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*e study of forced and free vibration of a cylinder has long been isolated. *e internal relationship between free vibration and
forced vibration has rarely been investigated. In this paper, the relationship between the forced and free vibration of a cylinder was
established. A series of numerical simulations of a cylinder undergoing forced oscillations at a wide range of vibration amplitudes
and frequencies were carried out, with the flow solver viv-FOAM-SJTU developed based on the open-source platform
OpenFOAM. Complex demodulation analysis was conducted to quantify the spatial-temporal phase relationship between the
forces and the displacement of the cylinder. It was found that, at some particular oscillating amplitudes and frequencies, the phase
angle switched between positive and negative values, which corresponds to a vortex mode transferring from the 2P mode to the
2PO mode.*is distinct newmode “2PO” was closely related to the intermittent jumping between lower and upper branches of the
amplitude responses of VIV. A prediction model was developed to obtain the VIV amplitude responses based on the numerical
results of forced oscillation. *e prediction results of three points located separately in the initial, upper, and lower branches of
VIV agreed well with experimental measurements of an elastically mounted cylinder. *is prediction model was thus expected to
be suitable for predicting the response of VIV.

1. Introduction

When a flow passes a cylinder, the oscillatory shedding of
vortices into the wake would cause fluctuating lift and drag
forces on the cylinder. If the cylinder was elastically
mounted, the fluctuating forces could excite the vibrations of
the cylinder. *e motions of the cylinder would in turn
change the vortex wake. Such a problem of fluid-structure
interaction was called vortex-induced vibrations (VIV). VIV
was a highly specialized subject that incorporates fluid
mechanics, structural mechanics, vibrations, computational
fluid dynamics (CFD), etc. and occurs in many engineering
situations such as marine riser pipes, mooring cables,
tethered structures, and spar hulls. VIV could cause large
stresses and fatigue damage of structures. So far, numerous
contributions to flow-induced oscillations in general and to
VIVs in particular had guided the acquisition of design data
through physical and numerical experiments, theoretical,
and physical research work, of which many had been

discussed in the compressive reviews of Williamson [1];
Williamson [2]; Williamson [3]; Sarpkaya [4]; Gabbai [5];
Bearman [6]; Wu [7]. Much progress had been made during
the past decade, both numerically and experimentally, to-
ward the understanding of the kinematics of VIV. Studies for
VIV could be divided into two categories: free vibration of a
cylinder and forced vibration of a cylinder.

For free vibrations of a cylinder, the vibration force was
provided through the fluid forces exerted on the cylinder.
Mass ratio m∗ was an important parameter that influences
the amplitude response of VIV. Feng’s [8] experiment of free
vibration of an elastically mounted cylinder in air, which
represents the typical model of high mass ratio, was the
earliest and perhaps themost famous experiment. According
to Feng [8], there were two branches for the amplitude
response: the vortex mode changes from 2S of the initial
branch to 2P of the lower branch. *e situation for low mass
ratio was quite different. A new branch, called the upper
branch, appeared in the amplitude response of VIV for low

Hindawi
Shock and Vibration
Volume 2021, Article ID 2774070, 14 pages
https://doi.org/10.1155/2021/2774070

mailto:duanmuyu1023@163.com
https://orcid.org/0000-0002-0340-2377
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/2774070


mass ratio [9–12], besides the initial and lower branches, as
was also shown for the high mass ratio. *e maximum
response amplitude reached about one diameter (1D) of the
cylinder, which was greater than Feng’s results (0.6D).
Jauvtis and Williamson [13] focused their attention on the
study of vortex-induced vibration with two degrees of
freedom. *e amplitude response obtained from combined
X and Y motion was larger than Y-only motion (X is the in-
line direction, and Y is the cross-flow direction). A new
vortex wake mode “2T,” which consisted of a triple of
vortices, was observed for low mass ratios VIV experiments
(m∗ � 2.6). Other researchers carried out numerical simu-
lations of freely oscillating cylinder with CFD methods.
Navrose and Sanjay [14] reported free vibrations of a cyl-
inder of low mass ratio m∗ � 10 at Reynolds number
Re� 1000.*ree branches were obtained, and the maximum
amplitude of cross-flow (y) oscillations was 0.7D. Al-Jamal
and Dalton [15] performed a series of 2-D LES simulations
of the VIV response of a circular cylinder at Re� 8000 with a
wide range of damping ratios and natural frequencies. Lucor
et al. [16] presented DNS results of uniform flow past a rigid
cylinder with low mass damping at Re� 1000, 2000, and
3000. Wanderley et al. [17] correctly predicted the ampli-
tudes of the VIV oscillations by solving the slightly com-
pressible Reynolds average NS equations with the Roe-
Sweby scheme.

