber

δV1

δV2
Hr

z2

o2 x2

z1

o1 x1

δV

Figure 5: Sketch of 2-modular floating structure configuration.
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βJ �
0.06238

0.230 + 0.0336c − 0.185(1.9 + c)
− 1

[1.094 − 0.01915 ln c]
,

Tp �
Ts

1 − 0.132(c + 0.2)
− 0.559,

σ �

0.07, ω≤ωp,

0.09, ω>ωp,

⎧⎪⎨

⎪⎩

(34)

where Tp is the peak period. Hs and Ts are the significant
wave height and significant wave period, respectively.

*e 1-in-1000maxima of the response are denoted as the
extreme response amplitude Re for the short-term of any
quantity, which is defined as [21]

Re � 1.86Rs � 3.72
���
m0

√
,

m0 � 􏽚
∞

0
H

2
(ω)S(ω)dω,

(35)

where Rs indicates the significant response amplitude, m0
denotes the standard deviation, and H(ω) denotes the
transfer function of the wave-response.

3.3. Numerical Validations. *e numerical validations will
be carried out first to show the feasibility of the method used
in this study. In order to carry out the validations, the
numerical results obtained by using the network method
[22] which has been verified by experimental data are used to
do the comparisons with those obtained in this study. In
[22], a flexible connector is used to simulate the hinge
connector between adjacent modules. Relative large stiffness
kx � ky � kz � 1010N/m for the flexible connector in [22] is
selected to model the rigid hinge connector.*e comparison
of response amplitude operators (RAOs) in heave direction
for the hinge platform without rubber cushion is shown in
Figure 6. From Figure 6, we can see that the two results
match well except for some frequency points with some
minor discrepancies.

3.4.HydrodynamicResponses of Two-ModuleHinged Floating
Structures in Regular Sea. Firstly, the effects of rubber
cushion on the hydrodynamic responses of the multiple
hinged floating structures are analyzed in regular waves. *e
stiffness distribution and the layout of the rubber cushion
are illustrated by numerical simulation.

*e response amplitude versus rubber stiffness is illus-
trated (shown in Figure 7) for constant stiffness distribution
ΞY � 0,ΞZ � 0 with wave parameters setting in wave fre-
quency ω � 0.9 rad/s and wave angle ϕ � 45∘.

From Figure 7, it can be seen that the roll, sway, and yaw
motions are not affected by the rubber cushion because of
the displacement constraints due to rigid hinged connectors,
while the heave, surge, and pitch motions have rapidly
changed due to the rubber cushion in the internal of
1E6< k0 < 1E9N/m3. As the stiffness coefficient k0 of the
rubber cushion increases, the variation trends for the surge

and pitch motions are the same where the responses for the
two adjacent modules reach almost similar values with the
response of the first module decreasing and the response of
the second module increasing. As to the heave motions, the
responses of the two modules all increase firstly and sub-
sequently reach a relatively stable value with the stiffness
coefficient of the rubber cushion increasing. Two hinged
floating modules behave similarly to the wings of a butterfly;
the pitch motions of the modules, i.e., the flaps of wings, will
lead to the surge and heave motions of the CG points of the
modules in the viewpoint of the hinge connector. As the
stiffness coefficient of the rubber cushion increases, the pitch
degree of freedom will be reconstrained for the hinged
floating structures. *us, the decrease of the relative pitch
motion due to the rubber cushion will decrease the relative
surge motion. And the wave forces imposed on the pitch
DOF of the floating modules will transfer to heave DOF
which will increase the amplitude of the heave motions. We
can conclude that the rubber cushion affects the pitch
motions directly, while the relative heave and surge motions
are indirectly affected by the variations of the relative pitch
motion.

*e x, y, and z components of the magnitude of the force
acting on the spherical hinge connector (C1) and pseu-
dospherical hinge connector (C2) are plotted in Figure 8 as a
function of stiffness coefficient (k0). From Figure 8, we can
see that rubber cushion only affects the longitudinal forces of
the hinge connectors, and the variation trends of different
connectors are the same. In the interval of k0 < 1E6N/m3 for
the small stiffness of the rubber cushion, the longitudinal
forces Fx are similar to the forces without a rubber cushion.
With the increases in the stiffness coefficient of rubber, the
longitudinal forces of the hinge connectors rapidly change in
the region of 1E6< k0 < 1E9N/m3 and then reach relatively
stable values.

