
Research Article
An Improved Parameter-Adaptive Variational Mode
Decomposition Method and Its Application in Fault Diagnosis of
Rolling Bearings

Cuixing Li,1,2 Yongqiang Liu ,1 and Yingying Liao1

1State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures,
Shijiazhuang Tiedao University, Shijiazhuang 050043, China
2School of Traffic and Transportation, Shijiazhuang Tiedao University, Shijiazhuang 050043, China

Correspondence should be addressed to Yongqiang Liu; liuyq@stdu.edu.cn

Received 31 May 2021; Accepted 3 July 2021; Published 13 July 2021

Academic Editor: %oi Trung Nguyen

Copyright © 2021 Cuixing Li et al. %is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Variational mode decomposition (VMD) has been applied in the field of rolling bearing fault diagnosis because of its good ability
of frequency segmentation.Mode numberK and quadratic penalty term α have a significant influence on the decomposition result
of VMD. At present, the commonly usedmethod is to determine these two parameters adaptively through intelligent optimization
algorithm, namely, the parameter-adaptive VMD (PAVMD)method.%e key of the PAVMDmethod is the setting of an objective
function, and the traditional PAVMDmethod is prone to overdecomposition or underdecomposition. To solve these problems, an
improved parameter-adaptive VMD (IPAVMD) method is proposed. A new objective function, the maximum average envelope
kurtosis (MAEK), is proposed in this paper. %e new objective function fully considers the equivalent filtering characteristics of
VMD, and squared envelope kurtosis has good antinoise performance. In the optimization method, this paper uses an improved
particle swarm optimization (PSO) algorithm. %e MAEK and PSO can make sure the IPAVMD method reaches the best
complete decomposition of the signal without an underdecomposition or overdecomposition problem. %rough the analysis of
simulation data and experimental data, the performance of the IPAVMD and the traditional PAVMD is compared. %e
comparison results show that the proposed IPAVMDhas better performance and stronger robustness than the traditional method
and is suitable for both single-fault and multiple-fault cases of rolling bearings. %e research results have certain theoretical
significance and application value for improving the fault diagnosis effect of rolling bearings.

1. Introduction

Rolling bearing is widely used in rotating machinery, which
is one of the easily damaged parts [1]. Its running condition
affects the stability of the whole rotating machinery system.
As a key component of the transmission system, it is of great
practical significance for the safe operation of the whole
rotating machinery whether the fault and fault type can be
detected in time.

In bearing fault diagnosis, the collected vibration signals
are generally nonlinear and nonstationary, and the fault
feature information contained in them is often submerged
by strong background noise [2]. How to efficiently and
accurately extract useful fault features from complex

vibration signals has become the focus and difficulty of fault
diagnosis.

Empirical mode decomposition (EMD) [3] is an adaptive
signal processing method, which can decompose nonsta-
tionary signals into modal components of different fre-
quency bands and is widely used in signal processing [4].
However, EMD has some problems such as end effect and
mode aliasing [5]. Ensemble empirical mode decomposition
(EEMD) is an improved algorithm of EMD, which can
effectively suppress the mode aliasing phenomenon [6].
However, due to the increase of the number of iterations, the
operation efficiency is reduced, and the endpoint effect
problem is not solved. Local mean decomposition (LMD) [7]
improves the problem of overenvelope or underenvelope in
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EMD, but its essence is the same as that of EMD and EEMD
[8], which belongs to recursive mode decomposition, and
ultimately cannot avoid the end effect and mode aliasing
phenomenon. At the same time, these recursive decompo-
sition methods lack strict mathematical theory support. For
the abovementioned problems, Dragomiretskiy and Zosso
[9] proposed a nonrecursive mode decomposition method
according to the binding variational problem, namely,
Variational Mode Decomposition (VMD). %e algorithm
can segment the signal flexibly in the frequency domain and
can effectively mine the submerged feature information in
the signal. Once put forward, it was favored by many
scholars [10–14].

