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In this paper, a probabilistic model devoted to investigating the dynamic behaviors of train-bridge systems subjected to random
track irregularities is presented, in which a train-ballasted track-bridge coupled model with nonlinear wheel-rail contacts is
introduced, and then a new approach for simulating a random field of track irregularities is developed; moreover, the probability
density evolution method is used to describe the probability transmission from excitation inputs to response outputs; finally,
extended analysis from three aspects, that is, stochastic analysis, reliability analysis, and correlation analysis, are conducted on the
evaluation and application of the proposed model. Besides, compared to the Monte Carlo method, the high efficiency and the
accuracy of this proposed model are validated. Numerical studies show that the ergodic properties of track irregularities on
spectra, amplitudes, wavelengths, and phases should be taken into account in stochastic analysis of train-bridge interactions. Since
the main contributive factors concerning different dynamic indices are rather different, different failure modes possess no obvious
or only weak correlations from the probabilistic perspective, and the first-order reliability theory is suitable in achieving the
system reliability.

1. Introduction

+e accurate and reliable numerical estimation of rolling
stocks passing over high-speed railway bridges is an im-
portant and cheap means to optimize the bridge design,
improve the operation quality, and enhance the profitability
of railway systems. However, the existence of uncertainties,
which originate from the controllable or uncontrollable
construction errors, environmental impact, and long-term
natural evolution, seriously reduces the authority and per-
suasiveness of conventional deterministic numerical pre-
diction. Against this backdrop, the dynamic assessment of
train-bridge interaction system from the probabilistic per-
spective is being urgently sought.

For obtaining the full view of dynamic behaviors of
train-bridge systems, much attention should be first given
to the variability of track irregularities due to its great
importance in the interaction. Until now, the statistically

average power spectral density (PSD) is a common way to
represent the track irregularities [1–3], based on which
track irregularity sets with spatial randomness can be
easily generated through some time-frequency transfor-
mation approaches [4, 5]. However, the average track
spectrum, which just represents such limited track profile
deformations, is insufficient to describe the complete
track-geometry variations in a railway line. In last decades,
many scholars have focused on the modelling techniques
of the track irregularity random field. For instance, Zhu
et al. [6] considered track vertical profile and alignment
irregularities as Gaussian process and studied the level-
crossing properties and peak statistics by comparing with
the measurements. Perrin et al. [7–9] presented the track
irregularity stochastic model by introducing approaches of
Karhunen–Loéve expansion and polynomial chaos ex-
pansion, in which the statistical properties of this vector-
valued, non-Gaussian, and nonstationary track
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irregularity random field were properly considered and
most importantly the dependencies of irregularities were
taken into account. +is technique was also applied into
the French urban railway network [10]. Xu and Zhai
[11, 12] provided new insights into the probabilistic
characteristics of track irregularity PSDs on the basis of the
intrinsic features of track irregularities in the shape
similarity of PSD functions and derived a spectral-based
method to inversely and efficiently simulate the random
track irregularities with ergodic properties. From the
aforementioned studies, it can be seen that the method-
ologies for simulating random track irregularities are
gradually advancing toward maturities.

In the last decades, research studies on the dynamic
behaviors of track irregularity-induced train-bridge systems
under have gradually been extended from the deterministic
analysis to the probabilistic analysis. For example, Chatterjee
et al. [13], Au et al. [14], Xia et al. [15], and Liu et al. [16, 17]
used multiple samples of track irregularities from one PSD
to explore the effects of the location of irregularity ampli-
tudes on system responses. By applying the pseudoexcitation
method (PEM), researchers can efficiently study the random
vibrations of train-bridge systems, where random irregu-
larities were transformed into the superposition of a series of
deterministic pseudoharmonic signals [18–21]. Rocha et al.
[22, 23] took the assumption that the track spectra are
uniformly distributed and employed the Monte Carlo
simulation and tail modelling technique to assess the track
stability caused by excessive deck vibrations and running
safety of trains for a short-span railway bridge. Subsequently,
with the same assumption, they [24] tested the efficiencies of
some typical sampling methods and compared their dif-
ferences in estimating the probability of failure. Salcher et al.
[25] also assumed that the track spectra are uniformly
distributed and conducted an interesting work in the code-
based reliability evaluation of train-bridge systems, in which
the uncertainties of bridge, track, vehicle, track irregularity,
and environmental impact are fully included. Mao et al.
[26, 27] used the probability density evolution method to
perform random dynamic analysis of train-bridge systems
subjected to random track irregularities with one PSD and
system parameters. Jin et al. [28] applied the spectral method
to obtain the random vibration of bridges due to a series of
moving forces in frequency domain, and the hunting forces
are modelled as a random process with the given PSD in-
stead of harmonic forces. Cantero et al. [29] investigated the
influences of wavelength ranges of track irregularities on
train-bridge systems. In the above studies, abundant
meaningful conclusions have been achieved. However, track
irregularity PSDs were usually assumed to be uniformly
distributed due to the scarcity of measurements, and
therefore, the variability of track irregularity was not sci-
entifically considered in the studies. Moreover, the majority
of these investigations have simplified the wheel-rail in-
teraction relationship to different levels for efficiency. +is
may lead to insufficient understandings. Currently, sys-
tematic work has rarely been reported in evaluating a rel-
atively complete train-bridge system under random track
irregularity from the probabilistic perspective.