For forced vibrations, the cross-flow (y) movement of
the cylinder was predefined by the sinusoidal trajectory
relative to the fluid. Williamson [18] conducted experiments
of controlled oscillation, over a broad range of amplitudes
(A∗ up to 5.0) and wavelengths (λ∗ up to 15.0). *e results
showed principally three vortex wake patterns, named 2S,
2P, and P+ Smodes, which were relevant to the fundamental
synchronization regime. *ese experiments had been used
as benchmarks and have been verified by experiments or
numerical simulations conducted by later researchers.
Williamson and Roshko [18] studied the cross-flow (y)
forced vibration of a circular column in uniform flow.
Nishihara et al. [19] presented the characteristics of fluid
forces and wake patterns of a circular cylinder oscillating in
the streamwise direction in a cross-flow. Jeon and Gharib
[20] performed the experiments of a cylinder undergoing
one-and two-degree-of-freedommotions and found that the
addition of streamwise motion will result in qualitative
changes in the wake. Numerical simulations were carried out
as an alternative method to study forced oscillations of a
circular cylinder. Atluri et al. [21] investigated the influence
of Reynolds number (ranging from 500 to 8000) on the wake
structure of a forced oscillating cylinder at different vibra-
tion frequencies. Dong and Karniadakis [22] presented DNS
results of the flow past an oscillating cylinder at Re� 10000
by employing a multilevel-type parallel algorithm. Zhao and
Wan [23, 24] presented DES results of the flow past an
oscillating cylinder. Fu et al. [25] presented VIVs of a flexible
cylinder in an oscillatory flow. Deng et al. [26] studied VIVs
of a flexible cylinder by three-dimensional strip model.

As was shown in the foregoing studies, the study on the
forced and free vibration had long been isolated.*e internal
relationship between free vibrations and forced vibrations

had received few investigations. However, the ultimate
objective of VIV research was to predict, to the extent
possible, the kinematics and dynamics of self-excited vi-
brations from forced vibration (physical/numerical) ex-
periments and, equally important, the dynamics of forced
oscillation (say, e.g., drag lift, and inertia coefficients and the
phase angle) from the physical/numerical experiments with
self-excited oscillations [4]. Morse and Williamson [27]
performed 5680 runs of forced oscillating experiments in a
water flume and accurately predicted the response and wake
modes for vortex-induced vibration response. A new distinct
mode of vortex formation, termed as the 2POVERLAP mode
(2PO), was identified. *is mode also consisted of two pairs
of vortices (like 2P), but one vortex in each pair was much
weaker than the other. *e extreme care of control required
for forced vibration experiments and extensive measure-
ments needed to create very high-resolution data make it
arduous to accomplish such experimental studies [27].
Moreover, many factors such as running condition, in-
stallation error, and collection of data could influence the
experimental results. Compared to experiments, numerical
simulations can easily control the simulation parameters and
obtain the detailed vortex structures. One objective of our
study was to identify the new vortex mode 2PO by numerical
simulations. *e new vortex mode was closely related to
intermittent jumping between lower and upper branches of
the amplitude responses of VIV. We found that the wake
could switch intermittently between the 2P and 2PO modes,
even if the cylinder was vibrating with constant amplitude
and frequency. In other words, the two different vortex
modes could exist simultaneously at some specific oscillating
amplitudes and frequencies, contrary to the conventional
notion that only one clear vertex formation can exist.
Complex demodulation analysis was used to obtain the time
history of the phase difference between the lift coefficient
and the displacement. *e phase angle switched between
positive and negative values, corresponding to the change of
vortex mode transition between 2P mode and 2PO mode.
Another objective of this study was to predict the amplitude
response of free vibration cylinders from forced vibration.
*e prediction function was derived based on the concept of
an “energy balance” to compute the amplitude response of a
free oscillating cylinder at different mass damping ratios.
Our work helped explain several important questions of free
vibrations of a cylinder.

*is paper presented a number of numerical researches
of the forced oscillating cylinder at Re� 4000. *e simula-
tions were carried out with a newly developed flow solver
viv-FOAM-SJTU, which was integrated with six-degree-of-
freedom motion module and coupled dynamic deformation
mesh module, based on open-source platform OpenFOAM.
All the simulations were performed by solving the Reynolds-
averaged Navier–Stokes (RANS) equations with the SST k −

