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Resonance problems encountered in vehicle-bridge interaction (VBI) have attracted widespread concern over the past decades. Due
to system random characteristics, the prediction of resonant speeds and responses will become more complicated. To this end, this
study presents stochastic analysis on the resonance of railway trains moving over a series of simply supported bridges with
consideration of the randomness of system parameters. A train-slab track-bridge (TSB) vertically coupled dynamics model is
established following the basic principle of vehicle-track-coupled dynamics. /e railway train is composed of multiple vehicles, and
each of them is built by seven rigid parts assigned with a total of 10 degrees of freedom./e rail, track slab, and bridge are considered
as Euler–Bernoulli beams, and the vibration equations of which are established by the modal superposition method (MSM). Except
for the nonlinear wheel-rail interaction based on the Hertz contact theory, the other coupling relations between each subsystem are
assumed to be linear elastic. /e number theory method is employed to obtain the representative sample point sets of the random
parameters, and the flow trajectories of probabilities for the TSB dynamics system are captured by a probability density evolution
method (PDEM). Numerical results indicate that the maximum bridge and vehicle responses are mainly dominated by the primary
train-induced resonant speed; the last vehicle of a train will be more seriously excited when the bridges are set in resonance by the
train; the resonant speeds and responses are rather sensitive to the system randomness, and the possible maximum amplitudes
predicted by the PDEM are significantly underestimated by the traditional deterministic method; optimized parameters of the TSB
system are preliminary obtained based on the representative point sets and imposed screening conditions.

1. Introduction

Railway bridges account for a large proportion of the
substructures in railway lines due to safety, comfort, and
mitigation of noise pollution. For instance, the Beijing-
Shanghai high-speed railway line is 1318 km long, and the
percentage of total bridge length reaches 80.5%. Due to the
fact of higher operating speeds and repetitive nature of train
loads, one particular issue of concern in the vehicle-bridge
interaction (VBI) is the resonance between the two sub-
systems [1], i.e., the supporting bridge and the moving train.
As a result, the amplification of vehicle and bridge vibrations
due to the resonance may jeopardize the vehicles’ running
comfort and safety, which should be of great concern for
railway maintainers and bridge designers.

/e resonance problem encountered in VBI has received
extensive investigations since the 1990s. Li and Su [2]
studied the resonant vibration of a girder bridge under high-
speed trains with the vehicles modelled as a series of moving
loads and a rigid body with two degrees of freedom. /e
relations of resonance speeds to the parameters of the bridge
and vehicle were given. Ju and Lin [3] investigated the
resonance characteristics of the simply supported bridge,
including high piers under high-speed trainloads. /ey
found that a suitable axial stiffness between two simple
beams could reduce vibrations at a near-resonance condi-
tion. Museros and Alarcón [4] discussed the contribution of
the second bending mode to the dynamic behavior of simply
supported railway bridges. /e reasons that cause the
contribution of the second bending mode to be relevant in
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some situations were highlighted, particularly with regard to
the computation of the maximum acceleration. Yau and
Yang [5] studied the vertical acceleration response of a
simple beam traveled by a series of equally spaced moving
loads at constant speeds by the superposition method. It is
concluded that for a beam properly damped, the maximum
acceleration response of the beam is dominated by the
fundamental vibration mode. Xia et al. [6] classified the
resonant responses of the bridge induced by moving trains
into three types according to different resonance mecha-
nisms, and the resonant train speeds for some bridges were
estimated and compared with those obtained from the
dynamics model or the field measurements. Liu et al. [7]
investigated the conditions under which dynamic train-
bridge interaction should be considered for the dynamic
analysis of a bridge during a train passage. /e results of a
moving load model were compared with those of an analysis
of dynamic train-bridge interaction considering different
vehicle models with a varying degree of sophistication. Mao
and Lu [8] developed a new resonance severity indicator,
called Z factor, for the assessment of the resonance effect and
found that the resonance severity was essentially governed
by the ratio between the bridge and carriage lengths. Yang
and Yau [9, 10] proposed a semianalytical approach to study
the resonance of train cars moving over a series of simple
beams. /e numerical examples indicate that the vertical
acceleration induced by pitching resonance dominates the
peak response of the train and neglecting the effect of may
underestimate slightly the beam response in the high-speed
range and less slightly the moving vehicle response. Moliner
et al. [11] addressed the dynamic behavior of double track
simply supported bridges of short to medium span lengths
considering the contribution of transverse vibration modes
and the flexibility of the elastomeric bearings. /e influence
of these two aspects in the verification of the serviceability
limit state of vertical accelerations was evaluated. Duan et al.
[12] presented dynamic analysis on train-bridge systems
considering the coach-coupler effect by means of the vector
form intrinsic finite element method. Results show that the
couplers play an energy-dissipating role in reducing the car
bodies’ resonance response and lead to a dual resonance
phenomenon. Yau et al. [13] and Stoura and Dimi-
trakopoulos [14] assessed the additional damping effect on
VBI under resonant excitations. /e key parameters dom-
inating the additional damping problemwere identified [13],
and more importantly, it is found that additional damping
can obtain negative values, which implies influx instead of
dissipation of energy [14]. Recently, Zhai et al. [15] presented
a state-of-the-art review on train-track-bridge dynamic
interactions and provided further improvement of the dy-
namic interaction model and the challenging research topics
in the future.