+is paper aims to develop a probabilistic model to
comprehensively assess the dynamic performance of track-
bridge coupled systems under track random irregularities.
First, a three-dimensional (3D) train-ballasted track-bridge
model is introduced, in which the nonlinear wheel-rail
contact relationship and the mechanics of different com-
ponents are covered. Second, the approach in simulating the
random field of track irregularities is presented, and the
ergodic properties are entirely considered in the temporal-
spatial domain. +en, the probability density evolution
method (PDEM) is introduced to solve the probabilistic
transmission between excitation inputs and response out-
puts. Finally, some significant aspects are investigated to
reveal the random behaviors, including stochastic analysis,
reliability analysis, and probabilistic relation analysis.

2. Introduction of Train-Track-Bridge Model

+e train-track-bridge coupled system can be decomposed
into three subsystems, namely, subsystems of the train, the
track, and the bridge, which are spatially coupled by non-
linear wheel-rail interactions and track-bridge interactions,
as shown in Figure 1. Without the loss of generality, the
dynamic equations of motion for the coupled system can be
written in the following form [31]:

Mn
€Xn + Cn

_Xn + KnXn � Fn,

Mt
€Xt + Ct

_Xt + KtXt � Ft,

Mb
€Xb + Cb

_Xb + KbXb � Fb,

(1)

where M, C, and K are mass, damping, and stiffness sub-
matrices, respectively; the subscripts “n,” “t,” and “b” rep-
resent the submodules of the vehicle, the track, and the
bridge, respectively, and €X, _X, X, and F are the vectors of
acceleration, velocity, displacement, and force, respectively.

+e modelling methods are summarized in Tables 1
and 2.

3. Random Field of Track Irregularities

Rising from the manufacturing faultiness and environ-
mental loads, e.g., cyclic wheel-rail interactions, material
fatigue, and track settlement, track irregularities are char-
acterized by high-dimensional randomicity in both spatial
and temporal domains. Its spatial randomness behaves as the
random distribution of amplitudes and phases along the
track, and the temporal randomness is represented by the
fluctuation of spectral lines, as shown in Figure 2. Xu and
Zhai [11, 12] pointed out that the ergodic properties of PSD
probabilities, amplitudes, and wavelengths of track irregu-
larities should be taken into account in the stochastic
analysis of vehicle-track interactions and presented a track
irregularity probabilistic model. However, being different
from the repetitive feature of the train-track system, the
dynamic response of train-bridge systems is dependent on
the position of trains passing over the bridge. To completely
consider the spatial randomness of track irregularities at
every bridge position, the ergodic property of phases may
also be considered in train-bridge systems.
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In this paper, an extended approach is developed to
characterize the ergodic properties of track irregularities on
track spectrum, amplitudes, wavelengths, and phases based
on the track irregularity probabilistic model proposed by Xu
and Zhai [11, 12]. +e detailed modelling method is pre-
sented in the following sections.

3.1. PSD Probability Distribution. +e approach on the PSD
probability distribution of track irregularities from big data
of measurements proposed by Xu and Zhai [11, 12] can be
reconsidered as follows.

Let ℓυ(kΔs) be a portion of track irregularities, where
k � 1, 2, . . . , N; Δs is the discrete spacing; N is the total
number of track irregularity segments; and υ,
υ � υ1, υ2, υ3, υ4, represents the type of track irregularity,
namely, vertical profile, alignment, cross level, and gauge,
respectively. Define Z(·) as the PSD function operator, and
then the PSD of ℓυ(kΔs) can be conveniently derived by

Pυ,k(ω) � Z ℓυ(kΔs)( 􏼁, (2)

in which ω is the set of discrete frequency points with a total
number of W.