ω turbulence model. *e finite volume method (FVM) for
spatial discretization and implicit Euler scheme for temporal
discretization were adopted. *e pressure-velocity coupling
was dealt with by the PIMPLE (merged PISO-SIMPLE)
algorithm, a large time-step transient solver for incom-
pressible flow.
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*is paper is organized as follows. Section 2 gives an
introduction of numerical methods, which were composed by
four parts. In section 2.1, the numerical fluid model is in-
troduced firstly. All the nondimensionalized parameters used
in the paper are presented in section 2.2. Next, the complex
demodulationmethod used to obtain the phase angle between
the lift force and displacement is introduced in section 2.3.
*e prediction model, which is used to obtain the VIV
amplitude responses based on the numerical results of forced
oscillation, is described in section 2.4. Section 3 presents and
discusses the numerical results. First, an overview of the
computational domain was presented, and four different
mesh verifications were carried out to confirm the mesh
convergence. Next, numerical simulations of forced oscilla-
tion with constant frequency λ∗ � 6.2 and different amplitude
A∗ ranging from 0.4 to 0.9 were carried out. And discussions
about the wake modes and vortex transition were carried out
to verify the new 2PO mode, which would give the expla-
nation for the intermittent switch between the lower branch
and upper branch. *e last part of section 3 was about the
validation of the prediction model by using the free vibration
responses of Govardhan and Williamson [28]. *e VIV re-
sponses were successfully predicted based on the forced vi-
bration data with three typical cases λ∗ � 5.0, 6.0, 6.2, which
were located in the initial, upper, and lower branches sepa-
rately. Finally, a summary of the paper is presented.

2. Numerical Method

2.1. Numerical FluidModel. *e fluid motion is represented
by the incompressible unsteady Reynolds-Averaged
Navier–Stokes (URANS) equations. Details of the solution
procedure implemented in OpenFOAM are described in
Jasak [29] and Rusche [30]; and only a brief introduction was
presented here.

*e Reynolds-averaged Navier–Stokes equations are as
follows:
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where Sij � 1/2(zui/zxj + zuj/zxi) is the mean rate of strain
tensor. − ρuj

′ui
′ results from the fluctuating velocity field and

is generally referred to as the Reynolds stress τij.
A turbulent model is required to compute the Reynolds

stresses for turbulence closure. *e SST k − ω turbulence
model is used because of its well performance in reverse
pressure gradient and separated flow. *e Reynolds stress is
modelled by a linear constitutive relationship using Bous-
sinesq hypothesis with the mean flow straining field as
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where μt is the turbulent viscosity, obtained from solving the
SST k − ω model, and k � (1/2)ui

′ui
′ is the mean turbulent

kinetic energy.

Applying equations (3) to (2), one has
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where peff � p + 2/3ρk, μeff � μ + μt

*e solution of the governing equations is achieved by
using the PIMPLE, which is a combined PISO-SIMPLE
algorithm and is adapted for large time-step computation of
incompressible flow.

2.2. Basic Parameters. All the parameters are non-
dimensionalized, so that different systems can be compared
with each other. *e nondimensional parameters of the
paper are shown in Table 1.

2.3. Complex Demodulation. *e phase angle φ between the
fluid lift force and cylinder displacement is determined by a
complex demodulation of the lift coefficient and displace-
ment. A description of the technique is given as follows:

*e lift coefficient signal is chosen as the reference signal, as

CL(t) � CL0 cos 2πfext + φ(t)( , (5)

where CL0 is the amplitude of the lift coefficient, φ is the
angle between the cylinder displacement and fluid lift, and
fex is the frequency of forced oscillation.

CL(t) � CL0 cos 2πfext + φ(t)( 

�
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CL0 exp i ωext + φ(t)(   + exp − i ωext + φ(t)(   ,

(6)

where ωex � 2πfexis the angular frequency.
Demodulation by multiplying by exp(− iωext),

Y(t) � CL(t)exp − iωext 

�
1
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CL0 exp iφ(t)  +
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2

CL0 exp − i 2ωext + φ(t)(  .
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(7)

Low-pass filter to remove frequencies at or above fre-
quency ωex: this removes term (b), and smooth term (a). *e
result is

Y′(t) �
1
2

CL0′ exp iφ′(t) . (8)

Extract φ′(t): exp iφ′(t)  � 2Y′/CL0′.

2.4. Prediction Model. *e equation, which represents the
vortex-induced vibrations of a cylinder oscillating in the
cross-flow (y) direction, is defined as follows:

m €y + c _y + ky � FL. (9)

According to Table 1, FL � 1/2CLρU2DL, and then, the
vibration equations can be expressed as
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m €y (t) + c _y(t) + ky(t) �
1
2
CL(t)ρU

2
DL . (10)

*e parameters in the equation are shown in Table 1.*e
cylinder motion y(t), which is given by the controlled vi-
bration, is a precisely sinusoidal function. *e lift force
coefficient CL(t), caused by uniform flow around a con-
trolled vibrating cylinder, is also approximated by a sinu-
soidal function

y(t) � A sin 2πfext( , (11)

