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Aiming at the problem that the blasting vibration signal contains trend items and noise interference, a signal processing method
based on the Fourier decomposition method (FDM) is introduced. Firstly, based on the FDM theory, the original blasting
vibration signal is decomposed to obtain several modal components; then, the dominant component of the signal is filtered
according to the dominant frequency of the modal component and its correlation with the original signal; finally, the dominant
component is reconstructed to remove the trend item and noise at the same time; spectrum analysis is carried out to verify the
effectiveness of the method. /e results show that FDM can effectively disperse low-frequency trend items, high-frequency noise,
and useful signal information while decomposing signals containing trend terms and noise; compared with the existing common
methods, it canmore effectively retain the original information, which provides a reference for the trend item and noise removal of
similar blasting vibration signals.

1. Introduction

While constructing mountainous tunnels using drilling and
blasting methods, there will be a destructive impact on the
surrounding environment, so controlling the hazards caused
by blasting is particularly critical. Moreover, extracting the
detailed characteristic information contained in the blasting
vibration signal is of great significance for controlling the
influence of blasting vibration and optimizing blasting pa-
rameters. However, during signal acquisition, under the
effect of the installation of the instrument and the sur-
rounding environment, there may exist trend items in the
signal near the blasting area, and high-frequency noise may
be induced in the signal due to the influence of other process
construction. /e existence of trend items and noise is
extremely unfavourable for extracting detailed features of
blasting signals.

Due to the abrupt and instantaneous nature of blasting,
the blasting vibration signal appears as a typical nonlinear
and nonstationary signal. To deal with this type of signal
problem, a wide range of analysis methods, including the
EMD (empirical mode decomposition) method [1], EEMD
(ensemble empirical mode decomposition) method [2],
CEEMD (complete ensemble empirical mode decomposi-
tion) method [3], CEEMDAN (complete ensemble empirical
mode decomposition with adaptive noise) method [4], and
VMD (variational mode decomposition) method [5], were
developed.

While using the EMD method to perform signal de-
composition, end-point oscillation and modal aliasing may
occur. In order to extract the detailed features of the signal
more accurately, the EEMD method [6] and the VMD
method [7] have been successively used in the removal of the
trend term of the blasting vibration signal. For the problem
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of high-frequency noise interference in the signal, the
CEEMDAN method [8], the wavelet threshold method [9],
and the wavelet packet threshold method [10] are widely
adopted.

In recent years, simultaneously removing the trend items
and noise interference contained in blasting vibration signals
has become a research hotspot. By combining the EEMD
method with wavelet analysis, Li et al. [11] took the fre-
quency band distribution as the criterion to remove the
trend item in the blasting vibration signal and used the
wavelet threshold method for denoising. Fu et al. [12] used
the CEEMD method and the sparse baseline estimation
denoising method to remove the trend term in the signal
near the blasting area and then used the hidden Markov
model to denoise the signal.

However, the EMD method and its improved method
are able to fundamentally solve the problem of modal ali-
asing while decomposing the signal, which is unfavourable
to the extraction of signal feature information. /e wavelet
threshold method and wavelet packet threshold method are
limited by the choice of wavelet basis function and the
number of decomposition levels in signal processing.

/e Fourier decomposition method (FDM) has been
widely used in the signal analysis in recent years [13–15].
Because it is based on the Fourier transform, the decom-
position shows orthogonality, completeness, and self-
adaptability, effectively eliminating the modal aliasing effect
produced by traditional methods. /is method has unique
advantages for analyzing nonlinear and nonstationary
blasting vibration signals.

/erefore, this paper introduces an FDM-based method
of removing blasting vibration signal trend item and noise.
Firstly, FDM is used to decompose the original signal into
several modal components. /en, the trend item is filtered
out and eliminated by the dominant frequency information
of the modal component, and the dominant component
containing the useful information of the signal is filtered by
the cross-correlation coefficient. Finally, the dominant
component obtained from the screening is reconstructed to
obtain a pure signal.

