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Rock blasting often has an irreversible impact on the surrounding environment and threatens the safety of life and property.
+erefore, accurate prediction of blast-induced ground vibration (BIGV) is a prerequisite for safe construction. In view of the fact
that traditional blasting peak particle velocity (PPV) empirical formulas cannot be accurately predicted, this study selected 88 sets
of blasting monitoring data, based on distance from the blast-face, maximum charge per delay, total charge, hole depth, spacing,
burden, stemming length, and powder factor being used as input variables and PPV being used as output variable to characterize
BIGV. First, a nonlinear mapping relationship between input variables and output variable is established through the Gaussian
process (GP). +e differential evolution algorithm (DE) is used to optimize the hyperparameters σf, σn, and l of the GP, and a
blasting PPV model based on the DE-GP is constructed. +e proposed model is compared with the empirical formulas, least
square support vector machine (LSSVM), artificial neural network (ANN), and GP model, and its prediction performance is
evaluated by statistical indicators such as root mean square error (RMSE). Finally, the cosine amplitude method (CAM) is used to
analyze the sensitivity of blasting parameters.+e results show that the DE-GP algorithm for blasting vibration velocity prediction
has higher precision and accuracy, which is significantly better than other models, and is the closest to the measured PPV.
Distance from the blast-face, total charge, and maximum charge per delay have a greater impact on the prediction of PPV, while
stemming length and powder factor have a smaller impact on the prediction of PPV.+e DE-GP model proposed by this research
has certain reference value for the prediction and control of PPV in blasting construction.

1. Introduction

At present, the widespread application of blasting tech-
nology has penetrated into many areas of the national
economy. Because of its high efficiency, economy, and speed,
it has long been favored in the field of engineering con-
struction [1–3]. However, blasting also produces a series of
harmful effects, mainly including blast-induced ground
vibration (BIGV), blasting flying rocks, noise, shock wave,
etc. [4, 5].

BIGV adversely affects surrounding rock masses and
nearby structures and even causes damage [6]. Most
countries in the world use peak particle velocity (PPV) as the
measurement index of BIGV [7, 8]. However, the propa-
gation medium of blasting vibration waves is heterogeneous

rock mass, and there are many influence factors of PPV
[9, 10]. How to accurately predict PPV has become the
primary issue in the field of blasting construction safety
technology and scientific research [11].

In the past blasting engineering, the most commonly
used method for PPV prediction is the empirical formulas.
+e empirical formulas are used to perform regression
analysis on the measured data of blasting vibration. It mainly
depends on distance from the blast-face and maximum
charge per delay [12, 13]. However, the prediction accuracy
of the empirical formulas is generally low, and the regression
calculation effect for some blasting projects is not ideal. As a
result, the blasting vibration attenuation formulas regressed
by the empirical formulas is prone to excessive deviation in
the guidance of site construction [14, 15].
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Because the prediction of PPV is a complex nonlinear
problem, researchers generally use intelligent algorithm
models with powerful processing capability to predict PPV,
such as artificial neural network (ANN), genetic algorithm
(GA), particle swarm optimization (PSO), and support
vector machine (SVM)[1, 16–27], as shown in Table 1.

It can be seen from Table 1 that intelligent algorithms
have been widely used in the prediction of blasting vibration
velocity. Research on the combination of various artificial
intelligence methods has gradually increased, and the hybrid
artificial intelligence algorithms have high accuracy. Most of
the above research works are based on a hybrid model
composed of ANN algorithm. However, the ANN algorithm
has some disadvantages such as being easy to fall into a local
optimum, requiring a large number of parameters during
calculation, and slow training speed. At present, optimiza-
tion methods such as balancing composite motion opti-
mization (BCMO) [28] and Gaussian process (GP) have
begun to be gradually applied. GP has the advantages of
good adaptability, strong generalization ability, simple
implementation process, and adaptive acquisition of
hyperparameters for processing nonlinear regression
problems. At the same time, the differential evolution al-
gorithm (DE) has strong global optimization capabilities and
can quickly approach the global optimum. +erefore, it can
achieve rapid acquisition of GP hyperparameters by intro-
ducing the DE into the GP model and form a new model of
PPV prediction based on DE-GP, which will realize the
effective control of BIGV.

Aiming at the problem of unpredictable PPV in the
bustling downtown area, this study uses DE to optimize GP,
constructs a model of mixed algorithm DE-GP predicting
PPV, and analyzes the accuracy of the model. Finally, the
sensitivity analysis method is used to discuss the sensitivity
of blasting influencing factors, which provides a certain basis
for the optimization of blasting parameters.+emain part of
this article is divided as follows: +e second part introduces
the methods used in blasting prediction, including empirical
formulas and the intelligent algorithms studied in this ar-
ticle. +e third part introduces the engineering situation and
the acquisition of blasting vibration velocity data. +e fourth
part uses conventional empirical formulas and the proposed
intelligent algorithm to predict PPV. +e fifth part analyzes
the influence of the hyperparameters of the GP model, the
selection of DE algorithm parameters, the comparison of the
predictive capabilities of different algorithms, and the sen-
sitivity between blasting influencing factors. Finally, the
sixth part draws a conclusion.

2. Methods Used

2.1. Conventional Prediction Methods of Blasting. PPV is the
most important indicator to measure the impact of blasting
on the surrounding environment. +ere are many factors
that affect blasting vibration, and the relationship between
the factors is also intricate. It is practically impossible to
establish a PPV prediction formula that considers all in-
fluence factors. A large number of blasting engineering
monitors show that the maximum charge per delay and the

distance from the blast-face are the two main factors af-
fecting PPV. +erefore, many domestic and foreign scholars
have proposed different PPV formulas for predicting BIGV
[29–34]. In this study, several commonly used empirical
formulas to characterize the attenuation of blasting vibration
were selected, as shown in Table 2. In the formula, K, α, β,
and n are parameters related to rock properties, blasting
operation parameters, and terrain conditions. We often use
the field blasting vibration measured data obtained in the
actual engineering as the basis and perform regression
analysis according to the empirical formulas in Table 2 to
obtain the values of the unknown parameters K, α, β, and n.