CL(t) � CL0 sin 2πfext + φ( , (12)

where A is the amplitude of the controlled motion, and
CL(t) can be resolved into a component in phase with the
cylinder velocity CLv, and a component in phase with the
cylinder acceleration CLa

CL(t) � CLv cos 2πfext(  + CLa − sin 2πfext( ( , (13)

where CLv � CL0 sinφ, CLa � − CL0 cosφ.
*e structural damping cand spring constant kare de-

fined as c � 2ζmωnk � mω2
n, where ωn � 2πfn, and fnis the

natural frequency of the circular cylinder in water.
Substitutingc,k, Y � y/Dinto equation (11) combined with
nondimensional variables, then equation (11) can be
expressed as
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Transforming equations (13) and (14) to the dimen-
sionless form and substituting them into
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*e prediction equation is given as follows, by applying
Table 1:

CL0 sinφ �
4π3A∗m∗ζ
λ∗2f∗

. (16)

Different from experimental studies, added-mass coef-
ficient is not considered in numerical simulations. Instead,
the contribution of pressure and viscous forces is solved by

N-S equations directly. *e influence of added mass is
considered by the fluid force in the right-hand side of N-S
equations.

*e prediction method is based on the balance of the
energy. *e term CL0 sinφ is the force coefficient in phase
with the velocity. *is term is denoted as the “fluid exci-
tation” and represents a normalized energy into the system.
For a free-vibration system oscillating at steady state this
energy must be balanced by the normalized energy out of the
system. *e phase angle φ is an important parameter that
influences the transition of energy from the fluid flow the
cylinder oscillation. If the phase angle φ is between 0∘ and
180∘, then it will yield positive excitation from fluid to
cylinder. If the phase angle φ is between − 180∘ and 0∘, then it
will yield negative excitation from cylinder to fluid.

3. Computational Results and Discussion

3.1. Grid Convergence Discussion. In this part, grid con-
vergence is verified to check the mesh of forced oscillation
simulations. We present a study of flow dynamics associated
with simulated two-dimensional flows past a circular cyl-
inder that is in simple harmonic cross-flow (y) oscillation.
*e cylinder oscillation in the cross-flow (y) direction is
expressed by

y � A cos 2πfext( . (17)

Results are examined for Re� 4000 and a fixed motion
amplitude of A∗ � A/D � 0.4, and a fixed vibration fre-
quency of λ∗ � U0/fexD � 4.

Computational geometry is two-dimensional, as shown
in Figure 1. *e length of computational geometry is from
− 10D of the boundary inlet to 20D of the boundary outlet.
*e width is from − 15D of the boundary top to 15D of the
boundary bottom.

Four different mesh verifications were carried out by
changing the nodes around the cylinder and the distance of
nearest grid to the cylinder boundary. Table 2 summarizes
the information of the four meshes. Figure 2 shows the
whole gird and mesh information around the cylinder. All
grids used in this paper are structured grids, which is easy for
systematic refinement in all directions.

Table 3 summarizes the values of the time average of drag
coefficient C D and lift coefficient amplitude CLmax, the
vortex shedding frequency fst, the Strouhal number St, and
the phase angle φ at four grid resolutions from the simu-
lation for the flow past an oscillating cylinder at Re� 4000. It
can be seen that large differences in the grid size only slightly
change the results. *e Strouhal number is the same for all
grids. It indicates that dominant frequency of vortex
shedding shifts to the frequency of oscillating cylinder. At
this condition, the lock-in of frequency will occur. *e
differences for the drag coefficient are smaller than 1.1%, and
the differences for the lift coefficient are smaller than 0.8%.
*e phase angle is stable around 3.5∘. *en, following this
grid sensitivity study, it is dependable to proceed with the
study of vortex mode transitions and prediction the free
vibration responses by employing controlled oscillations.

Table 1: Definition of dimensionless variables.

Reynolds number Re U D/]
Mass ratio m∗ m/(πρ(D/2)2L)

Damping ratio ζ c/2
���
mk

√

Amplitude ratio A∗ A/D
Normalized wavelength λ∗ λ/D � U/(fexD)

Lift force coefficient CL 2FL/(ρU2DL)

Drag force coefficient C D 2F D/(ρU2DL)

Frequency ratio f∗ fex/fn

In Table 1, U is the inlet velocity;fex is the forced oscillating frequency;fn is
the natural frequency in water; D is the cylinder diameter; L is the cylinder
length; ] is the fluid kinematic viscosity; ρ is the fluid density; m is the
cylinder mass; c is the structural damping; k is the spring constant; FL is the
lift force of the cylinder; F D is the drag force of the cylinder.
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Figure 1: *e calculational geometry.

Table 2: *e details of the mesh for the computation.