A scrutiny of the previous studies on the resonance
problem induced by VBI indicates that most of them were
performed using the deterministic dynamic analysis
method, and random characteristics of the train and bridge
systems may have great influence on the resonance and
dynamic responses. In recent years, some scholars have been
devoted to the implementation of stochastic dynamics

theory into VBI analysis. Yu and Ma [16] and Mao et al. [17]
conducted stochastic analysis on train-bridge interactions
with random system parameters or track geometric irreg-
ularity excitation. Xiao et al. [18] further considered the
effects of a track structure on the bridge and the randomness
of its parameters. Wang et al. [19] presented random dy-
namic analysis on a high-speed train moving over a long-
span cable-stayed bridge. /e long-span cable-stayed bridge
model is established by the ANSYS software, based on which
its frequencies and mode shapes are exported and imple-
mented into the dynamics programme executed in the
MATLAB platform. /eir studies [16–19] were conducted
based on the probability density evolution method (PDEM)
developed by Li and Chen [20, 21], which improves the
computational efficiency of the traditional Monte–Carlo
method and captures the flow trajectories of probabilities for
stochastic systems. Apart from the PDEM, Xu et al. [22]
combined the Monte–Carlo method (MCM) and
Karhunen–Loève expansion (KLE) to model the random
field of track-bridge systems. Xin et al. [23] investigated
train-induced resonance analysis by introducing a random
propagation process into the VBI. /e Nataf-transforma-
tion-based point estimation method is applied to generate
pseudorandom variables following arbitrarily correlated
probability distributions. Numerical results show that the
critical train speeds associated with resonance and cancel-
lation are random in essence owing to the variability of
system parameters, and the influence of track irregularities
on the wheel-rail interactions are significantly greater than
those of resonance. Despite a number of studies on the
stochastic analysis, the main focus placed on train-bridge
resonance phenomenon is still inadequate (except for Ref.
[23]), and some important information is likely to be
overlooked in this regard.

/e main purpose of this study was to provide a better
understanding of the resonance of railway trains moving
over simply supported bridges considering the random-
ness of system parameters, and a preliminary discussion on
an optimal matching relationship of TSB parameters is
presented. /e outline of this article is given as follows.
Section 2 elaborates the theoretical modelling of a vertical
train-slab track-bridge (TSB)-coupled dynamics system.
/e resonance mechanism involving train-induced bridge
and bridge-induced train resonant speeds are introduced
in Section 3. Section 4 presents the number theory method
and probability density evolution method for stochastic
analysis. In Section 5, numerical simulation is carried out
to illustrate the dynamic characteristics of the coupled
system, and some representative conclusions are given in
Section 6.

2. Train-Slab Track-Bridge-Coupled
Dynamics Model

Figure 1 shows a TSB-coupled dynamics model following
the basic theoretical framework of vehicle-track-coupled
dynamics [24]. /e entire model is composed of a railway
train, rails, track slabs, and 32.5m simply supported girders,
which are coupled together via the wheel-rail, rail-slab, and

2 Shock and Vibration



slab-bridge interactions. /e following basic assumptions
are adopted for the dynamics system:

(1) /e train moves over the bridge with constant speed
v, and the coupler and draft gear systems are omitted
in the train system, i.e., interaction between adjacent
vehicles is not considered

(2) /e main focus is placed on the vertical vibrations of
the TSB system

(3) Except for the nonlinear wheel-rail interaction based
on the Hertz contact theory, the other coupling
relations between each subsystem are assumed to be
linear elastic

/e detailed construction and modelling strategies will
be introduced in the following sections.

2.1. EOM of Vehicle. /e railway train consists of multiple
four-wheelset vehicles, and each vehicle is built by seven
rigid parts involving a car body, two bogies, and four
wheelsets with a two-stage suspension system. /e car body
and bogies are, respectively, assigned with two degrees of
freedom (DOFs) involving the vertical displacement Z and
the pitch angle β, and each wheelset consists of the DOF of
vertical displacement Z. /erefore, each vehicle has a total of
ten DOFs. /e equations of motion (EOM) of the j-th ve-
hicle (j� 1, 2, ..., Nv.) can be assembled in the form of
second-order differential equations in the time domain:

Mvj
€Xvj + Cvj

_Xvj + KvjXvj � Fvj, (1)

with

Xvj � Zc βc Zt βt Zt βt Zw Zw Zw Zw􏼂 􏼃
T
,

Mvj � diag mc Jc mt Jt mt Jt mw mw mw mw􏼈 􏼉,

Kvj � 2 ×

2k2z 0 −k2z 0 −k2z 0 0 0 0 0
2k2zL

2
c k2zLc 0 −k2zLc 0 0 0 0 0
2k1z + k2z 0 0 0 −k1z −k1z 0 0

2k1zL
2
t 0 0 k1zLt −k1zLt 0 0
2k1z + k2z 0 0 0 −k1z −k1z

2k1zL
2
t 0 0 k1zLt −k1zLt

k1z 0 0 0
k1z 0 0

k1z 0
sym. k1z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Cvj � 2 ×

2c2z 0 −c2z 0 −c2z 0 0 0 0 0
2c2zL

2
c c2zLc 0 −c2zLc 0 0 0 0 0
2c1z + c2z 0 0 0 −c1z −c1z 0 0

2k1zL
2
t 0 0 c1zLt −c1zLt 0 0
2c1z + c2z 0 0 0 −c1z −c1z

2c1zL
2
t 0 0 c1zLt −c1zLt

c1z 0 0 0
c1z 0 0

c1z 0
sym. c1z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Fvj � 0 0 0 0 0 0 P0 − 2Fwrz1(t) P0 − 2Fwrz2(t) P0 − 2Fwrz3(t) P0 − 2Fwrz4(t)􏼂 􏼃
T
,

(2)

v...Car body

Bogie
Wheelset

Rail

Bridge

Track slab

32.5 m
...