After having carefully analyzed the above results and
exhaustively examined other wave parameter settings (not
included here), we can conclude that the rubber cushion
installed between hinged floating modules can reduce the

RA
O

z (
m

/m
)

�e present method
Ding et al. (2021)

0.5 1 1.5 2 2.50
ω (rad/s)

0

0.5

1

1.5

2

Figure 6: *e motion response amplitude operators of heave
motions for the results obtained by using the present method and
Ding et al. with incident wave angle ϕ � 0∘.
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relative pitch motion, but in the cost of increasing longi-
tudinal forces of the hinge connectors. How to design the
stiffness parameters of the rubber cushion to achieve a

relatively optimum balance between the decrease of the
relative pitch motion and the increase of the connector force
is important. In the following, the influence performance of

RA
O

 x
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/m
)

106 107 108 109 1010105

k0 (N/m3)

, 
, 

x1
x2

0.35
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O

 y 
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y1
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Figure 7:*e response amplitude for all degrees of freedom versus stiffness of the rubber cushion for wave frequencyω � 0.9 rad/s, incident
wave angle ϕ � 45∘, diamond line for results with rubber cushion, and circular line for results without rubber cushion.

Shock and Vibration 9



the stiffness distribution and the layout of the rubber
cushion will be carried out.

Firstly, the stiffness distribution of the rubber cushion is
analyzed via three different distribution forms shown in
Figure 9: (1) uniform stiffness along two directions (red line),
(2) stiffness variation only along the transverse direction
(black line), and (3) stiffness variation only along the vertical
direction (black line). It is possible to design the variable
stiffness by hollowing the internal topological structure of
the rubber cushion.

Figures 10(a) and 10(b) show the variation of re-
sponse amplitude of the relative pitch motion and lon-
gitudinal force acting on the connector C1, respectively,
as a function of the stiffness of the rubber cushion for
different stiffness distribution forms. It is observed that
both Δβ and Fx vary significantly in the range of our
interest of stiffness k0 �105–1010. With the increase of the
stiffness (k0), Δβ decreases continuously and becomes
constant for k0 > 109. *e longitudinal force follows the
reverse pattern of Δβ (Figure 10(b)). Stiffness distribution
has a negligible effect on both Δβ and Fx for 106 < k0 < 109.

However, constant values are found for k0 < 106 and
k0 > 109. *e uniform stiffness distribution has a weak
superiority where the relatively small stiffness can obtain
the same relative variation in comparison with different

0.0

2.0

4.0

6.0
F x

 (N
/m

)

106 107 108 109 1010105

k0 (N/m3)
, 
, 
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C2

×104
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F z
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×105
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Figure 8: *e force amplitude for the hinge connector versus stiffness of the rubber cushion (for wave frequency ω � 0.9 rad/s, wave angle
ϕ � 45∘, diamond line for results with rubber cushion, and circular line for results without rubber cushion).
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Figure 9: Stiffness distribution functions for different distribution
coefficients.
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distribution forms. For simplicity, in the following
context, the uniform stiffness distribution is used for
numerical simulation unless special specified.

In this paper, the rubber cushion is assumed symmet-
rically installed along the longitudinal midline. Considering
the limited installation area of the upper hull and the total
height of the rubber cushion, the installing height of the
rubber cushion should be optimized to obtain better per-
formance for the rubber cushion. For this purpose, a
decentration ratio index Λ relative to the hinge point along
the vertical direction is introduced for simulation.

Λ �
δv1 − δv2

δv1 + δv2
. (36)

Examining the definition of the decentration ratio index
in equation (36), the index Λ< 0 denotes the rubber cushion
installed partially to the upside of the hinge point, while the
index Λ> 0 denotes the rubber cushion installed partially to
the downside of the hinge point. Figure 11 illustrates the
response amplitudes for the relative pitch angle between
adjacent modules and horizontal force for hinge connector
C1 versus decentration ratio index with parameter setting in
wave frequency ω � 0.9 rad/s and wave angle ϕ � 45∘.