According to the blasting prediction empirical formulas
in Table 2, the site constants suitable for this project are fitted
by using the actual measurement data of the construction
site, and the blasting vibration velocity prediction formulas
considering the maximum charge per delay and the distance
from the blast-face is constructed. After that, the corre-
sponding PPV can be obtained according to the maximum
charge per delay and the distance from the blast-face of a
certain blasting construction.

2.2. Blasting Vibration Velocity Prediction Model Based on
DE-GP. +is section selects the blasting parameters
according to the influencing factors of blasting vibration.
+rough a brief description of the GP, a nonlinear prediction
model of blasting vibration velocity based on the GP is
formed. Limited by the difficulty of selecting hyper-
parameters for the GP, the DE algorithm is introduced to
optimize the GP and applied to the blasting prediction of
rock foundation pits. +en, the principle, frame structure,
and solution process are described.

2.2.1. Selection of Blasting Prediction Parameters. In the
actual blasting of rock foundation pits, there are many
factors that affect the blasting effect, and various different
factors also cause different degrees of impact. In summary,
there are four main aspects: explosive performance, rock
properties, explosive and rock-related factors, and blasting
technology. Combining the actual engineering situation and
related construction experience of the Labor Park Station of
Dalian Metro Line 5, the distance from the blast-face, the
maximum charge per delay, the total charge, the hole depth,
the spacing, the burden, the stemming length, and the
powder factor are used as the input parameters of the
blasting vibration velocity prediction model, and the peak
particle velocity at the monitoring point is used as the output
parameter. +e above indicators can completely describe the
blasting effect of the rock foundation pit of the Suoyuwan
South Station of Dalian Metro Line 5 and fully reflect the
blasting effect, so as to realize the blasting prediction of PPV.

2.2.2. Nonlinear Prediction Model of PPV Based on GP.
GP has good adaptability to the processing of complex
classification and regression problems with high dimen-
sionality, small samples, and nonlinearity. +erefore, it is

2 Shock and Vibration



used to establish the blasting PPV prediction model of the
rock foundation pit.

For a set of known blasting influencing factors
X(x1, x2, x3, x4) and corresponding blasting vibration ve-
locity y, the blasting PPV learning samples set D � (X, y)

can be established, and the prior distribution of blasting PPV
y can be established through the GP as follows:

y ∼ N 0,K + σ2nI . (1)

In the formula, K � K(X,X) is a symmetric positive
definite covariance matrix of order n × n; and any itemKij in
the K � K(X,X) matrix measures the correlation between xi

and xj; 0 is the mean; σ2n is the variance; and I is the identity
matrix.

From equation (1), the joint GP prior distribution
composed of n training sample output y and one test sample
output y∗ is derived as follows:

y

y∗
  ∼ N 0,

K(X,X) + σ2nI K X, x∗( 

K X, x∗(  k x∗, x∗( 

⎡⎣ ⎤⎦⎛⎝ ⎞⎠. (2)

In the formula, K(X, x∗) is the n × 1-order covariance
matrix of the blasting test input point x∗ and all input points
X in the training set; and k(x, x∗) is the covariance of the
blasting test input point x∗ itself.

Further solving to obtain the mean and variance of y∗:

y x∗(  � kT x∗(  K + σ2nI 
− 1
y, (3)

σ2 x∗(  � k x∗, x∗(  − kT x∗(  K + σ2nI 
− 1
k x∗( . (4)

In the formula, k(x∗) is the covariance matrix of order
n × 1, k(x∗) � K(X, x∗), namely k(x1, x∗), . . . , k(xn, x∗) 

Τ

+e nonlinear prediction model of the blasting PPV is
described by the square exponential covariance function:

k xp, xq  � σ2f exp −
1
2l

2 xp, xq 
2

  + σ2nδpq. (5)

In the formula, σf, l, and σn are hyperparameters. σ2f is
the signal variance of the kernel function, which is used to
control the degree of local correlation; l is the hyper-
parameter for correlation measurement, the larger the value,
the smaller the correlation between input and output; σ2n is
the variance of noise; and δpq is the symbol of Kronecker,
when p � q, δpq � 0, otherwise δpq � 1

Hyperparameters can be obtained by maximizing the
log-likelihood of the training samples (maximum posterior
distribution). +e logarithmic form of the likelihood
function is as follows:

Table 2: Conventional empirical formulas for blasting prediction.

+e name of the empirical formulas Formulas
United States Bureau of Mines (USBM) [29] PPV � K(R/

����
Qmax


)− α

Langefors–Kihlstrom (LK) [30] PPV � K(
��������
Qmax/R2/3


)α

General predictor [31] PPV � KR− αQ
β
max

Ambraseys–Hendron (AH) [32] PPV � K(R/
����
Qmax

3


)− α

Bureau of Indian Standard (BIS) [33] PPV � K(Qmax/
���
R23

√
)α

CMRI predictor (CMRI) [34] PPV � n + K(R/
����
Qmax


)− 1

PPV is peak particle velocity (cm/s); R is the distance from blast-face to monitoring point (m); Qmax is the maximum charge per delay (kg); and K, α, β, and n
are the site constants.

Table 1: Prediction of PPV by intelligent algorithms.