...

Figure 1: Train-slab track-bridge coupled dynamics model.
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where Xvj denotes the displacement vector of the j-th ve-
hicle; Mvj, Cvj and Kvj denote the mass, damping, and
stiffness matrices of the j-th vehicle, respectively; k1z and k2z
are the stiffness of primary and secondary suspensions,
respectively; Lc and Lt are semilongitudinal distance between
bogies and wheelsets, respectively; Fvj denotes the external
force vector of the j-th vehicle; mc, mt, and mw are the mass
of car body, bogie, and wheelset, respectively; Jc, Jt, and Jw

are the mass moment of inertia of car body, bogie, and
wheelset, respectively; P0 denotes the static axle load given by
P0 � (0.25mc+ 0.5mt+mw)g; and Fwrzn denotes the wheel-
rail vertical contact force.

2.2. EOM of Rail. /e rail is modelled by a pinned-pinned
Euler–Bernoulli beam subjected to dynamic wheel-rail
contact forces and fastener supporting forces. /e corre-
sponding EOM is given by

ErIr

z
4
Zr(x, t)

zx
4 + mr

z
2
Zr(x, t)

zt
2 � − 􏽘

Nf

i�1
Frszi(t)δ x − xfi􏼐 􏼑

+ 􏽘

Nw

n�1
Fwrzn(t)δ x − xwn( 􏼁,

(3)

where ErIr is the bending stiffness of the rail, Zr is the vertical
displacement of the rail, mr is the mass of the rail per unit
length, xwn is the time-varying location of the nth wheelset,
xfi is the location of the ith rail-supporting point, Frszi(t) is
the ith rail-supporting force, Nf is the total number of the
fasteners, Nw is the total number of wheelsets, and δ is the
Dirac’s delta function.

By applying the MSM [24],

Zr(x, t) � 􏽘

Nr

k�1
Zrk(x)qrk(t) �

�����
2

mrLr

􏽳

􏽘

Nr

k�1
sin

kπx

Lr

qrk(t),

(4)

the fourth-order partial equation can be further converted
into the following second-order ordinary equations:

€qrk (t) +
ErIr

mr

kπ
Lr

􏼠 􏼡

4

qrk(t) � − 􏽘

Nf

i�1
Frszi(t)Zrk xfi􏼐 􏼑 + 􏽘

Nw

n�1
Fwrzn(t)Zrk xwn( 􏼁k � 1 ∼ Nr, (5)

where qrk(t) is the generalized coordinate describing the
vertical motion of the rail, Lr is the calculation length of the
rail, Nr is the truncated number of the rail mode, and Zrk is
the mode function of a simply supported beam.

2.3. EOMof Track Slab. /e track slab can be regarded as an
Euler–Bernoulli beam with free constraints subjected to the
vertical dynamic forces induced by rail-slab and slab-bridge
interactions. /e following governing differential equation
can be established:

EsIs

z
4
Zs(x, t)

zx
4 + ms

z
2
Zs(x, t)

zt
2 � − 􏽘

n0

i�1
Fsbzi(t)δ x − xsi( 􏼁 + 􏽘

Nf

i�1
2Frszi(t)δ x − xfi􏼐 􏼑, (6)

where EsIs is the bending stiffness of the slab, Zs is the vertical
displacement of the slab, ms is the mass of the slab per unit
length, n0 is the total number of supporting points beneath a

slab, xsi is the location of the ith slab supporting point, and
Fsbzi(t) is the ith slab-bridge interaction force.

By applying the MSM [24],

Zs(x, t) � 􏽘

Ns

k�1
Zsk(x)qsk(t) � qs1(t) +

�
3

√
1 −

2x

Ls

􏼠 􏼡qs2(t) + 􏽘

Ns

k�3
chβkx + cos βkx( 􏼁 − Ck shβkx + sin βkx( 􏼁􏼂 􏼃qsk(t), (7)
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with

βk �

4.73004
Ls

, k � 3,

2k − 3
2Ls

π, k≥ 4,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Ck �

0.982502, k � 3,

chβkLs − cos βkLs

shβkLs − sin βkLs

, k≥ 4.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(8)

Equation (6) can be converted into the following second-
order ordinary equations:

€qsk (t) +
EsIs

ms

β4kqsk(t) �
1

msLs

− 􏽘

n0

i�1
Fsbzi(t)Zsk xsi( 􏼁 + 􏽘

Nf

i�1
2Frszi(t)Zsk xfi􏼐 􏼑⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦k � 1 ∼ Ns, (9)

where qsk(t) is the generalized coordinate describing the
vertical motion of the slab, Ls is the length of the slab, Ns is
the truncated number of the slab mode, and Zsk is the mode
function of a free-free beam.

2.4. EOM of Bridge. /e bridge is modelled by a pinned-
pinned Euler–Bernoulli beam subjected to dynamic slab-
bridge supporting forces. /e corresponding EOM in the
generalized coordinate is given by

€qbk (t) + 2ζ

����
EbIb

mb

􏽳
kπ
Lb

􏼠 􏼡

2

_qbk(t) +
EbIb

mb

kπ
Lb

􏼠 􏼡

4

qbk(t) �

�����
2

mbLb

􏽳

􏽘

n0

i�1
Fsbzi(t)sin

kπxsi

Lb

k � 1 ∼ Ns, (10)

where qbk(t) is the generalized coordinate describing the
vertical motion of the bridge, ζ, mb, Lb, and EbIb are the
damping ratio, per unit length mass, length, and bending
stiffness of the bridge, respectively, and Nb is the truncated
number of the bridge mode. /e bridge dynamic dis-
placement in the Cartesian coordinate can be determined by

Zb(x, t) � 􏽘

Nb

k�1
Zbk(x)qbk(t) �

�����
2

mbLb

􏽳

􏽘

Nb

k�1
sin

kπx

Lb

qbk(t).