Mesh Number of cells Number of nodes around the cylinder *e height of nearest grid to the cylinder boundary
Mesh I 21900 120 0.004D

Mesh II 29300 120 0.003D

Mesh III 46500 160 0.003D

Mesh IV 71600 200 0.002D

(a) (b)

I II III IV

(c)

Figure 2: (a) Uniform mesh for the global domain; (b) boundary layers around cylinder; (c) details of the four meshes around the cylinder.
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According the mesh convergence study, the mesh III is
chosen for the next numerical simulations.

3.2. Wake Modes and Transitions. In this section, a forced
motion cylinder controlled by sinusoidal oscillation with
different amplitudes and a constant frequency is simulated
to study the wake modes and transitions.

Williamson and Roshko [18] studied the vortex wake
patterns of an oscillating cylinder controlled by a sine
function. *ey researched different vortex modes and
clarified them into three different principal types: 2S pattern
(each period alternatively shedding single vortex), 2P pattern
(each period alternatively shedding vortex pairs), and P+ S
pattern (each period alternatively shedding single vortex and
vortex pairs), which are shown in Figure 3(a). It identified
the clear boundaries of the three principal vortex patterns.

Morse and Williamson [27] did 5680 controlled oscil-
lation experiments over a more extensive range of nor-
malized amplitude and wavelength. *e map of vortex
shedding regimes is shown in Figure 3(b). For the bound-
aries described by Williamson and Roshko [18], the tran-
sitions of the boundary separating different vortex patterns
were clear and abrupt. However, Morse andWilliamson [27]
found several regions where two distinct vortex-formation
modes can exist. In these regions, a distinct new mode of
vortex formation was named “2POVERLAP,” abbreviated as
“2PO” mode. *e 2PO mode exists in its own clearly defined
region of the amplitude-wavelength plane, overlapping the
boundary between the 2S and 2P regions.

Many researchers have performed experiments or nu-
merical simulations to verify the 2S, 2P, and P+ S modes.
However, no research work has been conducted to verify the
new distinct mode pattern 2PO. *erefore, it is essential for
us to perform numerical simulations to verify the 2PO mode.
A series of simulations about a forced oscillating cylinder
with constant frequencyλ∗ � 6.2 and different amplitudeA∗
ranging from 0.4 to 0.9 are carried out.

First, phase angle φ between the fluid lift force and
cylinder displacement is studied by the method of complex
demodulation to understand the system and its mechanism
for vortex mode transitions. Figure 4 displays the time
history of the y-direction motion, lift coefficient, and the
phase angle at λ∗ � 6.2, A∗ � 0.4. As shown in Figure 4, the
phase angle φmaintains a stable value of 140.0∘.*e vorticity
contours of the obtained 2P mode are shown in Figure 5. A
pair of vortices, where the two vortices do not separate at all,
shed alternatively from each side of the cylinder. Vorticity
contours in this paper are defined by Q criterion:
Q � 1/2(|Ω|2 − |S|2). Here,Ω � 1/2(zui/zxj − zuj/zxi)is the
vorticity; S � 1/2(zui/zxj + zuj/zxi)is the strain invariant.

When amplitude A∗ of vibration is added from 0.5 to 0.9,
while oscillating frequency holds constant as before, we
further study the vortex mode transitions with the changes
of phase angle. Time histories of the phase angle are shown
in Figure 6. *is figure shows that, for amplitude A∗ � 0.5,
the phase angle keeps at 159.7∘, while, for the other four
amplitudes increasing from 0.6 to 0.9, the phase angle
cannot remain unchanged as above. Abrupt jumps from a
negative angle to a positive angle are observed. After a short
time, the angle instantly goes back to its original negative
value. *e intermittent switch of angle appears to be ir-
regular and unstable.

Accompanied with the jump of the phase angle, the
vortex wake pattern is also changed. Take the dotted box in
Figure 7 as an example. As the phase angle jumps to the
positive part, the vortex wake exhibits a different pattern, as
shown in Figure 6. *is new pattern, named 2PO, is first
found by Morse and Williamson [27] by physical experi-
ments.*e new pattern is distinguished with the 2P mode in
that although two pairs of vortices alternatively shed each
period, the strengths of the two vortices are unequal. One
vortex in a pair is much weaker and decays quickly than the
other. Figure 8 shows the 2PO mode vortex field obtained by
digital particle image velocity (DPIV) measurements of
Morse and Williamson [27]. *e numerical simulations of
the vortex patterns are consistent with the experimental
results, as displayed in Figures 9 and 10. *e good details of
vortex street and vortex transition are presented. *e very
weak secondary vortex can only be observed in a very near
region behind the cylinder. *e weak vortex diffuses quickly
when propagating downstream, which explains why many
experimental researchers did not identify the 2PO mode
before; one would confuse the 2PO mode with the 2S mode,
which is decided by how well one could solve the secondary
weak vortex. However, the subtle structure of vortex could
be identified relatively easily by numerical method, which
could provide small enough contours.

