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In order to facilitate lubrication and avoid the gear stuck due to thermal expansion, there needs to be a gap between the tooth
profiles. As a strong nonlinear factor, the backlash will affect the motion state of the planetary gear system. When the gear
failures occur, the motion state of the system will accordingly change. In this study, the meshing stiffness of the gear pair with
tooth tip chipping fault is calculated by combining the analytic geometry method and the potential energy method. (en, a
new nonlinear dynamic model including tooth backlash, time-varying mesh stiffness, and manufacturing error is established
to study the dynamic response of the system.(e equations of motion are derived by the Lagrangian method and solved by the
numerical integration method. Taking the excitation frequency and tooth backlash as the variation parameters, respectively,
the dynamic characteristics of the system are analyzed by comparing the global bifurcation diagrams between the health
system and the fault system, and the path of the system into chaos is revealed. At the same time, the local characteristics of the
system are revealed through the phase diagrams and Poincaré maps. (e results show that with the variation of excitation
frequency and tooth backlash, the fault system presents a more complex motion state. (is study can provide the theoretical
support for dynamic design and fault diagnosis of planetary gear transmission systems under the environment of gear fault-
prone.

1. Introduction

Planetary gear systems are widely used in aerospace, agri-
cultural machinery, construction machinery, and other
fields because of their high transmission ratio and trans-
mission efficiency [1]. For the purpose that the gears can be
fully lubricated and avoid jamming, tooth backlash between
the engaged teeth is indispensable. However, the backlash is
a strong nonlinear factor for the dynamic characteristics of
the gear system. Due to the nonlinear factors, such as
backlash, gear fault, and so on, the system exhibits different
motion states with the variational excitation frequency.
Hence, for better dynamic design and fault diagnosis for
planetary gear systems, it is necessary to analyze their dy-
namic characteristics.

In recent decades, many scholars have conducted
modeling analyses on the gear transmission system. In 1994,
Kahraman [2] proposed a dynamic model of the planetary
gear system and studied the load-sharing characteristics.
Later, the vibration modes of the planetary gear system [3–5]
and the suppression law of the meshing phase to the
planetary modal response are analyzed [6]. (en, the load
distribution coefficient is deduced based on the model [7–9].
Wang et al. [10] revealed the nonlinear phenomena and
evolution mechanisms of bifurcation and chaos via a three-
degree-of-freedom torsional vibration model. (en, Shen
et al. [11] studied the dynamic characteristics of spur gear
systems using the incremental harmonic balance method. In
the planetary gear system, gear errors are inevitable, such as
installation errors [12], manufacturing errors [13], and
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geometric errors [14], and the influence on the system is also
analyzed [15].

Backlash and meshing stiffness are nonlinear factors for
the gear system. To analyze the dynamic characteristics of
the planetary gear system, the nonlinear dynamic model
containing the tooth backlash [16–18] and time-varying
meshing stiffness was established [19–22]. (en, Huang
et al. [23] and Pan and Vicuña [24] introduced the fractal
backlash to the model. However, under high-speed and
light-load conditions, gears may appear as tooth backside
contact. (erefore, a multistate dynamic model was
established by Liu et al. [25], and the variation law of the
meshing force under different meshing conditions was
analyzed. (e influence of bearing clearance [26] and gear
surface modification [27] on the dynamic response of the
planetary gear system was revealed. Later, a nonlinear
dynamic model of the multistage gear transmission was
established by Zhao and Ji [28] and Xiang et al. [29], and
the nonlinear dynamic characteristics of the system are
analyzed at the same time.