References Models Input parameters Number of samples Coefficient of determination (R2)
Armaghani et al. [1] ANFIS; ANN Qm, D 109 0.973 (ANFIS); 0.949 (ANN)

Hajihassani et al. [16] ANN; ICA-ANN B/S, SL, Qm, E, Vp, D 95 0.911 (ANN);
0.976 (ICA-ANN)

Hajihassani et al. [17] SVM Qm, D 80 0.957
Amiri et al. [18] ANN; ANN-KNN Qm, D 75 0.82 (ANN); 0.88 (ANN-KNN)
Ghasemi et al. [19] ANFIS-PSO; SVM B, S, SL, Qm, D 120 0.950 (ANFIS-PSO); 0.924 (SVM)
Ebrahimi et al. [20] ANN B, S, SL, H, PF 34 0.78
Taheri et al. [21] ANN; ABC-ANN Qm, D 99 0.91 (ANN); 0.95 (ABC-ANN)
Hasanipanah et al. [22] PSO Qm, D 80 0.9019
Faradonbeh et al. [23] GEP B, S, SL, d, H, PF, Qm, D 115 0.876
Armaghani et al. [24] ICA Qm, D 73 0.9334
Zhang et al. [25] PSO-XGBoost B, S, PF, Qm, D 175 0.968
Tian et al. [26] GA-linear; GA-power Qm, D 85 0.961 (GA-linear); 0.967 (GA-power)
Rezaeineshat et al. [27] ICA-ANN B, S, Qm, D, RQD 112 0.9002
Distance from the blast-face (D); maximum charge per delay (Qm); total charge (Qt); hole depth (H); spacing (S); burden (B); Stemming length (SL); powder
factor (PF); burden-to-spacing ratio (B/S); Young’s modulus (E); p-wave velocity (Vp); rock quality designation (RQD); hole diameter (d); coefficient of
determination (R2); imperialist competitive algorithm (ICA); adaptive neuro-fuzzy inference system (ANFIS); K-nearest neighbors (KNN); gene expression
programming (GEP); artificial bee colony (ABC); extreme gradient boosting machine (XGBoost).
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L � lgp(y | X)

� −
1
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yT K + σ2nI 

− 1
y −

1
2
lg K + σ2nI


 −

n

2
lg(2π).

(6)

Obtain the optimal hyperparameters by formula (6), and
substitute formula (3) to obtain the blasting PPV prediction
value y∗ corresponding to the blasting test sample x∗.
According to the establishment steps of the above model, the
corresponding calculation program is compiled using
MATLAB language. So far, the modeling and regression
process of the nonlinear prediction model for blasting PPV
of rock foundation pit based on the GP has been completed.

2.2.3. Hybrid DE-Optimized GP and Its Architecture Design.
DE is a genetic algorithm based on real number coding.
Compared with the selection operation of GA algorithm, DE
updates the population according to a one-to-one elimi-
nation mechanism and uses directional perturbation on
individuals to achieve a reduction in the value of individual
functions. In terms of applicability, the GA algorithm and
PSO algorithm are mainly used to solve continuous opti-
mization problems, and the ACO algorithm is mainly used
to solve discrete optimization and combinatorial optimi-
zation problems. However, DE not only does not use the
gradient information of the objective function but also has
no requirements on the derivability and continuity of the
function. So, DE has strong applicability. In terms of pa-
rameter setting, DE has two main parameters to be adjusted,
and the parameter setting has less obvious influence on the
result, so it is easier to use. Compared with the GA algorithm
and the PSO algorithm, there are many parameters, and
different parameter settings have a greater impact on the
final result. +erefore, in actual use, it needs to be adjusted
continuously, which increases the difficulty of using the
algorithm. When solving multivariable function optimiza-
tion problems, the GA algorithm converges slowly or even
hard for high-dimensional problems, while the PSO algo-
rithm and DE algorithm have the advantages of fast con-
vergence speed and high accuracy. But the PSO algorithm
and ACO algorithm are easy to fall into a local optimal
solution. In addition, DE considers the correlation between
multiple variables to a certain extent and has great advan-
tages in the problem of variable coupling.

+e study found that the regression results of the
nonlinear prediction model for blasting PPV of rock
foundation pit based on GP are significantly affected by the
hyperparameters σf, l, and σn. In this study, DE is intro-
duced into GP. It can quickly approach the global optimi-
zation with the help of DE’s strong global optimization
ability. +is can realize the optimal selection of three
hyperparameters and form a new model for controlling
BIGV. RMSE is used as the evaluation index of the pre-
diction results of the GPmodel, which is used to describe the
optimization effect of the GP hyperparameters. Compared
with the MSE evaluation index, the calculation result of
RMSE can not only keep the error evaluation result con-
sistent with the problem described by GP in the order of

magnitude but also intuitively describe the data. Compared
with the MAE evaluation index, RMSE is the square root of
the sum of squares of errors, which means that the single
error has a quadratic increase. It enlarges the gap between
errors and makes the error evaluation result more obvious.
+erefore, RMSE is used as an evaluation index for the
prediction effect of the GP model. +e realization process is
shown in Figure 1.

For the aforementioned GP blasting PPV prediction
model, the specific steps of using DE optimization are as
follows:

Step 1. Initialize the DE algorithm, and set the DE algo-
rithm’s mutation factor F, cross factor CR, population size
NP, and difference strategy.

Step 2. Choose σf, l, and σn in GP as the optimization target,
and randomly generate the initial population in the opti-
mization interval.

Step 3. Use the parameters expressed by each individual in
the initial population to perform GP training separately.

Step 4. Evaluate the fitness of each individual in the pop-
ulation. +e evaluation index is the root mean square error
of the prediction result of the test sample of the trained GP
model:

F0 �

�������������

1
Np



Np

i�1
vi − vi
′( 
2




. (7)

In the formula, vi and vi
′ are the actual vibration velocity

and the predicted vibration velocity, Np is the number of test
samples, and F0 is the individual fitness value.

Step 5. For the minimum fitness value Fmin and expected
response value Fbest of the current population, if the current
individual satisfies Fbest >Fmin, then enter Step 10; otherwise,
enter Step 6.

Step 6. Perform a mutation operation on the current
population, and combine the difference values between
several individuals in the population with the individuals to
be mutated according to certain rules. +en, obtain the
mutation vector of each individual in the population.

Step 7. Perform crossover operation on the current pop-
ulation; crossover the mutation vector and its corresponding
target vector to obtain the test vector.

Step 8. Select the current population, use the fitness function
of the optimized problem to compare each test vector with
its corresponding target vector, and put the better one into
the next-generation population.