Out of the analytical convenience, a spectral density
matrix with the order of N × W can be assembled by

Ωυ(k,ω) �

Pυ,1 ω1( 􏼁 Pυ,1 ω2( 􏼁 · · · Pυ,1 ωW( 􏼁

Pυ,2 ω1( 􏼁 Pυ,2 ω2( 􏼁 · · · Pυ,2 ωW( 􏼁

· · · · · · ⋱ · · ·

Pυ,N ω1( 􏼁 Pυ,N ω2( 􏼁 · · · Pυ,N ωW( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3)

with Pυ,l(ωd) � min[Ωυ(k,ωd)] and Pυ,u(ωd) � max
[Ωυ(k,ωd)],where ωd, d � 1, 2, . . . , W, is the discrete fre-
quency point and min[·] and max[·] denote the minimum
and maximum operators, respectively.

Since the spectral densities are discretely distributed, the
amplitude domain of Pυ(ωd) can be divided into
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Figure 1: Train-track-bridge interaction model. (a) End view; (b) wheel-rail interactions [30].

Shock and Vibration 3



Pυ ωd( 􏼁 � ∪Pυ,q ωd( 􏼁, 0≤ q≤Q − 1,

Pυ,q ωd( 􏼁 ∈ Pυ,l ωd( 􏼁 + q􏽥Pυ ωd( 􏼁, Pυ,l ωd( 􏼁 +(q + 1)􏽥Pυ ωd( 􏼁􏽨 􏽩,

⎧⎨

⎩

(4)

with 􏽥Pυ(ωd) � int[Pυ,u(ωd) − Pυ,l(ωd)/Q], in which 􏽥P is the
discrete interval of spectral densities, Q is the total partition
number, and int[·] is an operator used to round the number
in the bracket to the nearest integer toward minus infinity.

Based on probability statistics, the probability density
function (PDF) of Pυ(ωd) can be expressed as follows:

fυ,ωd
� ƛ Pυ ωd( 􏼁( 􏼁, (5)

in which ƛ(·) is the PDF operator.
Owing to the shape similarity of PSD lines and proba-

bility equivalence, a cumulative probability index Uυ ∈ [0, 1]

is introduced to uniquely determine the value of spectral
density over Pυ(ω), namely,

Pυ,ω′ Uυ( 􏼁 � F
−1
υ,ωd

Uυ( 􏼁, (6)

with Fυ,ωd
(q) � 􏽒

q

−∞ fυ,ωd
(q)dq, in which Fυ(·) is the cu-

mulative probability function (CDF) of fυ(·).
+e statistically average spectrum can be easily derived,

namely,

Pυ ωd( 􏼁 � F
−1
υ,ωd

􏽚
1

0
fυ,ωd

Uυ( 􏼁dUυ􏼠 􏼡. (7)

As an illustration, Figure 3 plots the PDF of track vertical
profile irregularity PSD against the cumulative probability
index Uυ. As recognized by the visual impression, the
probability characteristic is definitely not uniformly dis-
tributed. +e uniformly distributed assumption in previous
studies [21–25] did not reflect the actual physical status.
Meanwhile, it can be seen that the average track spectrum is
approximately at the cumulative probability of 0.46.

3.2. Time-Frequency Transformation. Let Tυ,Ui
(x) be a one-

dimensional stationary random process to characterize the
PSD of track irregularity at cumulative probability Ui,
denoted by Pυ,Ui

′(ω). As Shinozuka et al. [33] derived,
Tυ,Ui

(x) can be expressed by the following discrete integral
form:

Tυ,Ui
(x) � 􏽘

∞

k�0
cos ωkx( 􏼁du ωk( 􏼁 + sin ωkx( 􏼁dv ωk( 􏼁􏼂 􏼃, (8)

in which ωk � kΔω where Δω is the frequency interval; u(ω)

and v(ω) are two mutually orthogonal real processes with

Table 1: Simulation of the train-ballasted track-bridge coupled system [31, 32].