It can be seen from Figure 11 that the decentration ratio
index has the almost opposite effect on the relative pitch
angle between adjacent modules and horizontal force for the
hinge connector. When the rubber cushion installs sym-
metrically based on the center of the hinge point along the
vertical direction, the constraint of the relative pitch motion
is the weakest, while the effect of rubber cushion on the
longitudinal force of the hinge connector reaches the
minimum. As the decentration ratio increases, the relative
pitch angle of the modules decreases while the surge force of
the connector increases. *e variation gradient of the surge
force is obviously larger than that of the relative pitch angle.
Based on the analysis above, the rubber cushion installed

symmetrically based on the center of the hinge point is also a
superior option where the surge force of the hinge connector
is amplified weakly; meanwhile, the relative pitch motion of
the modules can be constrained effectively to guarantee
smoothness among adjacent modules.

In the following, the effects of the symmetrical rubber
cushion appear on the resonance peaks of the dynamic
responses for the floating structures. Figure 12 illustrates the
amplitude-frequency response curves for the pitch DOF of
the first module and the longitudinal connector load of the
C1 connector. From Figure 12, we can see that the resonance
peaks of response for pitch DOF decrease obviously in the
low frequency range when stiffness coefficient of rubber
cushion k0 ≥ 1E7N/m3. Out of the low frequency range, the
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Figure 10:*e response amplitude for the relative pitch angle between adjacent modules and horizontal force for hinge connector C1 versus
stiffness of the rubber cushion (for wave frequency ω � 0.9 rad/s and wave angle ϕ � 45∘).
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Figure 11: *e response amplitude for the relative pitch angle
between adjacent modules and longitudinal force for hinge con-
nector C1 versus decentration ratio index (for wave frequency ω �

0.9 rad/s and wave angle ϕ � 45∘).
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effect of different stiffness coefficients on the resonance
peaks is insignificant although the resonance peaks can be
decreased slightly with the increasing stiffness coefficient of
the rubber cushion. *e resonance peak of the connector
load locates in the high wave frequency range and the effect
of the stiffness coefficient in this range is insignificant. *e
effect of the stiffness coefficient on the connector load is
obvious in the low frequency range which can be ignored
because the connector load in this range is much less than
the design loads.

3.5. Extreme Responses for Hinged Floating Structures in
Irregular Sea. In this study, the target sea area selected for
this platform is near a typical island in the South China
Sea. *e design sea state (Hs � 3m, Tp � 8 s) in this
manuscript is based on the measured analysis data. Fig-
ure 13 illustrates the extreme responses of six degrees of
freedom for module 1 in the parameter space (ϕ, k0) for
significant wave height Hs � 3m and peak wave period
Tp � 8 s. As shown in Figure 13, the rubber cushion has
only an effect on the degrees of freedom in surge x1, heave
z1, and pitch β1 and the variations for surge and heave
motions are very weak and ignorable when the stiffness
coefficient for the rubber cushion increases. For the dif-
ferent incident wave angles, the pitch motion has the same
variation trend that pitch angle decreases with increases in
stiffness coefficient of rubber cushion. When the stiffness
of the rubber cushion is larger than 1E8N/m3, the pitch
angle will reach a constant value.

Figure 14 illustrates the extreme loads of the connector
C1 in the parameter space (ϕ, k0) for significant wave height
Hs � 3m and peak wave period Tp � 8 s. From Figure 14, we
can see that the longitudinal load of the connector is only
affected by the rubber cushion. Similarly, with the variation
of pitch motion, the variation trends for connector load are
the same for different incident wave angles.