Step 9. Judge whether the maximum number of iterations is
reached, if it reaches the maximum number of iterations,
enter Step 10; otherwise, return to Step 4.
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Step 10. Take the σf, l, and σn represented by the minimum
fitness individual as the initial parameters of the GP model,
so complete the GP optimization process.

3. Data Used

3.1. Description of Study Area. Dalian Metro Line 5 has a
total length of 23.8 km and has 18 stations. +e entire line
was laid by underground lines with an average distance of
1.38 km. Labor Park Station is located at the intersection of
Jiefang Road and Ziwei Street in Zhongshan District. +e
main body was arranged along the north and south of Jiefang
Road. +e starting mileage of the station was ZK7+ 532.919
(YK7+ 531.658), the ending mileage was K7 + 722.859, the
length was 191.2m, and the width of standard section was
23.3m. +e main body of the station was an underground
two-story island station with a platform width of 14m, and
the station roof was covered with soil about 18.7–24.0m.+e

northeast side of the site is the Unicom Building, the
northwest side is the stadium under construction and Labor
Park, the east and southwest sides of the site are the Dalian
No. 9 Middle School and the Dalian No. 24 Middle School,
the southeast side is the residential area, and the south side is
the Shengli East Road viaduct.+ere is a 2m× 4m culvert on
the west side of the site, and the schematic diagram of the
project is shown in Figure 2.+eminimum distance between
the main structure of the station and the library of the 24th
Middle School was 5.9m, and the minimum distance from
the No. 26 building in the residential area was 7.2m. Jiefang
Road is the main traffic arterial road in Dalian. +is road has
a large traffic volume, and many pipelines are laid down. It is
a dense area of pedestrians and vehicles.

+e main part of the station was constructed by the PBA
construction method, and two construction foundation pits
were set up. +e foundation pits were strictly in accordance
with the principle of layered, segmented, symmetrical,
balanced, and timely excavation, and supports were erected
in time. +e foundation pit adopted a combined support
system with retaining piles with a diameter of 600mm and
an interval of 1300mm∼1500mm; the outer diameter of the
steel supports was 609mm, and the pipe wall thickness was
16mm. +e initial support system of the concealed exca-
vation section was advanced small pipe grouting to reinforce
the ground or deep hole grouting, grid steel frame, and mesh
shotcrete support. Because most of the surrounding rock
during construction was in strongly weathered slate and
moderately weathered slate, in order to ensure the safety of
ground buildings, underground structures, and the sur-
rounding environment during drilling and blasting, we
should adopt microseismic controlled blasting construction
technology, low-detonation explosives, and millisecond
detonators. According to the type of surrounding rock, the
integrity of the rock, the development of joints, the bedding,
and the location of excavation, different blasting parameters
were adopted and adjusted according to the actual blasting
effect during the blasting construction.

+e foundation pit of Labor Park adopted a triangular
hole pattern and vertical drilling. +e detonation adopted a
millisecond-delay nonelectrically conductive detonation
system, and the method of detonation outside the hole with
slight difference, cluster connection method, five holes with
one sound. Used ms-8 in the hole, ms-4 for the connection
between the surface holes, and ms-5 for the connection
between the surface rows. During construction, the blast
hole depth of each layer was 1.4m∼2.8m, and the blast hole
diameter was 42mm. +e blast hole spacing was
0.6m∼1.5m, and the blast hole burden was 0.5m∼1.3m.+e
rock drill was used for drilling, and the explosive was 2# rock
emulsion explosive, with a specification of
V32mm∗ 200 cm, 0.2 kg or 0.3 kg each, and the maximum
charge per delay was 1.4 kg. During the blasting process, it is
necessary to control the maximum charge per delay, reduce
the number of holes in the same section, and determine
reasonable blasting parameters. In addition, measures such
as excavation of damping trenches, covering, and protection
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Figure 1: Flow chart of DE-GP blasting PPV regression model.
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were taken in special areas to reduce the impact of blasting
on surrounding buildings.

3.2. Monitoring and Samples Construction. Combined with
the actual situation on site, this monitoring adopted the TC-
4850N intelligent blasting vibration monitor, which is a
portable remote sensing vibration monitor with four parallel
channels specially designed for engineering blasting. It has
the advantages of lightweight, waterproof, dustproof, high
pressure resistance, high precision, and wide application.
Figure 3 shows the working diagram of the TC-4850N
wireless blasting monitor.

Several blasting vibration test monitoring points were
arranged near the blasting area of the foundation pit of
Suoyuwan South Station.+en, begin to monitor and record
the blasting vibration velocity at different locations and
different blasting parameters during the initial stage of
excavation, as shown in Figure 4.

By on-site monitoring, the monitoring data of blasting
vibration at different positions and different blasting pa-
rameters during the excavation of the foundation pit were
obtained. +ere are 88 sets of test data, as shown in Table 3.

+is paper takes the distance from the blast-face, the
maximum charge per delay, total charge, hole depth,
spacing, burden, stemming length, and powder factor as
input variables. +e PPV of the measuring point is used as
the output variable to build the samples. +e first 72 groups
are training samples, and the last 16 groups are test samples.

4. Results

4.1. Prediction Result Analysis of PPV Using Conventional
Predictors. According to the previous discussion, we can use
the empirical formulas provided in Table 2 to predict the
blasting PPV of the monitoring points around the rock
foundation pit. +ese empirical formulas are mainly de-
termined by the distance from the blast-face and the
maximum charge per delay. +ey belong to the nonlinear
blasting PPV prediction model of rock foundation pits. In
this study, 72 sets of blasting training samples were used for
regression analysis to determine the rock properties and
terrain conditions in the commonly used blasting PPV
prediction formula, as shown in Figure 5. +e site constants
in the various blasting PPV prediction formulas are shown
in Table 4, where PPV is the peak particle velocity (cm/s) at

Residential
area

School Other
projects

Commercial
Stadium

Labor Park 
Subway Station

Ganjingzi
District

Shahekou
District Zhongshan

DistrictXigang
District

Labor Park 
Subway Station

Arrange the blasting area

Jiefang Road

Dalian City

Figure 2: Sketch map of project overview.