Due to poor lubrication, impact load, and stress con-
centration, gear failures often occur and the dynamic re-
sponse of the system will change accordingly. For early fault
detection, Shi et al. [30] analyzed the fault characteristics
under variable load. Pan et al. [31] analyzed the frequency
components of the vibration signal in the fault and the
healthy state. Considering the flexible ring gear and bearing
fault, Liu et al. [32] presented a rigid-flexible coupling
planetary gear dynamic model. By establishing the meshing
stiffness model under spalling fault, Luo et al. [33] and Xiang
et al. [34] analyzed the dynamic characteristics of the
planetary gear system. Later, Shen et al. [35] proposed a
purely torsional model to analyze the dynamic character-
istics of planetary gear under wear fault. Yang et al. [36]
proposed a nonlinear dynamic model with tooth backlash
and bearing clearance and analyzed the vibration response
under crack fault [37–39]. Luo et al. [40] established the
meshing stiffness model for spalling and pitting failures and
compared the dynamic response under different failure
types.

In the previous literature, the dynamic response of the
planetary gear system under crack failure, pitting failure, and
spalling was researched. However, there are limited research
studies on the nonlinear dynamic characteristics of planetary
gear systems with tooth tip chipping fault under nonlinear
parameters excitation. (erefore, in order to reveal the
dynamic characteristics of the fault system, this study
established a nonlinear dynamic model containing tooth
backlash, time-varying meshing stiffness, and static trans-
mission error and analyzed the chaos and bifurcation
characteristics of the system via choosing the excitation
frequency and tooth backlash as variable parameters. (e
rest of the study is organized as follows. Section 2 establishes
the planetary gear dynamic model. In Section 3, the dynamic
characteristics of the system are analyzed by taking the tooth
backlash and rotation speed as control variables. Finally,
some conclusions are given in Section 4.

2. DynamicModel of the Planetary Gear System

(e planetary gear system has a complex structure that is
different from fixed shaft gearboxes. In order to study the
nonlinear dynamic behavior, a pure torsional dynamic
model of the planetary gear system is proposed, which
contains a sun gear s, a ring gear r, a carrier c, and N planet
gears pi (i� 1, 2, . . ., N), as shown in Figure 1. In this model,
all gears are standard spur gears. (e carrier with planet
gears fixed on is connected with the input shaft, and the sun
gear is attached with the output shaft. (e ring gear is fixed.
In order to simplify the model, all components are assumed
to be rigid.

2.1. System Excitations

2.1.1. Time-Varying Meshing Stiffness of Gears with Tooth Tip
Chipping Fault. (e potential energy method is a common
method for calculating meshing stiffness. In the method, the
gear tooth is regarded as a variable cross-section cantilever
beam fixed on the tooth root, as shown in Figure 2. (e total
meshing stiffness can be composed of bending stiffness kb,
axial compression stiffness ka, shear stiffness, Hertz contact
stiffness kh, and fillet foundation stiffness kf. When in the
gear occurs tooth tip chipping failure, a part of the material
will fall off the tooth tip, which will affect the cross-sectional
area and the moment of inertia of the tooth faulty part, as
shown in Figure 3.(ereby, to estimate the meshing stiffness
of gear pairs with tooth tip chipping, an accurate stiffness
model is established.

In order to simplify the model, the fracture surface is
simplified as a plane, as shown in Figure 3. (e intersection
line between the plane and the tooth profile surface is the
curve L3, and the intersection line with the gear end surface
denotes the straight L2. In the three-dimensional coordinate
system, the involute tooth profile equation Ω1 can be
expressed as
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where u and v represent the coordinate of the involute in the
UOV coordinate system, which can be described as

u � Rb sin θx + αx( 􏼁 − θx + αx( 􏼁cos θx + αx( 􏼁􏼂 􏼃,

v � Rb cos θx + αx( 􏼁 + θx + αx( 􏼁sin θx + αx( 􏼁􏼂 􏼃.
􏼨 (2)

In the three-dimensional coordinate system, the fracture
surface equation Ω2 can be written as

z �
x − xa( 􏼁 ya − yb( 􏼁 − xa − xb( 􏼁 y − ya( 􏼁􏼂 􏼃

xa − xb( 􏼁 ya − yc( 􏼁 + ya − yb( 􏼁 xc − xa( 􏼁
zc. (3)