(11)

2.5. Interactions between Each Subsystem. /e vehicle, rail,
track slab, and bridge subsystems are coupled by the wheel-
rail contact, rail-slab, and slab-bridge interaction forces,
which can be calculated by

Fwrzn(t) �

Zwn(t) − Zr xwn, t( 􏼁 − Z0n(t)

G
􏼢 􏼣

3/2

Zwn(t) − Zr xwn, t( 􏼁 − Z0n(t)≥ 0

0 Zwn(t) − Zr xwn, t( 􏼁 − Z0n(t)< 0

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

,

Frszi(t) � kp 􏽘

Nr

k�1
Zrk xfi􏼐 􏼑qrk(t) − 􏽘

Ns

k�1
Zsk xfi􏼐 􏼑qsk(t)⎡⎣ ⎤⎦ + cp 􏽘

Nr

k�1
Zrk xfi􏼐 􏼑 _qrk(t) − 􏽘

Ns

k�1
Zsk xfi􏼐 􏼑 _qsk(t)⎡⎣ ⎤⎦,

Fsbzi(t) � kb 􏽘

Ns

k�1
Zsk xsi( 􏼁qsk(t) − 􏽘

Nb

k�1
Zbk xsi( 􏼁qbk(t)⎡⎣ ⎤⎦ + cb 􏽘

Ns

k�1
Zsk xsi( 􏼁 _qsk(t) − 􏽘

Nb

k�1
Zbk xsi( 􏼁 _qbk(t)⎡⎣ ⎤⎦,

(12)
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in which Zwn(t), Zr(xwn, t), and Z0n(t) denote the vertical
displacement of the nth wheel, the vertical rail displacement
at the nth wheel position, and the vertical track irregularities,
respectively; Rw represents the rolling radius of the wheel;
and G is the wheel-rail contact constant expressed as
G� 3.86Rw

−0.115 ×10−8m/N2/3; kp and cp are the stiffness and
damping of fasteners, respectively; kb and cb are the stiffness
and damping of slab-bridge interactions, respectively.

2.6. Numerical Integration Algorithm. A fast explicit nu-
merical integration algorithm, namely, the Zhai method [25]
is adopted to solve the developed TSB-coupled dynamics
model. /is method has been widely used due to its effi-
ciency and simplicity in the dynamic analysis of vehicle-
track interactions [24, 26–28]. /e dynamic equations for
the TSB system can be arranged in a general form as follows:

M €X + C _X + KX � F( _X, X ), (13)

where M, C, and K are the mass, damping, and stiffness
matrices, respectively; and F denotes the load matrix.

/e numerical integration algorithm takes the following
form.

For n� 1,

Xn � Xinitial,

_Xn � _Xinitial,

€Xn � M
− 1

F − C _Xn − KXn􏼐 􏼑.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(14)

For n� 2,

Xn � Xn−1 + _Xn−1Δt + 0.5€Xn−1Δt
2
,

_Xn � _Xn−1 + €Xn−1Δt,
€Xn � M

− 1
F − C _Xn − KXn􏼐 􏼑.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(15)

For n≥ 3,

Xn � Xn−1 + _Xn−1Δt +(0.5 + ψ) €Xn−1Δt
2

− ψ €Xn−2Δt
2
,

_Xn � _Xn−1 +(1 + φ) €Xn−1Δt − φ€Xn−2Δt,
€Xn � M

− 1
F − C _Xn − KXn􏼐 􏼑,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(16)

whereX, _X, and €X denote the displacement, velocity, and
acceleration of the system, respectively; the subscript “ini-
tial” denotes the initial condition; Δt is the time step size for
numerical integration, which is set to 1× 10−4 s; φ and ψ are
the independent parameters used for controlling the stability
of the algorithm, and φ�ψ � 0.5 is adopted; the subscript n
indicates the integration at the time of nΔt.

3. Resonant Speeds of a Train Moving over a
Series of Bridges

3.1. Train-Induced Bridge Resonant Speed. For a train
modelled as a sequence of vehicles of equal interval Dc
traveling at speed v over a bridge, an exciting frequency v/Dc

will be generated. Resonance will be developed on the bridge
once the exciting frequency matches any of the bridge

frequencies (fb). Such a phenomenon is referred to as the
train-induced resonance on the bridge [10]. /e natural
frequencies of the studied simply supported bridge can be
readily derived as

fb �
1
2π

����
EbIb

mb

􏽳
kπ
Lb

􏼠 􏼡

2

. (17)

/e train-induced resonant speed can then be calculated
by

vbr � fbDc. (18)

Actually, a subresonance of the acceleration response
could also be generated on the bridge as the vehicles pass
through the bridge at the speed of vbr � fbDc/j, where j� 2,
3, . . ., representing the number of complete cycles of os-
cillation of the bridge occurring during the passage of two
adjacent loads [12].