%e researchers found that the signal processing effect of
VMD was influenced by its parameter setting. Li et al. [15]
determined the optimal mode number K adaptively by peak
search and similarity principle. Guided by a series of indexes
such as permutation entropy and kurtosis, Lian et al. [16]
used iterative search to determine the mode number K. In
the application of VMD, the abovementioned two references
only considered the influence of mode number K and ig-
nored the influence of penalty factor α on modal bandwidth
[17–19]. In [20], K and α were determined by the central
frequency observation method, which depended on expe-
rience and had poor adaptability. At present, one of the
popular methods is to adaptively determine the optimal
parameter combination of VMD [K, α] by using an intel-
ligent optimization algorithm. In [21], simulated annealing
(SA) algorithm was used to optimize VMD with kurtosis as
fitness function for early chatter identification in the milling
process. In [22], particle swarm optimization (PSO) algo-
rithm was used to optimize VMDwith maximum entropy as
the fitness function to realize liquid pipelines leakage de-
tection. In the field of rolling bearing fault diagnosis, Zhang
et al. [23] introduced grasshopper optimization algorithm
(GOA) to optimize VMD with the weighted kurtosis as the
fitness function. Nassef et al. [24] adaptively selected the best
parameters of VMD by using sailfish optimization (SFO)
algorithm and Gini index as the fitness function. Gai et al.
[25] proposed an improved parameter-adaptive VMD
method based on the hybrid gray wolf optimizer (HGWO)
and envelope entropy. %e abovementioned three studies
have achieved good results, but this kind of method is only
for single-fault feature extraction, making a component to
achieve global optimization, and cannot achieve bearing
compound fault analysis. One step closer, Miao et al. [26]
proposed a new index, namely, ensemble kurtosis (EK). %e
grasshopper optimization algorithm (GOA) was used to
optimize the VMD with the minimum mean ensemble
kurtosis as the objective function, so that the optimized

VMD was suitable for single-fault and compound-fault
diagnosis.

To sum up, we can find that VMD based on optimization
algorithm can adaptively determine K and α, but the op-
timization result depends heavily on the objective function.
%erefore, constructing an appropriate objective function is
the key to the parameter-adaptive VMD method. %e au-
thors find that the ensemble kurtosis is still affected by cyclic
stationary noise, and the parameter-adaptive VMD pro-
posed by Miao et al. [26] has the problem of over-
decomposition or underdecomposition. Further research
finds that the ensemble kurtosis is greatly affected by random
noise, while the squared envelope kurtosis has strong an-
tinoise performance.%erefore, a new objective function, the
maximum average envelope kurtosis (MAEK), is proposed.
An improved parameter-adaptive variational mode de-
composition method is established by using particle swarm
optimization algorithm. %e proposed method has no
overdecomposition or underdecomposition problem, and its
robustness and generalization are outstanding. It is suitable
for both single-fault diagnosis and compound-fault diag-
nosis of rolling bearings. %e correctness and efficiency of
the new method are verified by simulation and experiment.

%e rest of this paper is summarized as follows. In
Section 2, we briefly introduce the basic principles of VMD
and PSO, clarify the original intention of establishing the
new objective function, and introduce the detailed steps of
rolling bearing fault diagnosis proposed in this paper. In
Section 3, the correctness of IPAVMD is verified through the
analysis of single-fault and multiple-fault simulation signals
of bearings. %e improved method is compared with the
traditional PAVMD proposed in [26], which proves the
superiority of the improvedmethod. In Section 4, we use two
actual bearing signals to check the performance of the new
method and verify the effectiveness of the proposed method.
Finally, the conclusions are drawn in Section 5.

2. Improved Parameter-Adaptive Variational
Mode Decomposition (IPAVMD)

2.1.VMDMethod. VMD is a completely nonrecursive signal
decomposition mode, which realizes the adaptive decom-
position of the signal by iteratively searching the optimal
solution in the variational models. An actual nonstationary
signal f can be decomposed into K discrete modal com-
ponents uK, and the center frequency ωK and bandwidth of
each component can be determined. VMD algorithm
consists of two steps: constructing the variational problems
and solving the variational problems. %e expression of the
constrained variational model is shown as follows:

min
uk{ }, ωk{ }
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where uk  denotes the component signal, ωk  represents
the center frequency, and K is the mode number.