Items +eory Component Number Modelling
method Comment Integration

Train D’Alembert principle

Carbody 1 Rigid body Lateral, roll, yaw, vertical,
and pitch motions

Zhai’s method
Bogie frame 2 Rigid body Lateral, roll, yaw, vertical,

and pitch motions

Wheelset 4 Rigid body Lateral, roll, yaw, vertical,
and pitch motions

Suspension 2
stages

Linear springs
and dampers +ree directions

Ballasted
track

D’Alembert principle and
mode superposition method

Rail ∗ Bernoulli–Euler
beams

Vertical, lateral, and
torsional vibrations

Zhai’s method
Rail pad ∗ Linear springs

and dampers
Later and vertical

directions

Sleeper ∗ Rigid body Vertical, lateral, and
torsional vibrations

Ballast ∗ Mass blocks Lateral and vertical
directions

Bridge Finite element method

Truss ∗ Bar element +ree dimensions

Newmark-β implicit
integration method

Beam ∗ Beam element +ree dimensions

Plate ∗ Four-node plate
element +ree dimensions

. . . ∗ . . . . . .

Table 2: Wheel-rail interactions and track-bridge interactions [30].

Item Issue Direction +eory or method

Wheel-rail
interactions

Geometric
relation — 1D scanning method with the assumption of one-point contact

Contact force Normal direction Nonlinear Hertz elastic contact theory
Tangential direction Modified Kalker’s linear creep theory

Track-bridge
interactions Contact force Lateral and vertical

direction
A series of point-to-point interactions which are connected with linear

spring and damping at each contact point
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orthogonal increments du(ω) and dv(ω); and du(ωk) and
dv(ωk) can be defined as follows:

du ωk( 􏼁 � AkXk,

dv ωk( 􏼁 � AkYk,
(9)

with Ak � (Pυ,Ui
′(ω)Δω)1/2, in which Xk, Yk􏼈 􏼉 is a group of

orthogonal random variables and satisfies the conditions:

E Xk􏼂 􏼃 � E Xk􏼂 􏼃 � 0,

E XjYk􏽨 􏽩 � 0,

E XjXk􏽨 􏽩 � E YjYk􏽨 􏽩 � δjk,

(10)

where E[·] is the operator of mathematical expectation and
δjk is the Kronecker symbol.

+erefore, equation (8) can be approximately trans-
formed into the sum of M terms:

Tυ,Ui
(x) � 􏽘

M

k�1
Ak cos ωkx( 􏼁Xk + sin ωkx( 􏼁Yk􏼂 􏼃. (11)

To further reduce the random parameters of Tυ,Ui
(x) and

improve the efficiency of stochastic analysis, a method
expressing the random variables Xk, Yk􏼈 􏼉 as random
functions is developed by Liu et al. [34]. +e procedure of
realization can be expressed as follows:

(1) Generate the independent random variables θ1, θ2􏼈 􏼉,
which are uniformly distributed within (0, t2π].

(2) Construct two sets of Gaussian, standard, ortho-
normal, and independent random variables, that is,

􏽥Xm � Φ− 1 1
2

+
1
π
arcsin

cas nθ1( 􏼁
�
2

√􏼠 􏼡􏼢 􏼣,

􏽥Ym � Φ− 1 1
2

+
1
π
arcsin

cas nθ2( 􏼁
�
2

√􏼠 􏼡􏼢 􏼣,

(12)

where cas(·) � cos(·) + sin(·); Φ−1(·) is the inverse
function of standard normal distribution; and
m � 1, 2, . . . , M.

(3) Conduct a random mapping process, namely,
􏽥Xk, 􏽥Yk􏼈 􏼉⟶ Xk, Yk􏼈 􏼉, and substitute it to equation

(11).
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Figure 2: Field measured vertical profile irregularities: (a) in the spatial domain; (b) in the temporal domain.
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With above theoretical derivations, the degree of ran-
dom process Tυ,Ui

(x) has been reduced from infinity to 2M

and to 2, namely, θ1, θ2􏼈 􏼉.
As an example, Figure 4(a) shows two track irregularity

series derived from one spectral representation, and
Figure 4(b) depicts the corresponding PSDs. +e wave-
lengths are in the range of 0.5–120m. It can be seen that the
excellent agreement has been achieved between the simu-
lating PSDs and the target PSD. Also, one can observe that
the amplitudes in one position are significantly different due
to the phase randomness. Figure 4(c) plots the mean values
with 89 track irregularity samples obtained by the method in
this paper. It can be seen that the mean values along the
abscissa approach the ideal number, zero. +e ergodic
properties of track irregularities on amplitudes, wavelengths,
and phases have been covered in this section.