Figure 15 illustrates the extreme response of the relative
pitch angle in the parameter space (ϕ, k0) when the sig-
nificant wave height Hs � 3m and peak wave period
Tp � 8 s. For arbitrary incident wave angle, the extreme
response of the relative pitch motion decreases rapidly as the
stiffness coefficient of the rubber cushion increases. In
comparison with the extreme response of the pitch motion
shown in Figure 13(e), we can see that the slope of the
surface along the variation direction of stiffness coefficient
for the relative pitch motion is much larger than that for the
pitch motion, which indicates that the relative pitch motion
is constrained while the pitch motion for the two modules as
an integral will increase with installing rubber cushion.
Similarly, in comparison with the extreme longitudinal load
of the connector C1 shown in Figure 14(a), we can see that
the slope of the surface along the variation direction of
stiffness coefficient for the relative pitch motion is much
larger than that for the extreme longitudinal load, which can
qualitatively indicate that the relative pitch motion can be
ideally constrained to improve the smoothness between
adjacent modules by installing rubber cushion with slightly
increasing design load for the connector.

Figure 16 shows the extreme response of the relative
pitch motion and the longitudinal force versus stiffness
coefficient of the rubber cushion in variable wave con-
ditions. It can be seen from Figure 16 that the extreme
response of relative pitch motion decreases rapidly while
the extreme load of longitudinal increases in the range of
1E6< k0 < 1E8N/m3. For different wave conditions, the
variation trends for the extreme response of the relative
pitch angle and the longitudinal load are similar while the
effectiveness of the constraint on the relative pitch motion
is much better in larger significant wave height
conditions.

In order to quantify the circumstance of constraining for
relative pitch motion and amplifying for the longitudinal
load, a variation ratio η is introduced:
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Figure 12: *e transfer function for pitch motion of module 1 and connector force of hinge connector C1 for different stiffness coefficients
of rubber cushion (for wave angle ϕ � 45∘).
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ηA �
A − A0

A0

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
, (37)

where A, A0 indicate the values for the argument with or
without rubber cushion, respectively.

Figure 17 shows the variation ratios of the relative pitch
angle and the longitudinal load versus the stiffness coeffi-
cient of the rubber cushion. From Figure 17, we can ob-
viously see that the suppression ratio for the relative pitch
motion is larger than the amplification ratio for the longi-
tudinal load of the connector. In theory, the relative pitch
motion can be constrained completely via only the increase
of about 20% of longitudinal load by means of installing a
rubber cushion in the extreme case. For a certain engi-
neering design for rubber cushion, we should choose an
appropriate stiffness for the rubber cushion which reaches

an optimal balance for the effective constraint of the relative
pitch angle and desirable increase of connector load. For
example, with stiffness coefficient setting in k0 � 1E7N/m3,
the relative pitch motion can be constrained by 45% while
the extreme load of the connector only increases about 5%.

In order to estimate the feasibility for practical use, the
strength of the rubber cushion is investigated. Considering
the equivalent stiffness for the rubber cushion in equation
(28), the simplified strain and stress of the rubber cushion
between the i-th module and the j-th module can be for-
mulated as

εr �
xj − xi􏼐 􏼑 + Z βj − βi􏼐 􏼑 − Y cj − ci􏼐 􏼑􏽨 􏽩

δ
, (38)

σr � k0 xj − xi􏼐 􏼑 + Z βj − βi􏼐 􏼑 − Y cj − ci􏼐 􏼑􏽨 􏽩. (39)
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Figure 13:*e extreme responses for all degrees of freedom ofmodule 1 in parameter space (ϕ, k0) for significant wave height Hs � 3m and
peak wave period Tp � 8 s.
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Figure 18 shows the strain and stress diagram for the
rubber cushion with the stiffness coefficient of the rubber
cushion k0 � 1E7N/m3 and wave angle ϕ � 45∘.

From Figure 18, we can see that the distribution forms of
the strain and stress contour for the rubber cushion are
symmetrical with respect to the horizontal plan (Z � 5m)
where hinge connectors are installed. Considering the
constraint conditions of the hinge connectors, the relative
motions in surge and yaw directions are zeros, and thus, the
strain and stress of the rubber cushion are only determined
by the relative pitch motion. So, the strain and stress of the
rubber cushion distribute linearly along the vertical direc-
tion. *e maximum strain and stress of the rubber cushion

are 0.07 and 0.7MPa, respectively, which are much less than
the allowable strain [ε] � 1.5 and stress [σ] � 10MPa of the
rubber material.