Quadratic penalty factor α and Lagrange multiplier λ are
introduced to transform equation (1) into an unconstrained
optimization model, and the expression is as follows:

L uk , ωk , λ(  � α
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For equation (2), the alternate direction method of
multipliers (ADMM) is used to find the optimal solution.
Each mode uK and the corresponding center frequency ωk

are updated by the following equations, respectively:
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When uK and ωk are updated, Lagrange multiplier λ is
also updated by

λ
n+1

(ω)← λ
n
(ω) + τ f(ω) − 

k

u
n+1
k (ω)⎛⎝ ⎞⎠. (5)

%e VMD iteration process stops until the relative error
is less than the convergence tolerance ε.
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2.2. Particle Swarm Optimization (PSO). Particle swarm
optimization (PSO) has been a popular algorithm for several
decades because of its characteristics of evolutionary com-
putation and swarm intelligence and good global optimi-
zation ability. Many scholars [22, 27, 28] have proposed
different improved particle swarm optimization algorithms
to improve convergence speed and accuracy. Zhang et al.
[28] successfully applied an improved particle swarm op-
timization algorithm to VMD parameter optimization. %is
paper will also use it for parameter optimization.

%e specific optimization steps are as follows:

(1) Random generation of particle swarm locations and
velocities.

(2) To evaluate the fitness of each particle, the position
and fitness of the particle are stored in the individual
extremum pid, and the global extremum pgd is
generated at the same time.

(3) %e particles velocity and position are updated
according to

vid(t + 1) � ωvid(t) + c1r1 pid − xid(t)(  + c2r2 pgd − xid(t) ,

xid(t + 1) � xid(t) + vid(t + 1),

ω � ωmax − ωmin( 
t

Tmax
 

2

+ ωmin − ωmax( 
2t

Tmax
+ ωmax,

If vid >Vmax, then vid � Vmax,

If vid < − Vmax, then vid � −Vmax,
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(7)

where ω is the inertia weight, d � 1, 2, . . . , D,
i � 1, 2, . . . , m, t, Tmax are, respectively, the current
iteration number and the maximum iteration, c1 and
c2 are the learning factors, and r1 and r2 are the
random number between [0, 1]. %e specific initial
parameter values are shown in Table 1.

(4) All pid and pgd are compared, and pgd is updated.

(5) determined if the termination condition is met; the
search results are output if it is met; otherwise, the
iteration is continued.

2.3.9eNewObjective Function:MaximumAverage Envelope
Kurtosis (MAEK). Kurtosis is very sensitive to fault shock
signals and is often used as an evaluation index for the
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diagnosis of surface damage of rolling bearings [29, 30].
Yang et al. [31] pointed out that the bearing fault signal has
impulsive characteristics in time domain and cyclic statio-
narity characteristics in the frequency domain, which should
be considered at the same time. If only one of them is
considered, it will be interfered by impulsive noise or cyclic
stationarity noise, which will affect the diagnosis effect. In
[26], the time-domain kurtosis was used to evaluate the
impact property of the signal, the frequency-domain kur-
tosis was used to evaluate the cyclic stability of the signal,
and the ensemble kurtosis (EK) index was proposed. It is
defined as follows:

EK � ESK · K,

ESK �


p
p�1 |SE(p)|

4


p
p�1 |SE(p)|

2
 

2,
(8)

where EK denotes the ensemble kurtosis, K is the kurtosis of
the signal, ESK is the envelope spectrum kurtosis, SE denotes
the envelope spectrum of the signal, and p is the sampling
number of the envelope spectrum.

In [26], grasshopper optimization algorithm (GOA) was
used to optimize the parameters of VMD. %e objective
function as shown in equation (9) is established. %e op-
timized VMD is used to decompose the signal, and the
component with the maximum ensemble kurtosis value is
selected, which is considered to contain the bearing fault
feature information.

argmin
k,α

1
n⟶N EKn/N( 

 , (9)

where EK denotes the ensemble kurtosis of each mode and
N is the mode number.

It is undeniable that EK index is more suitable for
evaluating bearing fault impulses. However, the authors find
that the parameter-adaptive VMD method based on EK has
the problem of overdecomposition or underdecomposition
when processing the signal. %e reason is that EK index is
seriously affected by random noise. Bearing fault signals
generally include the cyclic stationary interference part
caused by shaft rotation and gear engagement, the fault
impulses part, and the random impulses part caused by
electromagnetic interference. We analyzed the change of the
EK value of these three parts under different signal-to-noise
ratios (SNRs), as shown in Figures 1(a)–1(c), and the
simulation signals used are described in detail in Section 3.1.
It can be intuitively found that the EK values of these three
parts vary greatly under different SNRs. Meanwhile, the

objective function established by equation (9) is to average
the EK values of all components obtained by VMD de-
composition. %e essence of VMD is multiple adaptive
Wiener filters [32]. In the process of searching K and α, the
SNR of the signals in each filter varies greatly, which makes
the EK value of the abovementioned three parts fluctuate
greatly, resulting in that the determined mode number may
not be optimal.