2. FDM Time-Frequency Analysis Theory

2.1. FDM 6eory Explanation. Singh et al. [16] proposed a
new signal decomposition method based on Fourier
transform (FDM), which can be used to analyze nonlinear
and nonstationary signals; this method can adaptively search
and analyze Fourier intrinsic frequency band functions
(AFIBFs) in the Fourier domain; thus, a series of Fourier
intrinsic frequency band functions and a residual compo-
nent can be obtained, obtaining multicomponent signals as
the only representation of constant and single-component
signals. /e mathematical model can be expressed by the
following formula:

x(t) � 􏽘
M

i�1
yi(t) + n(t), (1)

where n(t) is the residual component and yi(t)∈C∞ [a, b] is
the Fourier intrinsic frequency band function (FIBF). FIBFs
have the properties expressed as follows: the functions are all
zero-mean functions, and different component functions are
orthogonal to each other; the instantaneous frequency and
instantaneous amplitude of the analytical functions provided
by FIBFs are not less than 0.

􏽚
b

a
yi(t)dt � 0,

􏽚
b

a
yi(t)yj(t)dt � 0(i≠ j),

yi(t) + j􏽢yi(t) � ai(t)exp jϕi(t)( 􏼁; ∀t, ai(t),
d
dt
ϕi(t)≥ 0.

(2)

It can be known that the FDM method has the char-
acteristics of completeness, orthogonality, locality, and self-
adaptability. After Fourier decomposition of the signal, the
useful information in the signal can be extracted from the
noise, and no modal aliasing will occur.

While searching for AFIBFs, the sequence is from high
frequency to low frequency (HTL-FS algorithm) or from low
frequency to high frequency (LTH-FS algorithm). Since
blasting vibration signals are mainly low-frequency signals,
this article adopts the LTH-HS algorithm; its specific steps
are as follows [17].

Set i � 1, . . . , M, N0 � 0, andNM � N/2 − 1.

(1) Perform Fourier transform on the original signal
x(t), namely, X[k] � FFT x[n]{ }

(2) Set AFIBFi � 􏽐
Ni

k�(Ni−1+1) X [k]expj2πkn /N � ai [n]

exp(jϕi[n]), and the minimum number of AFIBFs
can be obtained; then, set Ni−1 + 1 ≤Ni ≤N/2 − 1,
and make its phase ϕi[n] increase monotonically in
the interval,ωi[n] � (ϕi[n + 1] − ϕi[n − 1]/2)≥ 0,∀n

(3) Residual component r[n] � X[0] + X[N/2](−1)n

(4) /e instantaneous frequency and amplitude of
AFIBFs can be calculated, and the real part of AFIBFs
is FIBFs

2.2. 6e Principle of Interference Component Screening. At
present, the selection of trend items of blasting vibration
signals generally adopts manual discrimination. /e
screening of high-frequency noise components mainly de-
pends on the cross-correlation coefficient, which is
expressed as

R(i) �
1
T

􏽘

T

t�1
x(t)cj(t), (3)

where R(i) is the cross-correlation coefficient, T is the signal
length, x(t) is the original signal, and cj(t) is the modal
component obtained by decomposition. j� 1, 2, . . ., J, J is the
number of modes obtained by decomposition.
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/e correlation coefficient can indicate the degree of
correlation between the two signals. /e correlation
coefficient between the original signal and the interfer-
ence term should be 0; however, in practice, since the
original signal also contains the trend term and noise, the
correlation coefficient will not be 0. /erefore, it is
generally believed that if the correlation coefficient be-
tween the modal component and the original signal is less
than 0.1, a noise component or a trend component will
exist [18].

If the trend item is too large, the decomposed trend item
component may account for the main part of the original
signal. At this time, the correlation coefficient between the
original signal and the trend item component will be larger,
so frequency analysis is also introduced to help identify the
trend item. Since the blasting vibrometer has an effective
frequency collection range, it can be considered an inter-
ference item if the collected signal contains parts that exceed
the frequency range.

2.3. 6e Removal of the Trend Item and the Principle of Noise
Using FDM. Firstly, the FDM theory is used to decompose
the original signal into a series of Fourier intrinsic frequency
band functions to obtain the decomposed modal compo-
nents. /en, the correlation coefficient between the modal
component and the original signal is calculated, and the
dominant component is selected; at the same time, the trend
item and noise component are removed according to the
frequency band information. Finally, the screened compo-
nents are reconstructed to obtain a pure signal. /e specific
process is shown in Figure 1.

3. Numerical Simulation Analysis

3.1. Simulation Signal Establishment. In order to verify the
feasibility of FDM removing trend items and noise, the
numerical simulation analysis was carried out. At present,
the superposition of sine and cosine functions is generally
used to simulate the blasting vibration signal [19], and the
structure of the analogue signal is as follows:

x1 � 0.2e
− 15t

× sin(150πt),

x2 � 0.25 cos(50πt),

x3 � 0.3 sin(100πt) ×(1 + 1.5 sin(25πt)),

x � x1 + x2 + x3,

z � x + α(t) + β(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

where x is the superposition used to form the original pure
signal, α(t) is the artificial noise component, β(t) is the
artificial trend item, and z is the original signal. /e signal
waveform diagram is shown in Figure 2.