In fact, the stress distribution of the rubber cushion is
determined by the stiffness distribution defined by
equation (39). *us, the stiffness distribution effect on the
stress of the rubber cushion is analyzed hereinafter.
Figure 19 illustrates the stress contour of the rubber
cushion for three different distribution forms shown in
Figure 9 for stiffness coefficient k0 � 1E7N/m3 and wave
angle ϕ � 45∘.

From Figure 19, we can know that choosing different
stiffness distribution forms has a remarkable influence on
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Figure 14: *e extreme loads for connector C1 in parameter space (ϕ, k0) for significant wave height Hs � 3m and peak wave period
Tp � 8 s.
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Figure 15: *e extreme response of the relative pitch angle between adjacent modules in parameter space 1E8N/m3 for significant wave
height Hs � 3m and peak wave period Tp � 8 s.
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Figure 16: *e extreme response for the relative pitch angle between adjacent modules and the longitudinal load of connector C1 for wave
angle ϕ � 45∘.
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Figure 17: *e rate of change for the relative pitch angle between adjacent modules (black lines) and the horizontal load of connector C1
(blue lines) versus stiffness coefficient of rubber cushion for wave angle ϕ � 45∘.
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Figure 18: *e 3D contour of strain and stress for the rubber cushion with the stiffness coefficient of the rubber cushion k0 � 1E7N/m3,
wave angle ϕ � 45∘, significant wave height Hs � 3m, and peak wave period Tp � 8 s.
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the stress of the rubber cushion. *e maximum stres-
ses for the three stiffness distribution forms are
0.7MPa, 0.76MPa, and 0.4MPa, respectively, which
means that the stiffness variation along the transverse
direction can remarkably improve the stress level of the
rubber cushion. However, the conclusion obtained from
Figure 10 is that the different stiffness distribution forms
have a weak effect on the variations of the relative pitch
motion and longitudinal force. When we reexamine the
stress diagram shown in Figure 19, we can see that the red
region, i.e., high-stress region, in Figure 19(c) is larger
than that in Figures 19(a) and 19(b), which means that the
effective area of the bearing load is larger for the rubber
cushion with stiffness variation along the transverse di-
rection. So, the total constraint loads for the hinged
structure integrated from the whole rubber area change
weakly for different stiffness distribution forms. In other
words, the utilization lever for the rubber cushion can be
remarkably improved via choosing appropriate stiffness
distribution forms and the optimization design should be
carried out for a specific connector.

4. Conclusions

*is paper is concerned with the dynamic effects of the
hinged floating structures when installing rubber cushions
between adjacent modules. *e dynamic model is for-
mulated in which an equivalent stiffness matrix for the
rubber cushions is derived by an integrating method based
on the linear assumption in addition to considering the
heterogeneity of rubber. A numerical example of a two-
module semisubmersible structure is illustrated. *e ef-
fects of the rubber cushion on the hydrodynamic re-
sponses and the connector loads of the hinged floating
structures are analyzed using the frequency domain ap-
proach in regular and irregular waves. *e topological
design and stiffness parameter selection of the rubber
cushion is evaluated. *e numerical results show that
installing a rubber cushion can remarkably reduce the
relative pitch motion to ensure the smoothness between
adjacent modules via appropriately increasing the design
longitudinal load of the hinge connector. *e strength of
the cushion satisfied the allowance stress of the rubber
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Figure 19: *e stress contour of the rubber cushion for three different distribution forms ((a) ΞY � 0, ΞZ � 0, (b) ΞY � 3, ΞZ � 0, and (c)
ΞY � 0, ΞZ � 3) for stiffness coefficient k0 � 1E7N/m3 and wave angle ϕ � 45∘.
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material. Nevertheless, we have to note that only nu-
merical simulations are carried out in this manuscript,
and the wave basin test will be conducted in our future
work [23].
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