When the phase angle jumps back to the negative part,
the vortex wake exhibits a 2P pattern, as shown in Figure 9.
*e two vortices in a vortex pair have almost equal strength.
However, this 2Pmode is different from that in Figure 5 in
that the vortices in a pair are separated from each other when
two pairs of vortices shed alternatively behind the cylinder.

In this section, the new distinct mode pattern 2PO is
verified by numerical simulations. Moreover, the amplitude
A∗ and wavelength λ∗ where the 2P and 2PO modes are
observed in the simulations are located in the corresponding
2P and 2PO regions of Morse and Williamson [27]. In the
overlapping area, the vortex mode is not fixed, the vortex
mode changes between the two modes 2P and 2PO, and even
the cylinder is vibrating with a fixed frequency and
amplitude.

As mentioned above in the introduction, for the
typical model of low mass ratio, the amplitude responses
are comprised by three branches: initial branch, upper
branch, and lower branch. *e vortex pattern is gradually
turning from the 2Smode in the initial branch into the 2P
mode in the upper and lower branches, while the 2Pupper
mode of upper branch is different from the 2Plower mode

Table 3: Force coefficient and phase between lift and displacement.

Mesh C D CLmax fst St φ[∘]

Mesh I 1.4306 2.4484 0.691 0.25 − 3.6786
Mesh II 1.4148 2.4592 0.691 0.25 − 3.4629
Mesh III 1.4145 2.4685 0.691 0.25 − 3.4916
Mesh IV 1.4144 2.4689 0.691 0.25 − 3.4957
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Figure 3: (a) Boundaries of wake modes identified by Williamson and Roshko [18]. (b) Boundaries of wake modes identified by Morse and
Williamson [27].
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Figure 4: *e cylinder motions, lift coefficient, and phase angle in time-domain at A∗ � 0.4, λ∗ � 6.2.

Figure 5: Vorticity contours of 2P mode in one vibration period at A∗ � 0.4, λ∗ � 6.2.
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of lower branch, as shown in Figure 10. *e newly found
2PO vortex-formation mode is equivalent to the “2Pupper”
mode found by Govardhan and Williamson [28]. Khalak
& Williamson [12] found that the intermittent switches
between upper branch and lower branch are observed in
the low-mass ratio studies, as shown in Figure 11. *e
overlap regions can be used to explain the intermittent
switch, because, in the overlap regions, the vortex mode
switches intermittently between two distinct modes 2P

and 2PO, which is closely related to the intermittent
switch existing between the upper and lower branches.
When the phase angle φ is positive, the vortex mode
appears 2PO, the energy transfers from fluid to cylinder,
and it will yield positive excitation. And the amplitude
response is located in the upper branch. By contrast, the
negative phase angle φ means the negative excitation
from cylinder to fluid. *e amplitude response is located
in the lower branch.
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Figure 6: Vortex field of 2PO mode at the positive part of phase angle.

Figure 7: Phase angle at different amplitude ratios varying from 0.5 to 0.9.
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Figure 8: 2PO mode vortex field by using DPIV, Morse and Williamson [27].

Figure 9: Vortex field of 2P mode at the negative part of phase angle.
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Figure 10: Vortex patterns of the three VIV response branches, from Govardhan andWilliamson [28]. (a) Initial branch. (b)Upper branch.
(c)Lower branch.
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3.3. Prediction Results and Discussion. In this section, we try
to predict free-vibration response of Govardhan and Wil-
liamson [28], as shown in Figure 12, by the above prediction
method. In order to predict the response by controlled-
vibration data, the inlet velocity U remains the same, and
forced oscillating frequency fex is changed. *us, we can get
different amplitude responses at differentλ∗ � U/fexD.

*e availability of the force coefficient in phase with
velocity CL0 sinφ enables us to predict the response of a free-
vibration cylinder. We can simply solve numerically for
amplitude (A∗) and frequency (f∗) and build up a response
plot at a given m∗ζ. Continuing §3.2 wake modes and
transitions study above, we try to predict the amplitude
response at λ∗ � 6.2. Table 4 gives the amplitude of the lift
coefficient CL0, the phase angle φ, and the force coefficient in
phase with velocity CL0 sinφ at different amplitude ratio A∗

and constant wavelength λ∗ � 6.2 of the forced oscillation. It
is particularly worth mentioning that the phase angle listed
in Table 4 is the stable angle. In the overlap region, there exist
two phase angles. *e average negative angle is the stable
angle, and the jumping positive angle is the unstable angle.