3.2. Bridge-Induced Train Resonant Speed. For a vehicle
moving over a series of simple beams of identical span
length Lb at speed v, the vehicle will encounter repetitive
excitations transmitted from the beam with frequency
v/Lb. Resonance will be developed on the vehicle once the
exciting frequency coincides with one of the vehicle’s
frequencies (fv). Such a phenomenon is referred to as the
bridge-induced resonance for train cars [10]. /e vertical
(fv1) and pitching (fv2) frequencies of the car body can be
obtained as follows:

fv1 �
1
2π

������������������
4/ 1/2k1z( 􏼁 + 1/k2z( 􏼁( 􏼁

mc

􏽳

�
1
2π

������������
8k1zk2z

2k1z + k2z( 􏼁mc

􏽳

,

(19)

fv2 �
1
2π

��������������������

4L
2
c / 1/2k1z( 􏼁 + 1/k2z( 􏼁􏼐 􏼑

Jc

􏽶
􏽴

�
1
2π

������������

8k1zk2zL
2
c

2k1z + k2z( 􏼁Jc

􏽳

.

(20)

/e bridge-induced resonant speed can then be calcu-
lated by

vvr � fv1Lb,

vpr � fv2Lb,
(21)

where vvr and vpr denote bridge-induced vertical and
pitching resonant speeds, respectively.

4. Probability Density Evolution Method

/e random characteristics of the TSB system may have
great influence on the dynamic responses. It is assumed that
the TSB random system is a conservative system, and the
total inflow probability in any domain of the state space is
equal to the outflow probability transited through the do-
main boundary, i.e., no new random factors arise or vanish
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in the process of probability density evolution. Based on
the principle of probability conservation, an PDEM is
applied to capture the flow trajectories of probabilities for
the TSB dynamics system. /is section is divided into two
parts: one is the determination of the representative point
sets of random parameters of the TSB system, and the
other is the solution to the random dynamic responses of
the TSB system based on the PDEM. Monograph [20] can
be referred to for more details about the methodology and
solution.

4.1. Representative Point Sets of Random Parameters. In the
random vibration analysis, it is unavoidable to encounter the
problem of random combinations of different variables.
However, Monte–Carlo simulation (MCS) is proved to be
time consuming and is also difficult to obtain the time-
dependent responses of the system. To this end, the number
theory method (NTM) [29, 30] is employed to obtain the
representative sample point sets of the random parameters.
Based on the NTM, a uniformly scattered point set in the
unit hypercube [0, 1]s can be determined by an integer
vector:

xk,j �
hjk

n
− int

hjk

n
􏼠 􏼡, (22)

where k � 1, 2, . . ., s, s denotes the total number of random
variables; int(·) denotes the integer part of the value;
j � 1, 2, . . ., n, (n, h1, h2, ..., hs) is the integer generator
vector.

As the total vector number n in the points set is too large,
a sphere sieving hypercube method [20] is employed to sieve
the points set for higher computational efficiency.

􏽘
s

k�1
2 xk,q − 0.5􏼐 􏼑􏽨 􏽩

2
≤ r

2
0 1≤ r0 <

�
s

√
( 􏼁, (23)

where r0 is the sieving radius, q� 1, 2, ..., nsel, nsel is the total
remaining number of representative points after sieving
(nsel<< n).

Considering the difference between the distribution
domain of actual random parameters and the sieving unit
point set xk,q, the following affine transformation is
performed:

ξk,q � μk 1 + 2λ]k xk,q − 0.5􏼐 􏼑􏽨 􏽩, (24)

where λ is the truncated boundary, μk is the mean value of
the random variable, and ]k is the variation coefficient of the
random variable.

After obtaining the representative sample point sets ξq
for multidimensional random parameters, the probabilistic
space ΩΘ of the random samples is then be divided into
Voronoi regions with representative volumes V(ξq)
satisfying

􏽛

nsel

q

V ξq􏼐 􏼑 � ΩΘ, V ξi( 􏼁∩V ξj􏼐 􏼑, i≠ j. (25)

/e initial probability of each designed point set is given
by

Pq � 􏽚

V ξq( 􏼁

pΘ ξq􏼐 􏼑dξ,
(26)

where pΘ(ξq) denotes the probability density of the random
parameters in Voronoi region V(ξq), and the total proba-
bility satisfies the following equation:

􏽘

nsel

q�1
Pq � 􏽘

nsel

q�1
􏽚
ξq

pΘ ξq􏼐 􏼑dξ � 􏽚
∪

nsel

q�1
ξq

pΘ ξq􏼐 􏼑dξ � 􏽚
ΩΘ

pΘ ξq􏼐 􏼑dξ � 1.

(27)

4.2. Solution with PDEM. /rough introducing state vector
U� (XT, _X

T)T obtained by solving equation (13), the state
vector can be further expressed as the augmented state
vector

Y � U
T
, ξT

q􏼐 􏼑
T
. (28)

Denote the joint PDF of Y(t) as pY(y, t), y� (y1, . . ., y2n,
yξT)T, in which n is the number of DOF in the TSB system.
By considering the TSB system as a probability conservative
system, the probability density equation is deduced as fol-
lows [21]:

z

zt
pY(y, t) + 􏽘

2n

i�1

z

zyi

gi yξ , t􏼐 􏼑pY(y, t) � 0,

withgi �
z

zt
Ui(ξ, t).