(e equation of the curve L2 can be deduced by si-
multaneous equations of (1) and (3). (e equation of line L3
in Figure 3(a) can be expressed as
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Figure 2: Cantilever beam of spur gear with tooth tip chipping.
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Figure 1: (e dynamic model of planetary gear transmission.
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Figure 3: Diagram of the tooth tip chipping part for the tooth.
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(4)

As tooth tip chipping failure occurs, a part of the ma-
terial will fall off the tooth tip, so the cross-sectional area and
moment of inertia of the faulty part will vary accordingly,
which can be deduced by the following equations:
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(5)

(ereby, the meshing stiffness can be obtained by the
potential energy method [41]:
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(6)

where the parameters of L∗, M∗, P∗, Q∗, uf, and Sf are given
in the study by Ma et al. [42].

(e total meshing stiffness of external-external mesh can
be expressed as

kspn � 􏽘
2

i�1

1
1/kh,i􏼐 􏼑 + 1/kb1,i􏼐 􏼑 + 1/ks1,i􏼐 􏼑 + 1/ka1,i􏼐 􏼑 + 1/kf1,i􏼐 􏼑 + 1/kb2,i􏼐 􏼑 + 1/ks2,i􏼐 􏼑 + 1/ka2,i􏼐 􏼑 + 1/kf2,i􏼐 􏼑

. (7)

In this model, the internal-external mesh is assumed to
be in a healthy state, and the total meshing stiffness can be
deduced in the same way:
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n
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1
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, (8)

where n represents the number of tooth pairs engaged at the
same time.(e subscript 1 indicates the driving gear, and the
subscript 2 represents the driven gear.

2.1.2. Manufacturing Error and Damping. In this model, the
carrier is connected to the input shaft, and the meshing
frequency can be expressed as

ωm � ωczr. (9)

Assuming that the gear teeth are exactly the same, the
static transmission error between the engaged gear teeth can
be described as Fourier series, where the meshing frequency
is the fundamental frequency. To simplify the model, merely,
the fundamental frequency is taken into account, which can
be expressed as [29]

espn � easpn sin ωmt + ϕspn􏼐 􏼑, (10a)

erpn � earpn sin ωmt + ϕrpn􏼐 􏼑. (10b)

(e mesh damping can be expressed as

cspn � 2ξspn

��������������
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1/ms( 􏼁 + 1/mpn􏼐 􏼑

􏽶
􏽴

, (11a)

crpn � 2ξrpn

���������������
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􏽶
􏽴

, (11b)

where kmspn and kmrpn are the arithmetic mean of kspn and
krpn, Ij (j � s, ce, r, pn) is the moment of inertia, and mj

(j � s, c, r, pn) is the equivalent mass that can be calculated
by the following equations:
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2
c ,
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r
2
s

,
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r
2
c

,
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r
2
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.

(12)

2.1.3. Gear Backlash. In order to facilitate gear lubrication
and prevent the gear from jamming during the operation,
there is a gap between the engaged gear teeth. (e backlash
can be described by a piecewise function:

f δspn􏼐 􏼑 �
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0, δspn
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2.2. Dynamic Differential Equations. According to the La-
grangian equation, the differential equations of torsional
vibration under the excitations can be obtained:

Is
€θs + 􏽘

N

n�1
rsFspn � Tout,

Ipn
€θpn − rpnFspn + rpnFrpn � 0,

Ice
€θc − 􏽘

N

n�1
rcFspn − 􏽘

N

n�1
rcFrpn � − Tin,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(14)

where Tout and Tin represent the output torque and the input
torque, respectively. Fspn and Frpn are adopted to describe
the meshing force which can be expressed as [20]

Fspn � cspn
_δspn + kspnf δspn􏼐 􏼑, (15a)

Frpn � crpn
_δrpn + krpnf δrpn􏼐 􏼑. (15b)