After we have got the value of the force coefficient in
phase with the velocity, we can readily use our controlled-
vibration data to predict the response of a freely vibrating
cylinder at different mass damping
m∗ζ � 0.0, 0.059, 0.187, 0.252, in the example of Fig-
ure 13. *e red circles in Figure 13 are the values of the term
(CL0 sinφ) at different forced amplitude ratio A∗. *e blue
asterisks denote the intersections of two lines corresponding
to the right and left terms in prediction equation (16). We
find close agreement with the measured free vibration
amplitude response (taken from [28], from the error analysis
shown in Table 5).

For the low-mass-damping m∗ζ case, there are three-
branch responses, named initial branch, upper branch, and
lower branch. In the free vibration of Figure 13, there exists
an intermittent switch between the upper and lower
branches at λ∗ � 6.2. *e point λ∗ � 6.2 is located in the
initial part of lower branch. According to the introduction of
the part §3.2, the phase angle φ is unstable at λ∗ � 6.2, which
is accompanied by the abrupt jump from negative angle to
positive angle. When the phase angle φ is negative, the

response amplitude A∗ is located in lower branch. When the
phase angle φ jumps to the positive, extra energy is trans-
ported from fluid to cylinder. *en, it will cause a larger
amplitude response, which is located in the upper branch.
But the state is very unstable, and the response will come
down to the lower branch again.

Analysis of wake modes and transitions in part §3.2
shows that if the vortex mode is 2P, then there will be one
stable equilibrium at the lower branch amplitude. However,
this equilibrium will only persist if the vortex-formation
mode continues to be 2P. If the wake switches to the 2PO

mode, the fluid excitation will raise. *is will cause the
energy into the system to be more than the energy dissipated
by damping, and therefore, the amplitude will increase until
a new stable equilibrium for the 2PO mode is reached,
corresponding to an upper branch amplitude. Later in time,
the vortex-formationmode could possibly switch back to 2P,
causing the amplitude to decrease back toward the lower
branch amplitude. In this way, the amplitude could switch
intermittently between the upper and lower branches.

For VIV problems, the maximum displacement of cyl-
inder is our focus. From Figure 12, we find that the max-
imum displacement is around U∗ � 6.0. So, we carry out
several numerical simulations of controlled oscillating cyl-
inder undergoing a constant vibration frequency λ∗ � 6.0,
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Figure 11: Intermittent switch (I) between upper branch and lower
branch.

Upper

Lower

Initial

5
U*

A*

10
0

0.5

1.0
(a)

Figure 12: Amplitude response plots at a constant Reynolds
number (Re ≈ 4000) at different mass damping values
(m∗ + CA)ζ � α � 0.000; 0.059; 0.187; 0.252, taken from Govard-
han andWilliamson [28].▲,α � 0.000;○, α � 0.059;●, α � 0.187;
□, α � 0.252.

Table 4: Forced oscillating response at different amplitude ratio A∗

at λ∗ � 6.2.

A∗ λ∗ CL0 φ CL0 sinφ

0.4 6.2 0.4478 107.6156 0.4268
0.5 6.2 0.5083 159.6684 0.1766
0.6 6.2 0.6030 − 159.6776 − 0.2094
0.7 6.2 0.8782 − 126.7985 − 0.7032
0.8 6.2 1.2734 − 112.6470 − 1.1752
0.9 6.2 1.6000 − 110.9883 − 1.4939
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Figure 13: Prediction of amplitude response A∗ at different mass damping when λ∗ � 6.2.

Table 5: Comparison of A∗ at λ∗ � 6.2 with experiment results.

m∗ζ A∗_predict A∗_experiment of Govardhan and Williamson [28] Error (%)
0.0 0.4150 0.3958 4.9
0.059 0.4464 0.4380 1.9
0.187 0.5164 0.5092 1.4
0.252 0.5457 0.5356 1.9

Table 6: Forced oscillating response at different amplitude ratio A∗ at λ∗ � 6.0.

A∗ λ∗ CL0 φ CL0 sinφ

0.4 6.0 0.4480 107.5006 0.4273
0.5 6.0 0.5798 111.2018 0.5184
0.6 6.0 0.6748 140.4302 0.4298
0.7 6.0 0.8774 168.8271 0.1700
0.8 6.0 1.2751 − 164.1542 − 0.3482
0.9 6.0 1.6286 − 156.4862 − 0.6498
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Figure 14: Prediction of amplitude response A∗ at different mass damping when λ∗ � 6.0.
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and different amplitude A∗ varied from 0.4 to 0.9 in this
paper. And the forced oscillating results are listed in Table 6.

*e prediction of A∗ at λ∗ � 6.0 is shown in Figure 14
and Table 7. Although the prediction results offer less ac-
curacy than that at λ∗ � 6.2, we believe that the error would
be reduced if the distribution of the forced vibration am-
plitude ratio A∗ is refined, e.g., with a resolution of 0.01.