It can be found that the simulated signal containing
noise and trend items has been severely disturbed, and it is
difficult to obtain useful information. /erefore, it needs to
be preprocessed during signal analysis to remove the in-
terference of trend items and noise.

3.2. FDM-Based Simulation Signal Trend Item and Noise
Removal. FDM decomposition is performed on the simu-
lated signal containing noise and trend items. /e frequency
is decomposed from low to high, and 40 modal components
and 1 residual component r were obtained. Due to space
limitations, only five representative low-frequency compo-
nents and high-frequency components are shown in
Figure 3.

/e correlation coefficient between the C1 component
and the original signal is 0.8863. However, by comparing the
waveforms in Figure 3, it can be clearly seen that the C1
component is the trend item component. /e correlation
coefficients between the remaining different modal com-
ponents and the original signal are calculated and shown in
Table 1.

It can be found that the C2–C4 components have a good
correlation with the original signal, which are considered to
contain useful information in the original signal. In contrast,
the correlation coefficients of the remaining components
with the original signal are all less than 0.1, so they can be
considered noise components. At the same time, through the
analysis of the cross-correlation coefficient, it is found that
the cross-correlation coefficient obtained from the useful
information component and the noise component is very
different, indicating that the useful information and the
noise interference in the original signal are effectively sep-
arated by FDM. Furthermore, the C2–C4 components were
reconstructed to obtain a pure signal, as shown in Figure 4.

3.3. Evaluation of the Removal Effect of the Trend Term and
Noise. In order to verify the effect of this method on re-
moving trend items and noise, the original signal was
processed with the EMD method, the CEEMDAN method,
and the VMDmethod, respectively; the obtained pure signal
is shown in Figure 5.

After analyzing and comparing the waveform diagrams,
it can be found that these methods effectively removed the
trend item in the original signal, but the denoising effect is
obviously different. Among them, the pure signal recon-
structed by the EMD method can be found to have obvious

Original blasting
vibration signal

FDM decomposition

Remove trend items
based on frequency band

information

Remove noise based on
cross-correlation

coefficient

Reconstruction to get a
pure signal

Figure 1: Flowchart of noise removal.

Shock and Vibration 3



glitch noise residue, the CEEMDAN method has slight burr
noise residue, and the VMD method has a smoother curve
than the first two methods, while its peak part is much lower
than the original signal, indicating that useful information in
the original signal is removed when the trend item and noise
are removed; this is not good for signal analysis. /e signal-

to-noise ratio (SNR) and root mean square error (RMSE) are
further used for quantitative analysis [20]. /e higher the
signal-to-noise ratio, the smaller the root mean square error,
indicating a better denoising effect. /e calculation formulas
are shown in (5) and (6), and the calculation results are
shown in Table 2.
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Figure 2: Simulation signal waveform. (a) Original signal. (b) Original signal with noise. (c) Original signal with noise and trend terms.
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Figure 3: Decomposition results of FDM.
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SNR � 10 × log10
􏽐

n
i�1 Zi(t)

2

􏽐
n
i�1 Zi(t) − Z i

′(t)􏼂 􏼃
2

⎧⎨

⎩

⎫⎬

⎭, (5)

RMSE �

����

1
n

􏽘

n

i�1

􏽶
􏽴

Zi(t) − Zi
′(t)􏼂 􏼃

2
. (6)

After comparing the indicators of the denoising effect of
the four methods, it can be found that the pure signal ob-
tained using the VMD method is smoother than that of the
CEEMDAN method, but its signal-to-noise ratio is lower,
and the root mean square error is higher, indicating that
useful information is not effectively retained, which is
detrimental to the subsequent signal analysis. /e pure
signal time history curve obtained using FDM is the
smoothest, the signal-to-noise ratio (23.2406) is the highest,
and the root mean square error (0.0246) is the smallest,
indicating that the useful information of the original signal is
retained, and the trend item and noise are effectively re-
moved, which is conducive to the accurate analysis of the
subsequent signal.

4. The Analysis of the Measured Signal

4.1. 6e Acquisition of the Measured Signal. /is blasting
vibration signal comes from a tunnel blasting project. /e
blasting parameters are shown in Table 3, and the blasting
vibration signal is shown in Figure 6.