6 Shock and Vibration



the monitoring point, and Qmax is the maximum charge per
delay (kg), R is the distance from the blast-face (m), and K, α,
β, and n are site constants related to rock properties and
geological conditions.

After determining the site constants of the conventional
empirical formulas, we use 16 sets of blasting test samples to
measure the obtained empirical formula. +e relationship
between the predicted PPV and the measured PPV of

different empirical formulas on the equality line with a slope
of 1 is shown in Figure 6.

By comparing the coefficient of determination (R2), it is
found that the R2 of the above empirical formulas varies
between 0.219 and 0.617. Among them, the empirical for-
mula of USBM has higher prediction accuracy for PPV, with
the largest coefficient of determination, and the predicted
PPV is the closest to the actual measured PPV.+e second is

�ree vector
speed sensor

WIFI antennaSignal antenna

TC-4850N wireless
blasting vibrometer

(a) (b)

(c) (d)

Figure 4: Blasting monitoring chart. (a) TC-4850N blasting monitor. (b) Vibration speed monitoring near high-rise residential buildings.
(c) Vibration speed monitoring of adjacent engineering slopes. (d) Vibration speed monitoring of ground around the foundation pit.
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Figure 3: Schematic diagram of TC-4850N wireless blasting monitor.
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Table 3: Model statistical parameters of training samples and test samples.

No. Parameter Unit Symbol Category Min Max Mean SD Median
Training data (72 data)
1 Distance from the blast-face m D Input 6.5 51.9 27.96 12.68 28.45
2 Maximum charge per delay kg Qm Input 0.3 1.35 0.73 0.29 0.68
3 Total charge kg Qt Input 11.4 77.2 42.7 18.3 42.4
4 Hole depth m H Input 1.4 2.8 2.1 0.4 2.1
5 Spacing m S Input 0.6 1.5 1.1 0.2 1.1
6 Burden m B Input 0.5 1.3 0.9 0.2 1.0
7 Stemming length m SL Input 0.8 1.7 1.2 0.3 1.2
8 Powder factor kg/m3 PF Input 0.31 0.82 0.58 0.14 0.59
9 Peak particle velocity cm/s PPV Output 0.17 3.47 1.28 0.90 0.96
Test data (16 data)
1 Distance m D Input 7.3 47.1 27.2 11.3 26.6
2 Maximum charge per delay kg Qm Input 0.30 1.20 0.77 0.27 0.80
3 Total charge kg Qt Input 12.1 73.8 41.8 18.0 35.9
4 Hole depth m H Input 1.5 2.6 2.0 0.4 2.1
5 Spacing m S Input 0.8 1.4 1.1 0.2 1.1
6 Burden m B Input 0.6 1.3 1.0 0.2 1.0
7 Stemming length m SL Input 0.8 1.6 1.1 0.3 1.2
8 Powder factor kg/m3 PF Input 0.33 0.79 0.56 0.14 0.54
9 Peak particle velocity cm/s PPV Output 0.73 2.08 1.37 0.42 1.30
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Figure 5: Continued.
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Figure 5: Relationship between PPV and scaled distance of the conventional empirical formulas. (a) Relationship between PPV and scaled
distance of the USBM empirical formula. (b) Relationship between PPV and scaled distance of the LK empirical formula. (c) Relationship
between PPV and scaled distance of the general predict empirical formula. (d) Relationship between PPV and scaled distance of the AH
empirical formula. (e) Relationship between PPV and scaled distance of the BIS empirical formula. (f ) Relationship between PPV and scaled
distance of the CMRI empirical formula.
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Figure 6: Continued.

Table 4: +e conventional empirical formulas and their site constants.

Name Equation
Site constants

K α β n R2

USBM PPV � K(R/
����
Qmax


)− α 7.707 0.541 0.319

LK PPV � K(
��������
Qmax/R2/3


)α 5.471 1.179 0.261

General predictor PPV � KR− αQ
β
max 4.185 0.302 0.643 0.213

AH PPV � K(R/
����
Qmax

3


)− α 7.657 0.549 0.302
BIS PPV � K(Qmax/

���
R23

√
)α 5.471 0.589 0.26

CMRI PPV � n + K(R/
����
Qmax


)− 1 15.581 0.649 0.257
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the empirical formulas of AH and CMRI, and the prediction
accuracy is 0.614 and 0.565, respectively. However, the
general predict empirical formula has the lowest prediction
accuracy, only 0.219, and the coefficient of determination is
the smallest.

4.2. Prediction Result Analysis of PPV Using DE-GP. As
mentioned earlier, about 80% of the blasting data samples
(72 sets of data) are regarded as training samples, which are
used to establish a nonlinear mapping relationship for
predicting PPV; the remaining 20% of the blasting data
samples (16 sets of data) are regarded as test samples.

During the blasting construction of rock foundation pits,
the DE-GP model is used to predict PPV. By learning the
training samples, taking the minimum fitness value of the
population as the goal, the DE algorithm is used for global
optimization, and the optimal hyperparameters in the GP

are quickly searched. Among them, set the population size
NP � 60 and the variation factor F, crossover factor CR, and
maximum number of iterations are 0.7, 0.8, and 150, re-
spectively. According to the application experience of ma-
chine learning models in the field of geotechnical
engineering, the convergence criterion is set to reach the
maximum number of iterations or the difference of the
target value between iteration steps is less than 1.0×10− 6

[35–37]. +rough the learning and prediction of the DE-GP
model, the relationship between the actual measured PPV
and the predicted PPV in the training phase and the test
phase is shown in Figure 7.