3.3. Temporal-Spatial Track Random Irregularity. By com-
bining Sections 3.1 and 3.2, a comprehensive random field of
track irregularity in the temporal and spatial domain has
been constructed, in which the variables should be inves-
tigated in a synergetic and coupled manner, that is,

R � Uυ1, θυ1,1, θυ1,2, Uυ2, θυ2,1, θυ2,2, Uυ3, θυ3,1, θυ3,2, Uυ4, θυ4,1, θυ4,2􏼐 􏼑.

(13)

Using some selecting point methods, such as Monte
Carlo method (MCM), the number theoretical method [35],
and Latin hypercube sampling (LHS) [36], the representative
samples in the random field can be effectively generated.

For validation, comparisons are made of PDFs and CDFs
obtained from the measured and simulated vertical profile
irregularities. As can be seen from Figure 5, there is excellent
agreement between them, which serves to illustrate the
reliability of the proposed model.

4. Analysis Framework for System
Probabilistic Analysis

In the following two sections, a PDEM developed by Li and
Chen [37, 38] is introduced to achieve the probabilistic
transmissions between the system inputs and the response
outputs. Besides, an analysis framework for the probabilistic
assessment of train-bridge systems under random temporal-
spatial track irregularities will be presented in detail.

4.1. PDEM. Correspondingly, the kinematic equations of
the train-bridge system under random track irregularities
can be transformed into the following form:

Ms
€X (t) + Cs

_X(t) + KsX(t) � Fs(Θ, t), (14)

where Ms, Cs, and Ks are the mass, damping, and stiffness
matrices of the dynamic system, respectively; X(t), _X(t),
and €X(t) are the state vectors of displacement, velocity, and
acceleration, respectively; Fs(Θ, t) is the load vectors in-
cluding the random nonlinear wheel-rail interaction; and Θ
is the random factors, herein, Θ � R.

+e solution of equation (14) is completely and con-
tinuously dependent on the random parameters Θ and can
be expressed as a function of them [37, 38]:

X(t) � H(Θ, t), (15)

+en, the velocity of X(t), namely, the derivative of X(t)

with respect to time, can be written as follows:

_X(t) �
zH(Θ, t)

zt

� h(Θ, t).

(16)

in which h(·) is the derivative of H(·) with respect to time.
From the Lagrangian viewpoint, as long as random

events neither appear nor disappear, the associated proba-
bilities will remain constant; in other words, the probability
will be preserved in the evolution process of the system
[37, 38]. Based on the principle of the preservation of
probability, the joint PDF of the augmented vector (X(t),Θ)

will follow the generalized probability density evolution
function:

zpXΘ(x, θ, t)

zt
+ h(θ, t)

zpXΘ(x, θ, t)

zx
� 0. (17)

under the initial condition:

pXΘ(x, θ, t)|t�t0
� δ x − x0( 􏼁pΘ(θ), (18)

where δ(·) is the Dirac delta function, x0 is the deterministic
initial value, and pΘ(θ) is the joint probability of the random
variables.

Equation (17) can be solved by a total variation di-
minishing (TVD) scheme [37, 38] in conjunction with
equation (15), and then the instantaneous PDF of X(t) can
be obtained as follows:

pX(x, t) � 􏽚 pXΘ(x, θ, t)dθ. (19)

Once the PDF of dynamic indices is obtained, the re-
liability of which, RX(t), can be acquired consequently by

RX(t) � 􏽚
xu

xl

pX(x, t)dx, (20)

in which xl and xu indicate the lower and upper bound of the
dynamic index X(t), respectively.

4.2. Analysis Framework. Based on the work illustrated
above, a framework shown in Figure 6 for analyzing the
effects of track irregularities on train-track interactions can
be constructed.

5. Applications

In the numerical examples, it is assumed that the train runs
with a constant velocity of 300 km/h on a five-span simply
supported concrete bridge with a length of 32m for each
span. +is type of structural system is very common on
Chinese high-speed railway lines. +e box girder has a
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unified section with a width of 11.6m and a double-line
railway.+e box girder is made of reinforced concrete with a
modulus of 3.5×104MPa and a density of 2549 kg/m3. +e
piers, with hollow sections, are made of C30 with a modulus
of 3.0×104MPa and a density of 2549 kg/m3. +e height of
the piers is set at 15m. +e sectional shapes are displayed in
Figure 7. +e connections between the beam ends and pier
tops are represented by master-slave constraints. +e
damping ratio is set at 0.05. An ICE-3 train is used as the
train model. +e train comprises eight cars: the first, third,

sixth, and eighth are tractors and the second, fourth, fifth,
and seventh are trailers. +e detailed parameters of the
vehicles and tracks used in the calculation can be consulted
in reference [3]. +e random track irregularities from the
simulations in Section 3 are used as the excitations.