It can be seen from Figure 6 that the blasting vibration
signal obviously contains trend items and high-frequency
noise, so it needs to be preprocessed to facilitate subsequent
signal analysis.

4.2. FDM-BasedTrend ItemandNoiseRemoval. /e original
signal is decomposed by FDM; from low to high fre-
quency, 43 modal components and 1 residual component
are obtained. Due to space limitations, only five repre-
sentative modal components in the low-frequency part
and modal components in the high-frequency part are,
respectively, shown in Figure 7. At the same time, the
dominant frequency of the modal component and its
correlation with the original signal are calculated and
shown in Table 4.

Table 1: /e correlation coefficient between the FIBFs and the original signal.

FIBFs C2 C3 C4 C5 C6 C7 C8 C9
R 0.2214 0.3321 0.2025 0.0144 0.0151 0.0192 0.0203 0.0191
FIBFs C10 C11 C12 C13 C14 C15 C16 C17
R 0.0208 0.0273 0.0185 0.0272 0.0308 0.0293 0.0294 0.0285
FIBFs C18 C19 C20 C21 C22 C23 C24 C25
R 0.0250 0.0253 0.0281 0.0289 0.0273 0.0217 0.0186 0.0191
FIBFs C26 C27 C28 C29 C30 C31 C32 C33
R 0.0166 0.0173 0.0149 0.0152 0.0120 0.0113 0.0093 0.0107
FIBFs C34 C35 C36 C37 C38 C39 C40 r
R 0.0088 0.0058 0.0058 0.0070 0.0043 0.0030 0.0006 0.0006
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Figure 4: Waveform diagram of the pure signal.
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Figure 5: Comparison of the removal effect of the trend itemandnoise.
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Table 2: Comparison of noise reduction effects.

Method EMD CEEMDAN VMD FDM
SNR 15.4870 17.8109 15.8413 23.2406
RMSE 0.06 0.0459 0.0576 0.0246

Table 3: Blasting parameters.

Hole depth (m) Blasting centre distance (m) Maximum explosive charge (kg)
4 40 45
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Figure 6: Blasting vibration signal waveform.
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Figure 7: Decomposition results of FDM.
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/e minimum measurable frequency of the blasting
vibrometer used is 5Hz, and the part below 5Hz is regarded
as the trend item. It can be seen from Table 4 that although
the correlation coefficient between the C1 component and
the original signal is 0.9336, its main frequency is 2Hz,
which is an obvious trend item component. /is is because
the trend item has a low frequency, leading to a greater
impact on the original signal. When the cross-correlation
coefficient is less than 0.1, the component is the noise
component. It can be found that when the frequency is
higher than 120Hz, the correlation coefficient between the
modal component and the original signal suddenly changes
from higher than 0.1 to 0.0131, indicating that the noise and
useful information are effectively separated, further verifying
the excellent performance of FDM in noise removal of
blasting vibration signals.

In summary, according to the frequency information
and the cross-correlation coefficient, the C1 component is
considered the trend component, and the C10–C43 com-
ponents are the high-frequency noise components, which
should be removed. C2–C9 components are selected to
reconstruct the pure signal, as shown in Figure 8.

4.3. Evaluation of Trend Item and Noise Removal Effect.
In order to evaluate the removal effect of the trend item and
noise in the measured signal, the original signal was processed
by the EMD method, the CEEMDAN method, and the VMD
method, respectively, and the comparison and analysis were
performed to obtain the pure signal as shown in Figure 9.

It can be found that all these methods can effectively
remove the trend item in the original signal; among them,
the EMDmethod has more residual burr noise, and the peak
vibration speed is reduced; although the CEEMDAN
method and VMDmethod have better noise removal effects,
their peak vibration velocity is also reduced to a certain
extent, which is unfavourable for signal analysis and has an
adverse effect on optimizing blasting parameters and con-
trolling blasting hazards. /e effect of these methods is
evaluated from three aspects, including signal-to-noise ratio,

root mean square error, and peak vibration velocity. /e
calculation results are shown in Table 5.