It can be seen from Figure 7 that the DE-GP model is
used to predict the training samples and test samples, and R2

is 0.937 and 0.955, respectively. It can be seen from the
measured PPV and the predicted PPV that the prediction
effect is good, and the predicted PPV is in good agreement
with the actual PPV.
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Figure 6: Relationship between measured and predicted PPV by USBM (a), LK (b), general predict (c), AH (d), BIS (e), and CMRI (f). (a)
Relationship between measured and predicted PPV by USBM. (b) Relationship between measured and predicted PPV by LK. (c) Rela-
tionship between measured and predicted PPV by general predict. (d) Relationship between measured and predicted PPV by AH. (e)
Relationship between measured and predicted PPV by BIS. (f ) Relationship between measured and predicted PPV by CMRI.
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5. Discussion

5.1. Influence of GP Parameters on Regression Accuracy.
+e 72 groups of blasting monitoring data mentioned above
are used as training samples for GP model learning. Among
them, the noise variance σn, the signal variance σf of the
kernel function, and the correlation determination hyper-
parameter l are important hyperparameters in the GPmodel.
Under the influence of different hyperparameters, the root
mean square error analysis of 16 sets of test samples is
performed. It can obtain the effects of σn and σf, σf and l, and
σn and l on the prediction accuracy of the GP model, as
shown in Figure 8.

Figure 8(a) shows that when σf approaches − 3 and σn
approaches 0, the greater the RMSE of the GP model test
samples; and when σf � − 1.6 and σn � − 2, the RMSE of the test
samples takes the minimum value, which is 0.114. It can be

seen from Figure 8(b) that when l� 0.3 and σf � − 1.9, the
RMSE of the test samples reaches the minimum. After that, as
l and σf change, the RMSE of the test samples becomes larger
and larger. It can be seen from Figure 8(c) that when σn is
greater than 0, the RMSE of the test samples reaches above 0.5;
as σn approaches − 1.8 and l approaches − 0.5, the RMSE of the
test samples gradually decreases and finally reaches the
minimum. +e value is 0.06. Changes in the values of σn, σf,
and l will have a greater impact on the root mean square error
of the test samples. +erefore, it is necessary to select ap-
propriate parameters to ensure the regression accuracy of the
GP model. Because the GP algorithm cannot search for the
optimal hyperparameters quickly and accurately, the DE
algorithm is introduced to optimize the hyperparameters,
thereby avoiding the blindness of the hyperparameters se-
lection in the GP and achieving the purpose of rapid selection
and reasonable value selection.
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Figure 7: Analysis and comparison of the measured PPV and the predicted PPV by the DE-GP model in the training phase and the test
phase. (a) Training phase. (b) Test phase.
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5.2. Influence of DE Parameters on Optimization Effect.
When using the DE-GP model, there are many factors that
affect the optimization effect of the DE, and they are directly
related to the selection of hyperparameters in the GP model.

+e control parameters in the DE mainly include mu-
tation factor F, crossover factor CR, and population size NP.
Usually, NP is 5∼10D (D stands for dimensionality), F is
0.5∼0.9, and CR is 0.5∼0.9. It can not only ensure a higher
success rate of optimization but also increase the speed of
convergence. +e mutation factor F and the cross factor CR
have a greater impact on the speed and stability of the search.
Improper selection of parameters may lead to evolutionary
stagnation and premature maturity. +e mutation factor F
mainly affects the search steps. Increasing F can increase the
search range of the DE and increase the diversity of the
population but, at the same time, weaken the convergence
speed of the algorithm; reducing F can increase the

development ability of the DE and improve the convergence
speed of the DE, and also it is easy to make the population
converge prematurely. +e cross factor CR affects the weight
of evolutionary information. Increasing CR can improve the
diversity of the population and speed up the convergence
speed of the DE; reducing CR is beneficial to the analysis of
individual separable problems. Select different variation
factor F and cross factor CR to perform optimization search
trial calculation, and the corresponding iterative conver-
gence curve is shown in Figure 9.

It can be seen from Figure 9 that when CR� 0.7 and F ∈
[0.5, 0.9], DE iterative search can converge, but the iteration
speed is different.When F� 0.8, the convergence speed is the
fastest, the number of iteration steps is less, and the iteration
steps reach 54 steps to complete convergence. When F� 0.6,
the convergence speed is the slowest, and the iterative steps
reach 85 steps before it converges completely. +erefore,

0.114

0.164

0.213

0.263

0.312

0.362

0.412

0.461

0.511

0.560

0.610
Value of RMSE

0.56
0.64

0.48
0.40
0.32
0.24
0.16
0.08

-3.6
-3.0

-2.4
-1.8

-1.2
-0.6

0.0

-3.0-2.5-2.0
-1.5-1.0

-0.5
0.0

ro
ot

 m
ea

n 
sq

ua
re

 er
ro

r

Signal variance of the

kernel function sf

Noise
 va

ria
nce 

s n

(a)

0.058

0.093

0.129

0.164

0.199

0.235

0.270

0.305

0.340

0.376

0.411

0.45
0.40
0.35
0.30
0.25
0.20

0.50

0.15
0.10
0.05

-1.0
-0.5

0.0
0.5

1.0
1.5

2.0
0.0

-0.5
-1.0

-1.5
-2.0

-2.5

ro
ot

 m
ea

n 
sq

ua
re

 er
ro

r

Value of RMSE

Sig
nal v

ari
an

ce 
of th

e

ker
nel f

uncti
on s f

Correlation measurement

hyperparameters l

(b)

0.80.0-0.8-1.6-2.4-3.2
-4.8-4.0 1.8

1.2
0.6

0.0
-0.6

-1.2

Value of RMSE

0.6
0.7

0.5
0.4
0.3
0.2
0.1

Corre
lat

ion m
eas

urem
en

t

hyp
erp

ara
mete

rs 
l

ro
ot

 m
ea

n 
sq

ua
re

 er
ro

r

Noise variance sn
0.060

0.116

0.171

0.227

0.282

0.338

0.394

0.449

0.505

0.560

0.616

(c)

Figure 8: +e influence of GP hyperparameters on regression accuracy. (a) +e influence of σn and σf on regression accuracy. (b) +e
influence of σf and l on regression accuracy. (c) +e influence of σn and l on regression accuracy.
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choosing appropriate search parameters can greatly save
time and improve the search speed. When the variation
factor F� 0.8 is fixed and CR ∈ [0.5, 0.9], the convergence
curve is relatively stable. When CR� 0.9, the search result
reaches the fastest convergence, and it is completely con-
verged in 39 iterations. When CR� 0.6, the convergence
speed is the slowest, and the iterative steps reach 80 steps
before it starts to converge. CR and F should be dynamically
adjusted according to actual problems, and further com-
parisons should be made within the selection range of
possible convergence parameters in order to obtain the
optimal convergence result.