In order to reduce the dimension of the differential
equations, generalized coordinates are introduced as follows:

δspn � rsθs − rpnθpn − rcθc − espn, (16a)

δrpn � rpnθpn − rrθr − rcθc − erpn. (16b)

Due to the large numerical difference between the
various nonlinear parameters, the solving progress is diffi-
cult to conduct. In order to facilitate the solution and im-
prove the calculation efficiency, the dimensionless
processing is carried out. By introducing the time scale ωn

and displacement scale bc, the dimensionless parameters can
be obtained. (e dimensionless time displacement, velocity,
and acceleration can be expressed as
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τ � ωn ∗ t,

δspn �
δspn
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(17)

(e dimensionless mesh stiffness, static transmission
error, and backlash are expressed as
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By substituting equations (15a)–(19b) into equation (14),
the differential equation of dimensionless parameters can be
obtained as follows:
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(20)

3. Numerical Simulation and Results Analysis

Since the relative displacement between the engaged teeth
has the same law, the dimensionless relative displacement of

the engaged teeth between the sun gear and the planet gear is
taken as the object to analyze, and the fourth-order Run-
ge–Kutta method is used to solve the dynamics differential
equations. (e basic parameters of each component in the
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model are given in Table 1, and the meshing parameters are
given in Table 2. (e displacement scale bc is 1e − 5m. (e
input torque is 100Nm, and the transmission ratio is 4. (e
αa is assigned a value of 25°, yb is 0mm, and zc is 20mm.(e
meshing stiffness of external-external mesh and internal-
external mesh is shown in Figures 4 and 5. To avoid the
influence of transient response, the first 500 response cycles
of the system are omitted.

3.1. Bifurcation and Chaos of Fault and Health Systems with
Excitation Frequency. (e motion state of the system will
convert with the variation of the excitation frequency.
(erefore, the dimensionless excitation frequency Ω is
chosen as the variable parameter, and the dimensionless
backlash b is assigned the value of 2; the bifurcation diagram
of the system in both health and fault conditions is shown in
Figures 6 and 7. (e largest Lyapunov exponent diagram of
the health system is shown in Figure 8. As can be seen from
figures, both the health and fault systems have rich chaotic
and bifurcation characteristics. For the health system, when
the excitation frequency Ω is between 0 and 0.69, the system
presents a single-period motion and the corresponding
largest Lyapunov exponent is less than zero. When it is
between 0.69 and 1.28, the system undergoes a single-period
motion to evolve into chaotic motion with small amplitude.
When the excitation frequency changes in the range of
1.28–1.48, the system basically keeps cyclical movement, in
which the largest Lyapunov exponent is less than zero. (en,
the system enters the chaotic motion eventually. For the fault
system, it is similar to the state of motion experienced by the
health system, but in the excitation frequency range cor-
responding to the periodic motion of the health system, the
fault system shows obvious multiple periodic motions, as
shown in Figure 9. Under different tooth backlashes, the
bifurcation diagram of the system is displayed in Figure 10.
It can be seen that the amplitude of chaotic motion augments
with the increase of the initial backlash. (e system enters
the chaotic motion earlier as the speed increases if the
backlash is designed large.

In order to further analyze the local characteristics of the
health system and fault system, phase diagrams and Poincaré
maps are used to describe the local characteristics of the
system. Figures 11–15 are the phase diagram and Poincaré
maps of the two systems at different excitation frequencies. It
can be seen from Figure 11 that the health system exhibits a
single-period motion at Ω� 0.5, while the fault system ex-
hibits a multiple period motion. When Ω equals to 1, as
shown in Figure 12, both of the two systems are in chaotic
motion. When Ω is 1.34, as shown in Figure 13, the health
system exhibits single-period motion, while the fault system
presents multiple periodic motions. When Ω is 4, as shown
in Figure 14, the health system exhibits quasiperiodic mo-
tion, while the faulty system appears as small amplitude
chaotic motion. As Ω continues to increase, the health
system exhibits the single-periodic motion atΩ� 1.47, while
the faulty system occurs in chaotic motion, as shown in
Figure 15. Hence, when the health system exhibits periodic
motion, the fault system exhibits the multiperiod or

pseudoperiodic motion at the corresponding excitation
frequency.