(29)

/e initial condition of equation (29) can be expressed as
follows:

pUlΘ
ul, ξq, t0􏼐 􏼑 � δ ul − Ul,0􏼐 􏼑pΘ ξq􏼐 􏼑 1≤ l≤ 2n, (30)

where Ul,0 is the initial value of ul.
/e total deviation diminishing (TVD) difference

scheme is applied to solve the partial differential equations
jointed by equations (29) and (30), and the joint probability
function pUlΘ(ul, ξq, t) can be solved. /en, an integration of
ξq is performed to obtain probability density function of ul:

pUl
ul, t( 􏼁 � 􏽚 pUlΘ

ul, ξq, t􏼐 􏼑dξ . (31)

5. Model Validation

/is section will illustrate the validity of the established TSB
dynamics model by comparing resonant responses derived
by those of Yang and Yau [10], who developed a VBI element
considering the rail effect. Consider a train composed of
twelve vehicles moving over six simply supported bridges.
All the calculation parameters can be found in the study by
Yang and Yau [10]. Figure 2 demonstrates the comparison of
maximummidpoint accelerations of the bridge with various
train speeds. It can be clearly seen that the two models are
basically in good agreements. Some marginal differences can
be attributed to the different modelling methods (FEM and
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MSM) and the neglect of slab tracks referred in the study by
Yang and Yau [10]. Overall, the comparison results have
properly illustrated the reliability of the proposed dynamics
model, which will be employed in the follow-up study.

6. Numerical Application

6.1. General Information. Consider a train composed of
eight vehicles moving over five-span simply supported
bridges under the excitation of track irregularities. /e
sample of track vertical irregularities characterized by
wavelengths between 1 and 120m is adopted in the simu-
lation, as displayed in Figure 3. /e mechanical parameters
of railway vehicle, track, and bridge are listed in Table 1. In
addition, the random variables in the TSB system are as-
sumed to obey the normal distribution with the coefficients
of variation (COVs) listed in Table 2.

6.2. Deterministic Analysis on the Resonance. In order to
compare with the follow-up stochastic analysis and ascertain
the matching relations between resonant speeds and dy-
namic responses, a deterministic study will be conducted
first. According to the vehicle and bridge parameters listed in
Table 1, the resonant speeds can be calculated based on
equations (17)–(21), as listed in Table 3. /e maximum
acceleration of the car body avmax is defined as follows [9].

avmax � max €Zc ±
Dc

€βc

2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏼠 􏼡, (32)

where €Zc and €βc are the vertical and rotational accelerations
of the centroid of car body, respectively.

/e train speed varies from 50 to 400 km/h with an
increment of 10 km/h that is small enough to demonstrate
the maximum dynamic responses of both bridge and train if
resonance occurs. /e maximum accelerations of the bridge
(abmax) against the train speed are illustrated in Figure 4. As
can be seen, there exist a significant resonant peak (0.17 g) at
the speed of 340 km/h and a subresonant peak at the speed of
110 km/h, which are very close to the primary resonant
speed vbr1 � 346 km/h and vbr1/3. In Figure 5, the bridge
midpoint acceleration with the primary resonant speed vbr

and pitching resonance speed vpr are compared. It can be
seen that the bridge acceleration continues to increase when
the train travels at the primary resonant speed,vbr, and the
amplitude is much larger than that with the pitching res-
onant speed vpr. Although the car body vibrations will be
obviously excited by the pitching resonant speed as shown in
Figure 6, its influence will not be reflected on the bridge. One
can observe from Figure 7 that the bridge acceleration in-
creases considerably near the frequency of 3.88Hz at the
train speed of 346 km/h. /is can be explained by the fact
that when the train runs with the speed of 346 km/h, and the
dominant frequency of the train loading is v/Dc � 3.88Hz,
which approaches to the bridge fundamental natural fre-
quency. Besides, a slight amplification can also be found at
the intersection of the curve fb and the curve 3v/Dc.

Figure 6 illustrates the maximum accelerations of the car
body against the train speed. It is found that there exist two
clear resonant peaks in the vicinity of 100 and 340 km/h,
corresponding to the bridge-induced pitching resonant
speed and the train-induced resonant speed, respectively.
Compared with the response amplitude at the vertical
resonant speed vvr, the resonant responses are dominated by
pitching resonant speed. Time histories of the first and last
car body accelerations at the train-induced resonant speed
are displayed in Figure 8, from which one can deduce that
when the bridges are set in resonance by the train, and the
last car of the train will be more seriously excited than the
front cars by the bridges that were continuously excited by
the front passing vehicles. /e maximum acceleration of the
last vehicle is found to be 0.031 g, which is 1.48 times as large
as that for the first one. /is amplification phenomenon has
also been reported in the study by Yang and Yau [10]
previously.

6.3. Stochastic Analysis on the Resonance. /e effect of
system random characteristics on TSB dynamic interactions
will be investigated in this section. In the stochastic analysis,
the number of representative point sets after sieving is
nsel � 144 with the sieving radius of r20 � 1.2. In other words, a
total of 144-point sets are considered for the system random
parameters (mc, Jc, k1z, k2z, c1z, c2z, kp, cp, mb, Eb, ζ).
According to the numerical results in Section 6.2, although
the amplification effect of dynamic responses will occur in
the vicinity of subresonant speeds and bridge-induced
resonant speeds, the maximum amplitudes of both bridge
and vehicle are actually dominated by the primary train-
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Figure 2: Comparisons of bridge acceleration versus train speed
obtained from this model and from the study by Yang and Yau [10].
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Figure 3: Sample of track vertical irregularities adopted in the
simulation.

8 Shock and Vibration



induced resonant speed. Analogous phenomena can also be
found in earlier studies [9, 10, 12]. In addition, higher speeds
tend to result in more intense wheel-rail interactions, and
thus, system vibrations will be amplified accordingly. As

such, our main focus is placed on the operating speed
ranging from 300 km/h to 400 km/h with an increment of
10 km/h.