Further study found that the squared envelope kurtosis
(SEK) of the signal is less affected by the random noise.
Similarly, we analyze the changes of SEK values of the
abovementioned three parts of signals under different SNRs,
as shown in Figures 1(d)–1(f ). It can be clearly found that
the SEK value fluctuates little under different SNRs.
%erefore, SEK has stronger noise resistance and better
stability than EK. In this paper, a new indicator, average
envelope kurtosis (AEK), is proposed in this paper. AEK
refers to the average value of the squared envelope kurtosis
of each modal component obtained by VMD under specific
parameters K and α. %e maximum average envelope
kurtosis (MAEK) is taken as the objective function, and the
optimal parameter combination of VMD is obtained
through PSO search, as shown in equation (10). %e im-
proved parameter-adaptive VMD method can decompose
the cyclic stationary interference part, fault pulse part, and
random pulse part at one time, and the problem of over-
decomposition or underdecomposition does not occur
easily.

[ K, α] � argmax
(K,α)

1
K



K

i�1
SEK(i)
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⎪⎭
, (10)

where K and α are optimal parameters and SEK(i) is the
squared envelope kurtosis value of each component, which is
calculated as follows [33]:

SEK �
E SE − μSE 

4

σ4SE
, (11)

where SE is the squared envelope of each component, μSE is
the mean value of SE, σSE is the standard deviation of SE, and
E(·) represents the expected value.

2.4. Proposed Method. %e detailed steps of the rolling
bearing fault diagnosis method proposed in this paper are as
follows:

Step 1: the range of penalty factor α is set as [100, 5000],
and the range of mode number K is set as [2, 10].

Table 1: Setting the PSO parameters.

Category Number of particle swarm (m) Maximum iteration number (Tmax)

Learning
factors
(c)

Inertia weight
(ω)

Migration
velocity
(vmax)

c1 c2 ωmax ωmin vK vα

Value 10 10 2 2 0.9 0.4 2 10
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Figure 1: Variation curves of EK and SEK values of different components in the bearing signal under different SNRs: (a, d) the cyclic
stationary interference part, (b, e) fault impulses part, and (c, f ) the random impulses part.
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Step 2: parameters in PSO are set according to Table 1.
%eMAEK is taken as the optimization target to search
for the best parameter combination [ K, α].
Step 3: the optimized VMD is applied to decompose the
vibration signal and generate the time-domain wave-
form of each component and the corresponding
squared envelope spectrum.
Step 4: the envelope spectrum of each component is
observed and compared with the theoretical fault fre-
quency, and the fault type is obtained.

%e flowchart of the proposed method is illustrated in
Figure 2.

In order to demonstrate the correctness and general-
ization ability of the IPAVMD method, a series of bearing

signals, including single fault and compound fault, are used
for simulation and experimental verification. %e perfor-
mance of the IPAVMD method and PAVMD method is
compared. %e comparison results show that IPAVMD can
realize the complete decomposition of the signal and does
not easily show the underdecomposition or over-
decomposition phenomenon.

3. Simulation

3.1. Simulated Signals of Case 1: 9e Single-Fault Signal.
In order to verify the correctness of the method proposed in
this paper, the single-fault simulation signal of rolling
bearing used in [31, 34, 35] is used for analysis, and the
simulation model is as follows:

x(t) � 
l

Al cos 2πlfrt + θl( 

√√√√√√√√√√√√√√√√√√
Rotor vibration r(t)

+ 
k

Bk cos 2πkfrZt + θk( 

√√√√√√√√√√√√√√√√√√√√√√
Gearmeshingg(t)

+ 
i

Ci · S t − iTd − τi( 

√√√√√√√√√√√√√√√√√√
Repetitive transients b(t)

+ 
j

Rj · S t − rj 

√√√√√√√√√√√√
High−amplitude impulses h(t)

+ n(t)√√
Noise

.
(12)

%e five parts in equation (12) represent the harmonic
vibration of the rotor, the cyclic stationary interference of
the gear meshing, the repetitive transients caused by the
bearing fault, high-amplitude random impulse, and
Gaussian distributed white noise, respectively, where fr

represents the rotating frequency, Z means the number of
teeth of the gear, Td represents the fault period, and τi

denotes the roller random slips of [−0.02 Td, 0.02 Td]. %e
impulse response function S(t) is defined as follows:

S(t) �
exp(−λt)sin 2πfot( , t> 0,

0, otherwise.
 (13)

All the parameters used in the simulated signals of case 1
are listed in Table 2. %e sampling frequency and sampling
duration are 10000Hz and 1 s, respectively. %e waveforms
of the repetitive transients, high-amplitude random impulse,
and pure signal are demonstrated in Figures 3(a)–3(c).
Gaussian white noise with an SNR of −0 dB is added to the
pure signal to generate a fault simulation signal. Its time-
domain waveform, frequency spectrum, and squared en-
velope spectrum are shown in Figures 4(a)–4(c), respec-
tively. No fault characteristic information can be found in
the frequency spectrum and envelope spectrum; only the
frequency of rotation and gear meshing can be found.

Using the method proposed in this paper to analyze this
data, the PSO is used to optimize the VMD. Figure 5 shows
the curve of the maximum average envelope kurtosis with
the population evolution algebra, which converges in the
fourth generation, and the best parameter combination is
[3, 479]. According to the optimization results, the pa-
rameters in VMD are set, and then, the fault simulation
signal is decomposed. %e time-domain waveform and the
squared envelope spectrum of each component are shown in
Figure 6. It can be clearly found from the envelope spectrum
that u2 is the bearing fault information. We can see from

Figure 6 that the cyclic stationary interference signal and
random impulse signal are also well extracted. Figure 7
shows the frequency spectrum of each component. It can
be found that the center frequency interval of each mode is
far away and there is no overdecomposition phenomenon.
%rough the abovementioned analysis, the correctness of the
proposed method is proved, and this method can realize the
complete decomposition of bearing fault signal.

To illustrate the advantages of this method, PAVMD [26]
is used to analyze the simulated signal. Figure 8 shows the
optimization process, and according to the results of PSO,
we set the optimal parameter combination of VMD as
[2, 466]. %e final decomposition result is shown in Figure 9,
and we can easily find that the component u2 is the bearing
fault information. Miao et al. [26] pointed out that the
component with the largest EK value after decomposition is
the component containing fault information. However, it
can be seen from Figure 8(b) that the maximum EK value is
the component u1. It is proved that EK index is easily
disturbed by cyclic stationary noise and cannot point to fault
component accurately.

3.2. Simulated Signals of Case 2: 9e Compound Fault Signal.
In order to illustrate the generality of IPAVMD, it is applied
to the signal analysis of rolling bearing compound fault. In
this paper, the simulation signal of case 1 is recorded as the
outer-race fault simulation signal, and the inner-race fault
impulses signal is added to form the compound fault signal.
%e formula of inner-race fault impulses is as follows [26]:

y(t) � 
y

Dy · S t − yTi − τy 

√√√√√√√√√√√√√√√√√√√√
Inner−race fault impulses

,
(14)

where Dy � 0.1 + 0.38 cos(2πfrt + θy), inner-race fault
period Ti � (1/75), natural frequency fo3 � 3600, τy denotes
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the roller random slips of [−0.01 Ti, 0.01 Ti], and initial
phase θy � (π/3).

%e waveforms of the outer-race fault impulses, inner-
race fault impulses, high-amplitude random impulse, and
pure signal are demonstrated in Figures 10(a)–10(d).
Gaussian white noise with an SNR of −0 dB is added to the
pure signal to generate a compound fault simulation signal.
Its time-domain waveform, frequency spectrum, and
squared envelope spectrum are shown in Figures 11(a)–
11(c), respectively. No fault characteristic information can
be found in the frequency spectrum and envelope spectrum;
only the frequency of rotation and gear meshing can be
found.

%e new method proposed in this paper is used to an-
alyze the compound fault signal.%e PSO is used to optimize
the VMD. Figure 12 shows the curve of the maximum
average envelope kurtosis with the population evolution
algebra, which converges in the fifth generation, and the best
parameter combination is [4, 376]. According to the opti-
mization results, the parameters in VMD are set, and then,
the fault simulation signal is decomposed. %e time-domain
waveform and the squared envelope spectrum of each
component are shown in Figure 13. It can be clearly found
from the envelope spectrum that u2 is the outer-race fault

information and u3 is the inner-race fault information. At
the same time, it can be seen from Figure 13 that the cyclic
stationary interference signal and random impulse signal are
also well extracted. Figure 14 shows the frequency spectrum
of each component. It can be found that the center frequency
interval of each mode is far away and there is no over-
decomposition phenomenon. %e method proposed in this
paper can decompose all kinds of components in bearing
compound fault at one time. %rough the abovementioned
analysis, the correctness and generality of the proposed
method are proved.