3.2. Bifurcation and Chaos of Fault and Health Systems with
Different Initial Backlashes. In order to facilitate lubrication,
there needs to be a gap between the engaged gear teeth and
the value of the initial backlash that will affect the dynamic
characteristics of the gear system. (erefore, the dimen-
sionless backlash b is chosen as the variable parameter to
study the dynamic characteristics of the system with the
dimensionless excitation frequency Ω to be 1.6. When the
backlash varies between 0 and 3, the bifurcation diagrams of

Table 1: Parameters of the dynamic model.

Parameter name Sun gear Ring
gear

Planet
gear

(e
carrier

Number of parts 1 1 3 1
Number of teeth 19 57 19 —
Gear module
(mm) 3.2 3.2 3.2 —

Pressure angle (°) 20 20 20 —
Inertia moment
(kg·m̂2) 3.85E − 04 2.4E − 02 3.85E − 04 4.93E − 03

Table 2: Meshing parameters.

Parameter name Sun-planet Ring-planet
Damping ratio 0.07 0.07
Error amplitude (m) 1e − 5 1e − 5
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Figure 4: Meshing stiffness of external-external mesh.
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Figure 6: Bifurcation diagram of the health system with excitation frequency variation.
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the health system and the fault system are shown in Fig-
ures 16 and 17, respectively. (e largest Lyapunov exponent
diagram of the health system is shown in Figure 18. It can be
seen from the figures that the amplitude of the system

motion augments with the increase of the backlash. For the
health system, when the backlash b changes between 0 and
1.095, the system presents a single-period motion and the
largest Lyapunov exponent is less than zero. However, the
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Figure 13: (a) Health system at Ω � 1.34. (b) Fault system at Ω � 1.34.
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Figure 12: (a) Health system at Ω � 1. (b) Fault system at Ω � 1.
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system motion state occurs jump variation at b� 1.095.
(en, the system enters a small amplitude chaotic motion at
the interval of 1.095–1.29 corresponding to which the largest
Lyapunov exponent is larger than zero. Afterwards, the
system reenters the single-period motion when b varies in

1.29–1.53. As b continues to increase, and the system
eventually enters chaotic motion. For the fault system, it is
similar to the state of motion experienced by the health
system, but in the backlash interval corresponding to the
periodic motion state of the health system, the fault system
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Figure 14: (a) Health system at Ω � 1.4. (b) Fault system at Ω � 1.4.
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Figure 15: (a) Health system at Ω � 1.47. (b) Fault system at Ω � 1.47.
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Figure 17: Bifurcation diagram of the fault system with backlash variation.

La
rg

es
t l

ya
pu

no
v 

ex
po

ne
nt

–0.05

0

0.05

0.1

0.5 1 1.5 2 2.5 30
b

Figure 18: Largest Lyapunov exponent diagram of the health system with backlash variation.

12 Shock and Vibration



shows obvious small amplitude chaotic motion. Figure 19
shows the bifurcation characteristics of the two health
systems with backlash. It can be seen from the figure that the
fault system has more complex nonlinear characteristics and
enters the chaotic motion earlier. After changing the speed,

the bifurcation diagram of the fault system with the backlash
is shown in Figure 20. When the speed increases, the am-
plitude of the chaotic motion will increase accordingly.

In order to further analyze the local characteristics of the
health system and fault system and reveal the path of the

0

1

2

3

4

1 1.5
1

1.5

2

X: 1.53
Y: 2.695

X: 1.08
Y: 1.222

X: 1.29
Y: 1.888

1 1.5
1

1.5

2

X: 1.53
Y: 2.695YY

X: 1.08
Y: 1.222YY

X: 1.29
Y: 1.888YY

0.5 1 1.5 2 2.5 30
b

δ s
p1.