/e contour of probability density functions (PDF) of
bridge and vehicle dynamic responses for v � 340 km/h that
dominates system responses in the deterministic study are
illustrated in Figures 9–11, and the dynamic responses in the
first second are omitted. Clearly, the contours are mostly
contained within the upper and lower limits (Mean± 3Std),
where the mean value curves (mean) and the standard
deviation curves (Std) are calculated by the probability
functions based on the assumption of a normal distribution.

Table 1: Mechanical parameters of the railway vehicle, track, and bridge adopted in the simulation.

Parameters Values Parameters Values
Mass of car body mc 38.9 t Moment of inertia of the rail cross section Ir 3.217×10−5m4

Mass of bogie mt 2.2 t Mass of the rail per unit length mr 60.64 kg/m
Mass of wheelset mw 1.52 t Stiffness of the rail pad kp 5.0×107N/m
Mass moment of inertia of car body Jc 1905 t m2 Damping of the rail pad cp 3.6×104N s/m
Mass moment of inertia of bogie Jt 1.233 t m2 Fastener spacing Lf 0.65m
Semilongitudinal distance between bogies Lc 8.6875m Elastic modulus of the track slab Es 3.65×104MPa
Semilongitudinal distance between wheelsets Lt 1.25m Moment of inertia of the slab cross section Is 1.372×10−3m4

Length of the car body Dc 24.775m Length/width/thickness of the slab Ls/Ws/Hs 6.5/2.5/0.20m
Stiffness of the primary suspension k1z 887 kN/m Density of the track slab/bridge ρs/ρb 2500 kg/m3

Stiffness of the secondary suspension k2z 203 kN/m Length of the bridge Lb 32.5m
Damping of the primary suspension c1z 10 kN s/m Mass of the bridge per unit length mb 31.4 t/m
Damping of the secondary suspension c2z 10 kN s/m Elastic modulus of the bridge Eb 3.45×104MPa
Rolling radius of the wheel Rw 0.46m Moment of inertia of the bridge cross section Ib 6.2m4

Elastic modulus of the rail Er 2.1× 105MPa Damping ratio of the bridge ζ 0.03

Table 2: Coefficients of variation of the random system parameters.

Parameters COVs Parameters COVs
Mass of car body mc 0.25 Stiffness of the rail pad kp 0.35
Mass moment of inertia of car body Jc 0.25 Damping of the rail pad cp 0.35
Stiffness of the primary suspension k1z 0.25 Mass of the bridge per unit length mb 0.05
Stiffness of the secondary suspension k2z 0.25 Elastic modulus of the bridge Eb 0.25
Damping of the primary suspension c1z 0.25 Damping ratio of the bridge ζ 0.25
Damping of the secondary suspension c2z 0.25

Table 3: Train-induced and bridge-induced resonant speeds.

Characteristic frequencies Resonant
speeds

Vertical frequency fv1 � 0.69Hz vvr � 81 km/h
Pitching frequency fv2 � 0.86Hz vpr � 101 km/h
/e first natural frequency of the bridge
fb1 � 3.88Hz vbr � 346 km/h
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Figure 4: Maximum midpoint accelerations of the bridge versus
train speed.
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Figure 5: Time histories of bridge midpoint acceleration.
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/e solid lines marked as “mean± 3Std” indicate the upper
and lower bounds of the probability density functions with a
probability guarantee rate of 99.7%. /e results obtained by
the traditional deterministic method are also shown in the
figures, in which all of the stochastic parameters are rep-
resented by the mean values. Significant differences can be
observed between the results based on the two calculation
methods. For instance, the maximum bridge displacement
and acceleration are found to be 4.51mm and 0.302 g, re-
spectively, which increase by 45.0% and 78.7% compared

with the deterministic analysis. /e car body acceleration
reaches the maximum value of 0.053 g, which is 1.71 times as
large as that with the deterministic analysis. /is confirms
that the system randomness greatly affects the dynamic
responses, and the traditional deterministic method may fail
to estimate the underlying risks due to the neglect of ran-
domness of system parameters.

Moreover, the statistics of the bridge and vehicle max-
imum accelerations with different train speeds and devia-
tions between different calculation methods are summarized
in Tables 4 and 5. It can be seen that the prediction of
resonant speed will become complicated when the system
randomness is considered. /e peak responses do not occur
at the resonant speed in the deterministic analysis. With the
train speed varying from 300 km/h to 400 km/h, the max-
imum bridge acceleration is found to be 0.349 g at
v � 380 km/h, and the maximum car body acceleration is
found to be 0.066 g at v � 400 km/h. /e possible maximum
amplitudes predicted by the PDEM are significantly
underestimated by the traditional deterministic method.

It should be noted that the Eurocode [31] specified
four bridge parameters to perform conservative dynamic
analyses in the design phase, involving the lower bound of
damping, the lower bound of stiffness, the upper and
lower bounds of mass. However, for such a large-scale TSB
system with numerous random parameters, it will be hard
to determine the most unfavorable parameter combina-
tion, which can be efficiently overcome by stochastic
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Figure 6: Maximum car body accelerations versus train speed.

12

8

4

0

Fr
eq

ue
nc

y 
(H

z)

Fr
eq

ue
nc

y 
(H

z)

50 100 1000150 200 200250
Train speed (km/h) Train speed (km/h)

300 300350 400 400

0.035

0.03

0.025

0.02

0.015

0.01

0.005

6

4

2

0

fb

v/Dc

3v/Dc

Figure 7: Bridge midpoint acceleration in the frequency-domain with various train speeds.