5.1. Numerical Validation. By postprocessing the responses
of the dynamic indices using PDEM, the probability density
surface of any arbitrary response index can be determined,
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Figure 4: Transformation between frequency-domain PSDs and time-domain track irregularities: (a) time-domain track irregularities;
(b) track irregularity PSD functions; (c) mean values with 89 samples.
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from which the mean and standard deviation (Std. D) can be
easily derived. In the validation, a rather robust method,
MCM, is applied to prove the high precision and efficiency of
the probabilistic model. For MCM, 12000 samples of the
track random irregularities are selected. Moreover, 3000
samples are implemented to PDEM.

Figures 8(a)–8(c) show the probability density evolu-
tion against time, time-varying mean, and Std. D toward

vertical carbody accelerations under track random irreg-
ularities, respectively. It can be observed that no matter on
the statistical means or on Std. D against time, PDEM
coincides well with the MCM though with very slight
deviations. +erefore, it can be concluded that for the same
accuracy level, PDEM is of much higher computational
efficiency than MCM. Moreover, Figure 8(d) shows the
results of vertical carbody accelerations without track

PSD probability distribution Time-frequency transformation

Temporal-spatial track irregularity sets

Train/ballasted track/bridge interaction model

Loading

System random vibrations

Output

Reliability for dynamic indices

System reliability

Selecting point method

PDEM

Probabilistic relation analysisStochastic analysis

Mean
Standard deviation

Reliability analysis

First-order reliability theory

Probabilistic relations 
among system response

Figure 6: Analysis framework for probabilistic assessment of train-track systems under track irregularities.
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Figure 7: Cross section of the bridge (units: mm): (a) beam; (b) pier.
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irregularities. Compared to the mean values in Figure 8(b),
there are no obvious distinctions between them. It is
further illustrated that the random field model of track
irregularities presented in this paper is a good character-
ization of the stationary random process with second-order
statistics.

5.2. Stochastic Analysis. In this section, two computational
cases are set to quantitatively evaluate the influence of track
random irregularities on system responses, namely, full PSD
excitation and statistically average PSD excitation.

Figure 9 shows the statistical results of some represen-
tative dynamic indices including the lateral acceleration of
the carbody, the wheel-rail lateral force, and the vertical
acceleration at the middle of the central span. From the
figures, it can be seen that no matter for the full PSD ex-
citation or average PSD excitation, both the lateral accel-
eration of the carbody and the wheel-rail lateral force behave
as stationary random processes, approximatively; however,
with regard to the vertical acceleration at the middle of the
central span, the mean value and Std. D fluctuates with the
time-varying characteristics of trains running across the
bridge. Besides, it can be observed from Figure 9 that if only
the average PSD is considered in the stochastic dynamical
analysis, the Std. D of three dynamic indices are significantly
smaller than those excited by full PSD excitation. It seems to
be inconsistent with the probability distribution of track

irregularities. It may be because that the system responses
are not linear with the quality of track irregularities. +e
worse the track irregularity quality is, the larger the incre-
ment of system responses is.

In addition, these figures provide information about the
statistically quantitative values. For example, the Std. D of
wheel-rail lateral force is about 5 kN over time while its mean
value is 1.5 kN. Apparently, the conventionally deterministic
treatment is not sufficient to reveal the physical mechanisms
of the random vibration of train-bridge systems or even
erroneously evaluating the security.

In summary, the full excitation of track irregularities
should be considered properly for evaluating the random
behaviors of system components with higher precision.