Similarly, the PAVMD [26] method is used to analyze
the simulation signal. Figure 15 shows the optimization
process, and according to the results of PSO, we set the
optimal parameter combination of VMD as [2, 264]. %e
final decomposition result is shown in Figure 16. We can
clearly find that u1 is the cyclic stationary interference signal,
u2 is the inner-race fault information, and there is no outer-
race fault information. PAVMD has the problem of
underdecomposition, and it cannot separate each single fault
in the compound fault at one time. Miao et al. [26] pointed
out that the component with the largest EK value after
decomposition is the component containing fault infor-
mation. However, it can be seen from Figure 15(b) that the

Start

Vibration signal

Initialize the particle
swarm parameters

VMD

Update the position and
velocity of each particle

Calculate AEK value of
each position

Optimized
VMD

Update
MAEK

Output the optimal
parameter combination

Determine the type of fault

End

Yes

Yes

No

No

t = t + 1

t ≥ Tmax

Vibration signal

Time domain waveform of each component

The corresponding squared envelope spectrum

AEK > MAEK

Figure 2: Flowchart of the improved VMD for rolling bearing vibration signal analysis.

Table 2: Parameters of the simulated signals of case 1.

r(t) g(t) b(t) h(t)

fr A1 ϕ1 B1 B2 Z θ1 θ2 Ci Td fo1 λ1 R1 r1 fo2 λ2
10 0.1 π/2 0.2 0.12 32 π/2 π/2 0.3 1/40 2400 560 1.5 0.6 4500 480

Shock and Vibration 7
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Figure 3: Simulated signals of case 1: (a) fault impulses, (b) random impulse, and (c) pure signal.
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Figure 5: Simulated signals of case 1: PSO convergence curve based on IPAVMD.
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Figure 6: Simulated signals of case 1: signal processing results based on IPAVMD: (a–c) time-domain waveform of each mode and (d–f) the
corresponding squared envelope spectrum.
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component u1 with the largest value of EK is not u2.
%erefore, it is proved that EK index is easy to be disturbed
by cyclic stationary noise and cannot point to fault com-
ponent accurately.

4. Experimental Verification

4.1. Experimental Signals of Case 1: 9e Single-Fault Signal.
In order to verify the effectiveness of the new method,
QPZZ-II rotating machinery vibration and fault simulation
experimental bench is used to verify. %e test bearing model

is 6205-2RS, and a 0.2mm diameter pitting fault was ma-
chined on the outer ring raceway by EDM. %e test bench is
shown in Figure 17. %e main parameters of the test bearing
are shown in Table 3.

In the experiment, the rotational speed is1478 r/min, so
the rotating frequency fr � 24.63Hz, and the sampling
frequency is 25.6 kHz. According to the geometric param-
eters of test bearing, the outer-race characteristic frequency
of the bearing can be calculated, BPFO� 88.31Hz. %e ac-
celeration sensor is applied to collect vibration data, and its
time-domain waveform, frequency spectrum, and squared
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Figure 7: Simulated signals of case 1: the spectrum of each component based on IPAVMD.
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envelope spectrum are shown in Figure 18. Due to the noise
interference, the outer-race fault characteristic frequency
spectrum line is not prominent in the envelope spectrum,
and there are many interference lines.

%emethod proposed in this paper is used to analyze this
vibration signal. %e PSO is used to optimize the VMD.
Figure 19 shows the curve of the maximum average envelope
kurtosis with the population evolution algebra, which
converges in the fourth generation, and the best parameter
combination is [2, 626]. According to the optimization re-
sults, the parameters in VMD are set, and then, the vibration
signal is decomposed. %e time-domain waveform and the
squared envelope spectrum of each component are shown in
Figure 20. It can be clearly found from the envelope spec-
trum that u1 is the rotating frequency information and u2 is
the outer-race fault information. Figure 21 shows the fre-
quency spectrum of each component. It can be found that

the center frequency interval of each mode is far away and
there is no overdecomposition phenomenon. %rough the
abovementioned analysis, it can be seen that the effect of the
proposed method on signal separation is quite outstanding.