Health system
Fault system

Figure 19: Bifurcation comparison diagram with backlash of the fault system and health system.
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Figure 20: Bifurcation comparison diagram with backlash of the fault system and health system.
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system into chaos, phase diagrams and Poincaré maps are
used to describe the local characteristics of the system. From
Figures 21–24, it can be seen that the health system exhibits a

single-period motion at b� 0.5, 1, and 1.4 and a small
amplitude chaotic motion at 1.2. While, the fault system
directly enters the chaotic motion.
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Figure 21: (a) Health system at b � 0.5. (b) Fault system at b � 0.5.
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Figure 22: (a) Health system at b � 1. (b) Fault system at b � 1.
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4. Conclusions

(is study proposed a meshing stiffness model of gear pair
with tooth tip chipping fault by combining the analytic
geometry method and potential energy method.(en, a new
nonlinear dynamicmodel of the planetary gear system under
health and fault conditions is established considering the
time-varying mesh stiffness, tooth backlash, and static
transmission error. (e model is derived by the Lagrangian
method and solved by the numerical integration method.
Taking the dynamic transmission error between the sun gear
and planet gear as the research object, through the global
bifurcation diagram, the variations of the two systemmotion

states with the excitation frequency and tooth backlash are
analyzed, and the local characteristics of the systems are
analyzed via the phase diagrams and the Poincaré maps.
Some conclusions can be obtained as follows:

(1) With the variation of excitation frequency, both the
health system and fault system show complex bi-
furcation and chaotic characteristics, and the chaotic
motion is mixed with periodic windows;

(2) (e fault system has more complex nonlinear
characteristics and enters the chaotic motion earlier.
(e fault system shows multiple periodic motions
and a small amplitude chaotic motion in the interval
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Figure 23: (a) Health system at b � 1.2. (b) Fault system at b � 1.2.
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Figure 24: (a) Health system at b � 1.4. (b) Fault system at b � 1.4.
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of excitation frequency and backlash, in which the
health system is in the periodic motion state;

(3) (e amplitude of the chaotic motion augments with
the increase of the initial backlash. (e system enters
the chaotic motion earlier as the speed increases if
the backlash is designed large;

(4) When the initial backlash of the design is deter-
mined, the amplitude of the chaotic motion will
increase with the speed

Nomenclature

α2: Central angle of half tooth
αx: Pressure angle of involute point
θx: Evolving angle of involute point
Rb: Base circle radius
αa: Pressure angle of point A
h∗a : Addendum coefficient
m: Gear modulus
αt: Addendum circle pressure angle
yxL1

: y-coordinate of the intersection of cross-section
and L1

yxL3
: y-coordinate of the intersection of cross-section

and L3
xi: yi (i� a, b, c) coordinate of the points A, B, and C
α0: Pitch circle pressure angle
αt: Addendum pressure angle
ze: Number of external gear teeth
Ix: Moment of inertia of tooth cross-section
d: Distance between action point and tooth root

circle
h: Distance between action point and X-axis
hx: Distance between arbitrary point on involute and

X-axis
x: Distance of involute point to tooth root circle
L: Gear tooth width
Ax: Area of tooth cross-section
E: Elastic modulus
G: Shear modulus
v: Poisson ratio
zxL2

: z-coordinate of the intersection of cross-section
and L2

α1: Pressure angle of action point
ωc: Angular frequency of the carrier
zr: Tooth number of the ring gear
easpn,
erspn:

Amplitudes of static transmission errors

ψspn,
ψrpn:

Initial phases

ξspn, ξrpn: Damping ratios
δspn,
δrpn:

Dynamic transmission errors

bspn,
brpn:

Initial backlash.
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