5.3. Reliability Analysis

5.3.1. Reliability Analysis of Dynamic Indices. Based on the
PDEM, the temporal reliabilities of arbitrary indices of the
train-track-bridge system can be conveniently achieved. +e
same as stochastic analysis, the lateral acceleration of the
carbody, the wheel-rail lateral force, and the vertical ac-
celeration at the middle of the central span are selected as
illustrations. Figures 10(a)–10(c) display the reliability
curves versus time for the three indices, the safety threshold
values of which are 0.6m/s2, 10 +P0/3 kN, and 3.5m/s2,
respectively [39, 40]. P0 is the static axle load. As observed
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Figure 8: Statistical results of the vertical acceleration of the carbody: (a) PDF evolution against time; (b) mean; (c) Std. D; (d) no
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from the figures, their average reliabilities are around 98.7%,
99.9%, and 100%, respectively. Generally, the threshold of
lateral acceleration of the carbody is represented as the
serviceability limiting state to ensure the comfort of pas-
sengers, while the limits of wheel-rail lateral force and deck
acceleration are set as the ultimate limiting state to prevent
train derailment and guarantee the stability of interlocking
of the ballast gravel, respectively. In accordance with the
common sense, the serviceability limiting state has lower
reliability than the ultimate limiting state. It is worth
pointing out that the above limit values are valued based on
the existing specification, and they already contain a high

safety factor. +erefore, the actual reliabilities are much
higher than the values here.

5.3.2. System Failure Probability. With the reliability results
for each dynamic index above, the system failure probability
can be further determined by considering the contributions
from different dynamic indices exceeding their respective
limiting values. Assuming the train-track-bridge coupled
system as a series system, the first-order estimates of the
upper and lower bounds on the probability of system failure
can be expressed as follows [41, 42]:
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Figure 9: +e time-domain mean and Std. D of different dynamic indices. (a, b) Lateral carbody acceleration; (c, d) wheel-rail lateral force;
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max
m

i�1
PFi(t)􏼂 􏼃≤PF,s(t)≤ 1 − 􏽙

m

i�1
1 − PFi(t)􏼂 􏼃, (21)

with PFi(t) � 1 − RX,i(t), where PFi(t) denotes the prob-
ability of failure for i th index and is a function of time. For
independent failure modes, the system failure probability
can be represented as a function of the product of the mode
survival probabilities, which provides the upper bound in
equation (21). In cases where the failure modes are all fully
dependent, the weakest failure mode will always be the
most likely to fail, leading to the lower bound in equation
(21).

Based on the first-order reliability theory, the probability
of failure for the train-bridge system under the random field
of track irregularities can be achieved, as shown in Figure 11.
Several failure modes listed in Table 3 are considered in the
evaluation. It can be seen from the figure that the differences
between the upper and lower bounds are pretty slight, which
indicates that it is appropriate to employ the first-order
bounds to construct the system failure probability repre-
sented by the conservative estimate from the upper bounds.
+e failure probability is very small, with an average value of
0.02, and general quality can be guaranteed for both running
safety and ride comfort in this railway line. Furthermore,
one would expect that using a single dynamic index (e.g.,
deck acceleration) would result in an underestimation of the
train-track-bridge system’s vulnerability.

5.4. Correlation Analysis. Excited by the temporal-spatial
track irregularities, there might be a specific probability
correlation among different dynamic indices. To mutually

evaluate and predict their dynamic responses, a probabilistic
relation analysis is highly essential. +e procedure for re-
vealing the response relationships between arbitrary two
indices is as follows.

+e responses of the dynamic indices denoted by wi,
i � 1, 2, . . . , n, can be represented as qwi(kΔt), k � 1, 2, ..., m,
where m is the total number of discrete points and Δt is the
time-domain integration interval for train-track-bridge in-
teractions. For brevity, we take wx and wy as an example,
where x, y ∈ [1, n]. To exclude the impact of data dimen-
sions, the data are first normalized as

􏽥qwx �
qwx(kΔt)

qwx,u

,

􏽥qwy �
qwy(kΔt)

qwy,u

,

(22)

where qwx,u and qwy,u are the upper bounds of qwx(kΔt) and
qwy(kΔt), respectively.

Meanwhile, qwx(kΔt) can be divided into α portions and
expressed as follows:

Gi �
qwx,l

qwx,u

+
i

αqwx,u

qwx,u − qwx,l􏼐 􏼑; i � 1, 2, ..., α, (23)

where α is the total partition number and qwx,l is the lower
bound of qwx(kΔt).