/e peak vibration velocity of the original signal is
0.7673 cm/s. According to the data in Table 5, it can be
found that although the signal waveform is the smoothest
after processing by the VMD method, the signal-to-noise
ratio is the lowest, and the peak vibration velocity is also
significantly reduced, which means the VMDmethod will
remove the useful information while erasing noise, which
is not good for accurate signal analysis. Compared with
the EMD method and the VMD method, the signal-to-
noise ratio of the CEEMDAN method is significantly
improved, and the peak vibration velocity is closer to
reality. /e pure signal obtained by FDM has the highest
signal-to-noise ratio (28.3736), the root mean square
error (0.0018) is the smallest, and the peak vibration
velocity is closest to the actual value. It shows that while
using the FDM to remove the interference of trend items
and noise, the useful information in the original signal
will be retained as much as possible, and furthermore,

Table 4: Related parameters of FIBFs.

FIBFs C1 C2 C3 C4 C5 C6 C7 C8 C9
R 0.9336 0.1986 0.4685 0.4573 0.6024 0.2956 0.1400 0.2165 0.1144
Main frequency (Hz) 2.0 6.2 13.4 17.0 30.6 44.8 69.2 79.4 87.6
FIBFs C10 C11 C12 C13 C14 C15 C16 C17 C18
R 0.0131 0.0073 0.0069 0.0070 0.0069 0.0076 0.0081 0.0110 0.0125
Main frequency (Hz) 126.0 150.4 179.4 190.8 223.6 256.0 288.2 316.6 351.0
FIBFs C19 C20 C21 C22 C23 C24 C25 C26 C27
R 0.0182 0.0152 0.0107 0.0098 0.0089 0.0087 0.0097 0.0089 0.0084
Main frequency (Hz) 423.6 431.2 537.2 586.0 652.0 683.6 733.4 783.8 842.4
FIBFs C28 C29 C30 C31 C32 C33 C34 C35 C36
R 0.0068 0.0057 0.0065 0.0049 0.0038 0.0047 0.0047 0.0029 0.0036
Main frequency (Hz) 852.0 886.4 908.8 935.4 945.6 947.0 964.4 971.0 978.8
FIBFs C37 C38 C39 C40 C41 C42 C43 r
R 0.0027 0.0023 0.0021 0.0007 0.0014 0.0008 0.0005 0.0005
Main frequency (Hz) 988.2 990.4 996.6 997.0 998.4 999.0 999.8 0
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Figure 8: Pure signal.

Shock and Vibration 7



spectrum analysis is performed to verify the effect. /e
original signal spectrogram and the obtained pure signal
spectrogram after FDM processing are compared in
Figure 10.

It can be seen that when the trend item is not excluded, the
main frequency of the original signal is around 2Hz, and it
contains much high-frequency noise. /e main frequency of
the pure signal after FDM processing returns to the normal
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Figure 9: Comparison of the effects of different methods.

Table 5: Comparison of the effects of different methods.

Method SNR RMSE Peak vibration velocity (cm/s)
EMD 6.3379 0.0229 0.5364
CEEMDAN 19.2246 0.0052 0.7409
VMD 6.1100 0.0235 0.5735
FDM 28.3736 0.0018 0.7658

0 50 100 150 200

0.5

1.5

0

1

2

Frequency (Hz)

A
m

pl
itu

de

(a)

0 50 100 150 200

0.1

0.2

0.3

0.4

0.5

0

Frequency (Hz)

A
m

pl
itu

de

(b)

Figure 10: Signal spectrogram. (a) Original signal spectrogram. (b) Pure signal spectrogram.
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range (5–100Hz) and is basically consistent with the original
signal’s spectrogram in this range, indicating that the detailed
features in the original signal can be effectively retained, and
the high-frequency noise is effectively eliminated.

5. Results and Discussion

Based on a tunnel blasting project, this paper introduces an
FDM-based method of removing the blasting vibration
signal trend item and noise. By analyzing the measured
blasting vibration signals, the following conclusions can be
drawn:

(1) Using FDM to decompose signals containing trend
items and noise can effectively separate low-fre-
quency trend items, high-frequency noise, and useful
signal information, further facilitating the extraction
of useful signal information.

(2) After FDM decomposition, the pure signal is
reconstructed by the dominant components ob-
tained by screening the frequency information and
the cross-correlation coefficient, which can effec-
tively retain the detailed features in the original
signal, and the frequency characteristics are basically
the same.

(3) Compared with common methods, when the
blasting vibration signal contains both trend items
and high-frequency noise, the pure signal obtained
by FDM processing has the best effect. /e signal-to-
noise ratio (28.3736) is the highest, the root mean
square error (0.0018) is the smallest, and the peak
vibration velocity (0.7658 cm/s) is closest to the
actual value (0.7673 cm/s).
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