In order to illustrate the advantages of the proposed
method, as a comparison, PAVMD [26] is used to analyze
this experimental signal. Figure 22 shows the optimization
process, and according to the results of PSO, we set the
optimal parameter combination of VMD as [7, 4523]. %e
final decomposition result is shown in Figure 23. We can
clearly find that u4 is the outer-race fault information.
However, the components u1–u3 all contain rotating fre-
quency information, indicating that there is over-
decomposition in this decomposition. Miao et al. [26]
pointed out that the component with the largest EK value
after decomposition is the component containing fault in-
formation. However, it can be seen from Figure 22(b) that
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Figure 9: Simulated signals of case 1: signal processing results based on PAVMD: (a, b) time-domain waveform of each mode and (c, d) the
corresponding squared envelope spectrum.
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Figure 10: Simulated signals of case 2: (a) outer-race fault impulses, (b) inner-race fault impulses, (c) random impulse, and (d) pure signal.
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Figure 12: Simulated signals of case 2: PSO convergence curve based on IPAVMD.
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Figure 13: Simulated signals of case 2: signal processing results based on IPAVMD: (a–d) time-domain waveform of each mode and (e–h)
the corresponding squared envelope spectrum.
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the component u1 with the largest value of EK is not u4.
%rough the test analysis, it is easy to see that EK index is
easily disturbed by cyclic stationary noise and cannot ac-
curately point to the fault component.

4.2. Experimental Signals of Case 2: 9e Compound Fault
Signal. %e complex working environment and strong
background noise of freight trains make it difficult to extract
fault features of wheel set bearings, and the compound fault
diagnosis is more difficult.

%e test bench is shown in Figure 24(a). %e RD2 wheel
set is installed on the test bench. %e main structural pa-
rameters of the bearing are shown in Table 4. %e bearing
used in the test is the maintenance bearing of a freight train
after long service, and there are many kinds of damage and
wear inside it. %ere is an obvious spalling fault on the inner
ring raceway, as shown in Figure 24(b), while there are only
few slight indentations on the outer ring raceway, as shown
in Figure 24(c).

%e rotating frequency fr � 7.75Hz. According to the
geometric parameters of test bearing, the fault characteristic
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Figure 14: Simulated signals of case 2: the spectrum of each component based on IPAVMD.
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Figure 16: Simulated signals of case 2: signal processing results based on PAVMD, (a, b) time-domain waveform of each mode and (c, d) the
corresponding squared envelope spectrum.

Motor Rotor Tested bearing

Load

Figure 17: Bearing fault simulation experimental device.

Table 3: Experimental bearing parameters in case 1.

Parameter Bearing specs Pitch diameter (mm) Roller diameter (mm) Roller number Contact angle (deg)
Value NSK 6205RS 39 7.9 9 0
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frequencies of the bearing can be calculated, outer-race
characteristic frequency BPFO� 66.75Hz and inner-race
fault characteristic frequency BPFI� 88.25Hz. %e accel-
eration sensor is applied to collect vibration data, and its
time-domain waveform, frequency spectrum, and squared
envelope spectrum are shown in Figure 25. Because of the
interference of background noise, no obvious fault shock can
be found in the time-domain signal, while only the inner

ring fault base spectrum line is prominent in the squared
envelope spectrum, and the other spectrum lines are messy.
%erefore, the bearing can only be judged to have an inner
ring fault.

Using the method proposed in this paper to analyze this
data, the PSO is used to optimize the VMD. Figure 26 shows
the curve of the maximum average envelope kurtosis with
the population evolution algebra, which converges in the
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Figure 18: Experimental signals of case 1: (a) time-domain waveform, (b) frequency spectrum, and (c) squared envelope spectrum.
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Figure 19: Experimental signals of case 1: PSO convergence curve based on IPAVMD.
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second generation, and the best parameter combination is
[3, 453]. According to the optimization results, the pa-
rameters in VMD are set, and then, the vibration signal is
decomposed. %e time-domain waveform and the squared
envelope spectrum of each component are shown in
Figure 27. It can be clearly found from the envelope spec-
trum that u2 is the inner ring fault information and u3 is the
outer ring fault information, and the two single faults are
clearly separated.