For every response series of qwx(kΔt) and qwy(kΔt), it is
clear that there is qwy(􏽥kΔt), 􏽥k ∈ k, located at the ith interval
[Gi−1, Gi]. Based on the methods of probability statistics
[43], the PDF of 􏽥qwy specified to the interval [Gi−1, Gi] can be
written as
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Figure 10: Reliability results of different dynamic indices: (a) lateral carbody acceleration; (b) wheel-rail vertical force; (c) vertical ac-
celeration at the middle of the central span.
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pΩx,Ωy
􏽥qwy|i􏼐 􏼑 �

􏽒
Gi

Gi−1
fΩx,Ωy

􏽥qwx, 􏽥qwy􏼐 􏼑d􏽥qwx

􏽒
Gi

Gi−1
􏽒Ωy

fΩx,Ωy
􏽥qwx, 􏽥qwy􏼐 􏼑d􏽥qwyd􏽥qwx

,

(24)

where fΩx,Ωy
(􏽥qwx, 􏽥qwy) is the joint PDF of 􏽥qwx and 􏽥qwy and

Ωx and Ωy denote the response amplitude range of 􏽥qwx and
􏽥qwy, respectively.

For instance, Figure 12 shows the probabilistic rela-
tionships among some dynamic indices:

Lower bound
Upper bound

2 2.5 3 3.5
Time (s)

0

0.01

0.02

0.03

0.04

0.05

P f
 (t

)

Figure 11: Probability of failure for the whole system.

Table 3: Maximum values for the main dynamic indices.

Subsystem Dynamic indices Limiting value

Vehicle Vertical acceleration of the carbody 1m/s2

Lateral acceleration of the carbody 0.6m/s2

Wheel-rail interaction Wheel-rail vertical force 170 kN
Wheel-rail lateral force 10 + P0/3� 62.3 kN

Bridge Vertical acceleration at the middle of the central span 3.5m/s2

Lateral acceleration at the middle of the central span 1.4m/s2
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Figure 12: Probabilistic relations among some dynamic indices: (a) between vertical and lateral accelerations of the carbody; (b) between the
lateral acceleration of the carbody and the wheel-rail lateral force; (c) between the vertical acceleration of the carbody and the wheel-rail
lateral force.
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(1) +e relation between the lateral and vertical accel-
eration of carbody, as shown in Figure 12(a)

(2) +e relation between the lateral acceleration of the
carbody and the wheel-rail lateral force, as shown in
Figure 12(b)

(3) +e relation between the vertical acceleration of the
carbody and the wheel–rail lateral force, as shown in
Figure 12(c)

Out of convenience, the lateral acceleration of the
carbody, the vertical acceleration of the carbody, and the
wheel-rail lateral force are abbreviated as “LACB,”
“VACB,” and “WRLF,” respectively. It can be seen from the
figures that no significant probability flow occurs between
LACB and VACB and between VACB and WRLF, while
WRLF specified to the maximum probabilities is slightly
increasing along with the increments of LACB. It is because
that, in light of different dynamic indices, the sensitive
factors are rather different. For example, the magnitude of
VACB is mainly affected by vertical profile irregularities,
but LACB is significantly influenced by alignment irreg-
ularities; although WRLF is one of the sources for LACB,
the WRLF is rather sensitive to the short-wavelength ir-
regularities while LACB is sensitive to the long-wavelength
irregularities [44]. According to the theory of random
process, this indicates that there are no obvious or only
weak probabilistic correlations among them, and corre-
spondingly, they can be considered as mutually indepen-
dent processes. Based on this understanding, the failure
modes for these two indices are individual and indepen-
dent. +e upper bound of system reliability determined in
Section 5.3.2 is appropriate.

6. Conclusions

+is paper introduces a 3D train-track-bridge coupled
system with nonlinear wheel-rail interactions first. +en, a
probabilistic model is proposed to represent both spatial and
spectral randomness of track irregularities. By combining
these two models and PDEM, extensive studies are con-
ducted on stochastic analysis, reliability analysis, and cor-
relation analysis. +e following remarks can be drawn from
the results thereby obtained:

(1) +e full probability characteristics of track irregu-
larities should be considered when assessing the
random vibrations of train-bridge systems.

(2) An accurate determination of the dynamic reli-
ability of train-bridge systems has been achieved in
a convenient manner. A full picture has been ob-
tained of the PDF surfaces of the dynamic indices
and of the dynamic reliability of the entire system
versus time.

(3) Since the main contributive factors with respect to
different dynamic indices are rather different,
such as track irregularity type and wavelength,
different failure modes can be assumed as mu-
tually independent processes from the probabi-
listic perspective.
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