0 150 300 450
Distance (m)

-0.04

-0.02

0

0.02

0.04

Ca
r b

od
y 

ac
ce

le
ra

tio
n 

(g
)

the first car body
the last car body

Figure 8: Time histories of the first and last car body accelerations
with (v)br.

10 Shock and Vibration



analysis based on PDEM. To sum up, we should not
perform deterministic analysis with the mean properties
in the bridge design phase, and parameter randomness
should be fully considered.

/en, the influence of system randomness on resonant
speeds and responses is studied. Based on the 144 repre-
sentative point sets, the primary train-induced resonant
speeds can be obtained for each parameter combination, as
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Figure 9: Contour of PDF of bridge midpoint displacement for (v)� 340 km/h.
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Figure 10: Contour of PDF of bridge midpoint acceleration for (v)� 340 km/h.
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shown in Figure 12, from which one can observe that the
resonant speeds exhibit a wide range of distribution, varying
from 225.7 km/h to 455.9 km/h. Figure 13 illustrates the
maximum dynamic responses of the bridge and vehicle
excited by the resonant speed in Figure 12. It can be found
that the resonant responses have great dispersion. No ob-
vious correlations can be found between the resonant speed
and the maximum value of bridge midpoint and car body
accelerations, and there exists a negative correlation between
the resonant speed and bridge displacement. Furthermore, it

can be deduced that the resonance might occur, even though
the designed resonant speed has not been reached in op-
eration due to the existence of structural randomness.

/ere may exist an optimal matching relationship
among the bridge, track, and vehicle parameters, so that even
if the resonant speed is reached, the corresponding resonant
responses will not be amplified obviously or the resonant
speed is beyond the operating range. /is is an attractive
subject that can be carried out in the following study. Here,
we only present a preliminary discussion on this issue from

Table 4: Statistics of bridge midpoint maximum acceleration with different train speeds and calculation methods.

Train speed (km/h)
Calculation method

|Mean± 3Std| (g) Deterministic analysis (g) Deviation (%)
300 0.241 0.083 190.4
310 0.265 0.099 167.7
320 0.278 0.111 150.5
330 0.297 0.140 112.1
340 0.302 0.169 78.7
350 0.333 0.155 114.8
360 0.343 0.130 163.8
370 0.341 0.114 199.1
380 0.349 0.106 229.2
390 0.346 0.112 208.9
400 0.337 0.123 174.0

Table 5: Statistics of car body maximum acceleration with different train speeds and calculation methods.

Train speed (km/h)
Calculation method

|Mean± 3Std| (g) Deterministic analysis (g) Deviation (%)
300 0.050 0.022 127.3
310 0.051 0.024 112.5
320 0.048 0.028 71.4
330 0.050 0.030 66.7
340 0.053 0.031 71.0
350 0.057 0.029 96.6
360 0.059 0.026 126.9
370 0.059 0.023 156.5
380 0.059 0.022 168.2
390 0.063 0.023 173.9
400 0.066 0.024 175.0
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Figure 12: Random resonant speeds based on the representative point sets of the TSB system.
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the perspective of VBI. /e optimized system parameters
can be screened by satisfying the following conditions: (1)
the resonant speed is large enough that exceeds the practical
operating range v0, i.e., vbr>v0; and (2) and the peak values of
resonant responses (denoted by Rsto) are smaller than those
in the deterministic analysis (denoted by Rdet), i.e., Rsto/
Rdet≤ α (α< 1). If α� 0.8 and v0 � 400 km/h are adopted,
there exist three required combinations of system param-
eters in the representative point sets displayed in Figure 14,
in which all the parameters have been normalized by the
mean values listed in Table 1.

7. Conclusions

In this study, stochastic analysis on the resonance of
railway trains moving over a series of simply supported
bridges is studied by considering system random charac-
teristics. A vertical train-slab track-bridge-coupled dy-
namics model is established based on the classical vehicle-
track coupled dynamics, and random resonance of the
system are captured by means of the PDEM. /e following
conclusions can be reached based on the conducted nu-
merical analysis:

(1) In the deterministic analysis, the maximum ampli-
tudes of both bridge and vehicle responses are
mainly dominated by the primary train-induced
resonant speed, although the amplification effect of

dynamic responses will also occur in the vicinity of
subresonant speeds and bridge-induced resonant
speeds. When the bridges are set in resonance by the
train, the last car of the train will be more seriously
excited than the front cars by the bridges that were
continuously excited by the front passing vehicles.

(2) /e prediction of resonant speed will become
complicated when the system randomness is con-
sidered. /e peak responses do not occur at the
expected resonant speed in the deterministic anal-
ysis, and resonant speeds exhibit a wide range of
distribution, varying from 225.7 km/h to 455.9 km/h
for the cases studied herein. /e possible maximum
amplitudes predicted by the PDEM are significantly
underestimated by the traditional deterministic
method, which may fail to capture the underlying
risks.

(3) Based on the representative point sets and imposed
screening conditions, we obtained optimized pa-
rameter combinations of the TSB system./ey make
the resonant speed exceed 400 km/h (the upper limit
of practical operation speed), and the maximum
dynamic responses involving car body and bridge
accelerations and bridge displacement are smaller
than those with original mean parameters even if the
resonant speed is reached. It is an attractive subject
to seek an optimal matching relationship of TSB
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Figure 13: Maximum dynamic responses versus random train-induced resonant speed: (a) bridge midpoint accelerations; (b) bridge
midpoint displacements; (c) car body accelerations.
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parameters, which deserves in-depth research in
future.
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