When the variation factor F� 0.8 and the crossover
factor CR� 0.9 are fixed, increasing NP can improve the
diversity of the population but, at the same time, reduce the
convergence speed of the population. Reducing NP can
increase the convergence speed, but it is easy to lead to
premature convergence. When the population number NP is
equal to 40, 60, 80, 100, and 120, respectively, the iterative
convergence curves are shown in Figure 10.

It can be seen from Figure 10 that when NP is 40 and 60,
the optimal value is searched for 54 iterations and 48 it-
erations, respectively. But when NP is 80, 100, and 120, it
takes 57, 73, and 85 iterations to search for the optimal value.
NP mainly reflects the amount of population information in
DE. +e larger the population size, the richer the population
information contained, it is more likely to find the global
solution, and it is less likely for individual optimal solutions
to dominate the overall solution. However, the calculation
time is relatively long, and the calculation convergence is
relatively slow, which lead to an increase in the calculation
cost of a single population. On the contrary, the diversity of
the population is restricted, which is not conducive to DE
obtaining the global optimal solution and may even cause

the search to stagnate. It can also be seen from Figure 10 that
the fitness convergence speed does not decrease mono-
tonically with the increase of NP. When NP is set to 60,
convergence can be achieved at the fastest speed. So,NP is set
to 60.

Choosing appropriate initial parameters can not only
save time and improve convergence speed but also avoid the
algorithm from falling into local optimality. If the selection
of parameters is not appropriate, it may cause the algorithm
search to stagnate due to excessive emphasis on the search
ability or cause the algorithm to converge prematurely due
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Figure 9: Iterative curves of different variation factors and crossover factors. (a)When CR� 0.7, iterative curves of different variation factors
F. (b) When F� 0.8, iterative curves of different crossover factors CR.
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to excessive emphasis on the development ability. In this
research, the final DE algorithm control parameters settings:
NP � 60, F� 0.8, and CR� 0.9.

5.3. Computing Ability Evaluation of Different Prediction
Methods. Since the constructed blasting PPV model will
directly affect the accuracy of the prediction results, it is
necessary to establish the evaluation index of the model to
test the prediction effect. From a statistical point of view, it is
more one sided to comprehensively evaluate a predictive
model with only one performance index. +erefore, in this
research, statistical indicators such as coefficient of deter-
mination (R2), root mean square error (RMSE), mean square
error (MSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), variance account for (VAF), and
standard deviation (SD) are used to evaluate the perfor-
mance of the model, as shown in Table 5.

Among them, yi is the measured PPV, yi is the predicted
PPV, y is the average value of the measured PPV, and m is
the total number of samples. It should be pointed out that
the closer R2 is to 1, the closer the values of RMSE, MSE,
MAE, MAPE, and SD are to 0, and the closer the VAF is to
100, indicating that the performance of the prediction
models is better.

According to the site constants in the traditional em-
pirical formulas obtained above, 16 sets of test samples are
used to test the predictive ability of the above several
commonly used empirical formulas. Each index is shown in
Table 6.

It can be seen from Table 6 that when using the USBM
empirical formula, R2 � 0.62, RMSE� 0.26, MSE� 0.07,
MAE� 0.21, MAPE� 15.27, VAF� 60.49, and SD� 0.29,
and all evaluation indicators are better than other empirical
formulas. +erefore, the empirical formula of USBM is
selected among the six empirical formulas for comparison
with other blasting intelligent algorithms.

In this research, the performance of the hybrid DE-GP
prediction model is compared with LSSVM, ANN, and GP
models and USBM empirical formula. In the ANN model,
the number of hidden layer nodes Nf of the algorithm is 5,
the number of iterations is Ep � 100, and the learning rate
is Lr � 0.1. In the GP model, the variance of noise is
σ2n � 3.72, the signal variance of the kernel function is
σf � − 1.7, and the hyperparameter for correlation mea-
surement is l � 0.3. In the core parameters of the LSSVM
model, the regular parameter is c � 9.54, and square
bandwidth is σ2 � 2.17. In the DE-GP model, the pop-
ulation number NP is 60, mutation factor F is 0.8,
crossover factor CR is 0.9, and the upper limit of evo-
lutionary algebra is 100. +e relationship between mea-
sured PPV and predicted PPV using LSSVM, ANN, GP,
and DE-GP models is shown in Figure 11.

It can be seen from Figure 11 that using the ANN model
to predict the PPV of rock foundation pits has the lowest
accuracy, R2 is 0.724. While using the LSSVMmodel and the
GP model, R2 is 0.832 and 0.885, respectively. After finally
using the GP model optimized by the DE to predict, the
accuracy is the highest, reaching 0.955, and the predicted

PPV is also closest to the measured PPV. Plot the measured
and predicted PPV of 16 sets of test samples obtained by
various prediction methods as shown in Figure 12. +e
specific index evaluation effects of the forecast results are
shown in Table 7.

Generally, we take δ � (yi
′ − yi/yi) × 100% as the judg-

ment of the relative error of the test samples, which can
better reflect the credibility of the prediction. +e relative
error and calculation time of the test samples using the
LSSVM, ANN, GP, and DE-GPmodels and USBM empirical
formula are shown in Figure 13.

It can be seen from Figure 13 that the relative error range
of the GP model prediction results is − 15.81%∼24.29%, and
the average relative error is 2.62%, which is significantly
smaller than the prediction results of the LSSVM and ANN
models and USBM empirical formula. +e regression ac-
curacy of the GP model optimized by the DE is significantly
improved, and the relative error range of the prediction
results is only − 17.78%∼11.05%. It shows that the DE-GP
hybrid prediction model established in this research can be
effectively applied to the prediction of PPV in the con-
struction field of rock foundation pit.