*e above two cases have verified the amplitude re-
sponses in the upper and lower branches. In order to verify

the good versatility of the prediction method, we try to
predict the amplitude responses in the initial branches. We
carry out several numerical simulations of controlled os-
cillating cylinder undergoing a constant vibration frequency
λ∗ � 6.0, because the amplitude in the initial branch is small.
Different amplitudes A∗ are chosen varying from 0.1 to 0.6,
and the forced oscillating results are listed in Table 8.

*e prediction of A∗ at λ∗ � 5.0 is shown in Figure 15.
*e prediction results and comparison with the

Table 7: Comparison of A∗ at λ∗ � 6.0 with experiment results.

m∗ζ A∗_predict A∗_experiment of Govardhan and Williamson [28] Error (%)
0.0 0.7328 0.8707 15.8
0.059 0.7030 0.7836 10.3
0.187 0.6037 0.6912 12.6
0.252 0.5350 0.6332 15.5

Table 8: Forced oscillating response at different amplitude ratio A∗ at λ∗ � 5.0.

A∗ λ∗ CL0 φ CL0 sinφ

0.1 5.0 0.5767 101.5021 0.5651
0.2 5.0 0.6198 112.1354 0.5741
0.3 5.0 0.7451 − 176.3427 − 0.0475
0.4 5.0 0.8267 − 161.7941 − 0.2583
0.5 5.0 0.9762 − 153.2176 − 0.4399
0.6 5.0 1.1301 − 145.5132 − 0.6399
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A*

lamda*=5.0

-0.6

-0.4

-0.2

0

0.4

0.2

0.8

0.6
m*ζ=0.252

m*ζ=0.187

m*ζ=0.059

m*ζ=0.0

Figure 15: Prediction of amplitude response A∗ at different mass damping when λ∗ � 5.0.

Table 9: Comparison of A∗ at λ∗ � 5.0 with experiment results.

m∗ζ A∗_predict A∗_experiment of Govardhan and Williamson [28] Error (%)
0.0 0.292 0.28 4.2
0.059 0.270 0.22 22.7
0.187 0.251 0.22 14.1
0.252 0.239 0.22 8.6
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experimental results at λ∗ � 5.0 are shown in Table 9. *e
experimental results are very close to each other. Especially
for m∗ζ � 0.059, 0.187, 0.252, all the amplitude responses
are the same A∗ � 0.22. *is is because the experiment
accuracy is limited. It is difficult to distinguish the amplitude
difference when the amplitude response is small. However,
the predicted amplitudes by numerical method are discrete
distribution. *e smaller the mass damping is, the larger the
amplitude response is. *e upper and lower bounds of the
predicted amplitudes are close to the experimental results,
but the intermediate values are quite different, which may be
the error caused by the experiment accuracy.

4. Conclusion

In this paper, numerical simulations of a forced oscillating
cylinder at a wide range of oscillating amplitudes and fre-
quencies at Re� 4000 were performed by a newly developed
solver viv-FOAM-SJTU. First, grid convergence study was
conducted to further validate the computational results.
Four grids with different nodes around the cylinder and
grid’s height of first layer were applied. *e convergence
study was performed for a forced oscillating cylinder, and
good convergence was achieved. Complex demodulation
was chosen to analyze the spatial-temporal phase relation-
ship between the forces and cylinder displacement. *e time
history of the phase angle was presented to understand the
mechanism of vortex mode transitions. Abrupt jump from a
negative value to a positive value was observed for the phase
angle. Accompanied by the jumping of the phase angle, the
vortex wake pattern also changed. By numerical simulations,
we identified a new distinct mode of vortex formation. *is
new vortex model was comprised of two pairs of vortices
formed per cycle, where the secondary vortex in each pair
was much weaker than the primary vortex.*is vortex mode
was defined as 2PO, which was closely related to the in-
termittent switch existing between the upper and lower
branches. *e good details of vortex after cylinder and the
vortex propagating downstream were presented. *e sim-
ulation region calculated in this part was in well agreement
with the “OVERLAP” region of Morse and Williamson [27]
experiments. Prediction function of a free-vibration cylinder
based on vibration equation of one-degree-of-freedom was
derived. Controlled-vibration data was used to predict the
response of a freely vibrating cylinder at different mass
damping m∗ζ. Take the free vibration of Govardhan and
Williamson [28] as an example, we had successfully pre-
dicted the VIV response by forced vibration data at three
typical casesλ∗ � 5.0, 6.0, 6.2 located in the initial, upper,
and lower branches separately. *e method predicted the
amplitude response with acceptable accuracy. Future work
included building up an entire response plot for all reduced
velocity and investigating whether the prediction approach
is held for all Reynolds number.
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