To better reflect the effect of fault feature extraction, the
time-domain waveform and squared envelope spectrum of
u2 are separately drawn, as shown in Figures 28(a) and
28(b). %e continuous impact information can be seen
clearly in Figure 28(a). In Figure 28(b), the rotating fre-
quency and its double frequency can be clearly found. %e
first six harmonics of the inner-race fault frequency BPFI as
well as the modulation sidebands can also be clearly found.
Similarly, the time-domain waveform and envelope

spectrum of u3 are drawn, as shown in Figure 29. %e
characteristic frequency information of the outer-race fault
can be clearly found in Figure 29(b). Figure 30 shows the
frequency spectrum of each component. It can be found that
the center frequency interval of each mode is far away and
there is no overdecomposition phenomenon. %e method
presented in this paper can automatically separate the single-
channel compound fault signals at one time, and there is no
overdecomposition or underdecomposition problem.
%rough the abovementioned experimental analysis, the
correctness of the proposed method is further verified.

In order to reflect the superiority of the improved
method, the traditional PAVMD [26] is used to analyze this
experimental signal. Figure 31 shows the optimization
process, and according to the results of PSO, we set the
optimal parameter combination of VMD as [2, 4569]. %e
final decomposition result is shown in Figure 32, and we can
easily find that the component u2 is the inner-race fault
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Figure 20: Experimental signals of case 1: signal processing results based on IPAVMD: (a, b) time-domain waveform of each mode and
(c, d) the corresponding squared envelope spectrum.
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Figure 22: Experimental signals of case 1: the optimization process based on PAVMD: (a) PSO convergence curve and (b) the EK value of
each component.
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(a) (b) (c)

Figure 24: Experiment equipment and the tested bearing of case 2: (a) the experiment bench, (b) an inner-race fault, and (c) an outer-race
fault.

Table 4: Parameters in the experiment of case 2.

Parameter Bearing
specs

Roller diameter
(mm)

Pitch diameter
(mm)

Roller
number

Contact angle
(deg)

Rotating speed
(rpm)

Sampling frequency
(kHz)

Value 197726 24.74 176.29 20 8.83 465 25.6
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Figure 25: Experimental signals of case 2: (a) time-domain waveform, (b) frequency spectrum, and (c) squared envelope spectrum.

20 Shock and Vibration



1 2 3 4 5 6 7 8 9 10
Iteration

107

107.5

108

Fi
tn

es
s v

al
ue

Objective space

Figure 26: Experimental signals of case 2: PSO convergence curve based on IPAVMD.
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Figure 27: Experimental signals of case 2: signal processing results based on IPAVMD: (a–c) time-domain waveform of each mode and
(d–f) the corresponding squared envelope spectrum.
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Figure 28: Experimental signals of case 2: (a) the time-domain waveform of u2 and (b) the squared envelope spectrum.
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Figure 29: Experimental signals of case 2: (a) the time-domain waveform of u3 and (b) the squared envelope spectrum.
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feature information. %e component u2 has the largest EK
value, as shown in Figure 31(b). It is not difficult to find that
the traditional PAVMD method can only find the fault

information of the inner ring, but not the weak fault in-
formation of the outer ring, so there is an under-
decomposition problem.
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Figure 30: Experimental signals of case 2: the spectrum of each component based on IPAVMD.
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Figure 31: Experimental signals of case 2: the optimization process based on PAVMD: (a) PSO convergence curve and (b) the EK value of
each component.
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5. Conclusions

(1) Parameter-adaptive VMD method can adaptively
determine the two key parameters K and α, and its
core is to construct the appropriate objective func-
tion. Different objective functions will lead to dif-
ferent optimization results. %e traditional
parameter-adaptive VMD method based on average
ensemble kurtosis is prone to underdecomposition
or overdecomposition in signal processing. %e
reason is that the ensemble kurtosis value fluctuates
greatly under different SNRs, and the ensemble
kurtosis index is greatly affected by random noise. In
order to overcome this shortcoming, the squared
envelope kurtosis index with strong noise resistance
is introduced, and a new objective function, the
maximum average envelope kurtosis, is constructed.
Compared with the traditional method, the perfor-
mance of the parameter-adaptive VMD method
guided by the new objective function has been
greatly improved. %rough the analysis of two
groups of bearing fault simulation signals and two

groups of test signals, the correctness and superiority
of this method are verified.

(2) %e improved parameter-adaptive VMD method
proposed in this paper can decompose the cyclic
stationary component, fault impact component, and
high-amplitude random pulse component of the
bearing fault signal at one time to achieve the
complete decomposition of the signal. %is method
is not only suitable for single fault of rolling bearings
but also for multiple-fault cases. It has strong uni-
versality and robustness and has certain engineering
application value.
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