In addition, the computation cost of different models in
this research refers to the time spent under the conditions of
six-thread CPU processor, 8 GB running memory, and
RTX2060 graphics card. It can be seen from Figure 13 that
the computation time cost of different models is different.
Compared with the GP model, the computation time cost of
the DE-GPmodel has increased by 1′34″. However, from the
perspective of the improvement of calculation accuracy, this
part of the increase in computation time cost is completely
acceptable.

5.4. Sensitivity Analysis. In order to use the PPV to measure
BIGV, themost important step is to determine the sensitivity
of the eight blasting influence factors. +e cosine amplitude
method (CAM) is a commonly used sensitivity test method
[38]. Among them, the influence of each blasting influence
factor on PPV can be calculated by the correlation coefficient
rij, that is, the degree of influence of each blasting influence
factor on PPV can be obtained from the sensitivity analysis:

rij �


m
n�1 XinXjn

���������������


m
n�1 X

2
in 

m
n�1 X

2
jn

 , (8)

where rij is the degree of each blasting influence factor; Xin is
the i-th blasting influence factor of the n-th sample data; Xjn

is the blasting PPV of the n-th sample data; and m is the
number of samples.

+e value of the correlation coefficient rij is between 0
and 1. +e closer the correlation coefficient is to 1, the
greater the influence of input parameters on PPV. Similarly,
the smaller the influence of input parameters on output
parameter, the closer the correlation coefficient is to 0.

+e sensitivity of blasting input parameters are analyzed
based on the blasting sample set data and the established
LSSVM, ANN, GP, and DE-GP models, as shown in
Figure 14.
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Figure 11: Relationship between measured and predicted PPV by LSSVM (a), ANN (b), GP (c), and DE-GP (d). (a) Relationship between
measured and predicted PPV by LSSVM. (b) Relationship between measured and predicted PPV by ANN. (c) Relationship between
measured and predicted PPV by GP. (d) Relationship between measured and predicted PPV by DE-GP.

Table 5: Statistical indicators of blasting PPV prediction effect.

Statistical indicators Formulas Desired value
Coefficient of determination R2 � 1 − 

m
i�1(yi − yi

′)2/m
i�1(yi − yi

′)2 1
Root mean square error RMSE �

�����������������

(1/m) 
m
i�1 (yi − yi

′)2


0
Mean square error MSE � (1/m)

m
i�1(yi − yi

′)2 0
Mean absolute error MAE � (1/m) 

m
i�1 |yi − yi

′| 0
Mean absolute percentage error MAPE � (1/m) 

m
i�1 |yi − yi

′/yi| × 100% 0
Variance account for VAF � [1 − var(yi − yi

′)/var(yi)] × 100% 100

Standard deviation SD �

��������������������������������

(1/m)
m
i�1[yi − (1/m)(y1 + · · · + ym)]2



0

Table 6: Predictive effects of several empirical formulas.

Name R2 RMSE MSE MAE MAPE VAF SD Rank
USBM 0.62 0.26 0.07 0.21 15.27 60.49 0.53 1
LK 0.39 0.35 0.12 0.26 22.15 33.32 0.69 4
General predict 0.22 0.41 0.16 0.3 26.24 12.61 0.83 6
AH 0.61 0.28 0.08 0.21 15.85 59.72 0.57 2
BIS 0.37 0.35 0.12 0.27 24.62 27.51 0.75 5
CMRI 0.57 0.3 0.09 0.23 17.18 55.79 0.64 3
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It can be seen from Figure 14 that the blasting in-
fluence factors of the LSSVM, ANN, GP, and DE-GP
models have different effects on the blasting PPV.
However, the three most influential factors are distance
from the blast-face, maximum charge per delay, and total
charge, all of which have a degree of influence above 0.85.

+e less influential blasting factors are stemming length
and powder factor, and the correlation coefficient rij is
between 0.62 and 0.78. +erefore, the sensitivity analysis
result can be used to optimize the blasting design pa-
rameters, which can be used to guide project
construction.
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Figure 12: Relationship between measured and predicted PPV by various prediction methods.

Table 7: Evaluation effect of various prediction methods.

Name R2 RMSE MSE MAE MAPE VAF SD Rank
USBM 0.62 0.26 0.07 0.21 15.27 60.49 0.53 5
LSSVM 0.83 0.19 0.04 0.16 11.37 80.52 0.46 3
ANN 0.72 0.23 0.05 0.17 13.45 72.19 0.48 4
GP 0.89 0.16 0.02 0.11 8.07 86.93 0.46 2
DE-GP 0.96 0.1 0.01 0.08 6.45 95.44 0.42 1
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Figure 13: +e relative error and calculation time of different PPV prediction methods.
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6. Conclusions

+e present research established a PPV prediction model
based on the DE-GP intelligent algorithm. It was compared
with empirical formulas and other intelligent algorithms,
taking the blasting of the foundation pit at the Suoyuwan
South Station as an example. +e following conclusions are
obtained:

(1) +e conventional empirical formulas are mainly
related to distance from the blast-face and the
maximum charge per delay. However, the calculated
PPV deviates greatly from the measured PPV.

(2) +e blasting PPV prediction model based on the DE-
GP method was established for the first time, and it
was found to have high accuracy by comparing the
measured PPV and the predicted PPV.

(3) +e DE-GP blasting prediction model used for the
rock blasting prediction. Compared with the
LSSVM, ANN, and GP prediction models and em-
pirical formulas, the prediction accuracy was im-
proved, and the relative error was significantly
reduced.

(4) +e CAM was used to analyze the sensitivity of
blasting influence factors for different prediction
models. +e impact of the distance from the blast-
face, maximum charge per delay, and total charge are
the largest; stemming length and powder factor are
relatively small.

+e PPV prediction model based on DE-GP can be
effectively applied to the blasting prediction in geotech-
nical engineering. It can control the adverse effects of
blasting and reduce the harm of BIGV to the surrounding
environment. +is method can provide strong technical
support for the blasting construction of similar
engineering.
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