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According to the one-dimensional characteristics of the vibration signal, this paper proposes an elevator operation fault
monitoring method based on one-dimensional convolutional neural network (1-DCNN). It can solve the problems of traditional
elevator fault monitoring methods that require complex feature extraction processes and a large amount of diagnostic experience.
Because the elevator fault monitoring field has less fault information, it is different from the large sample situation in the field of
face recognition. Aiming at the problem of small samples, this paper first preprocesses elevator vibration signals through singular
value decomposition (SVD) and wavelet transform, then uses wavelet transform to extract wavelet energy features of the original
vibration signals, and then use PCA to reduce the feature data to the dimension with a cumulative contribution rate of greater than
85%. When reducing the dimensionality, the original characteristics of the features are preserved as much as possible. When
designing the 1-CNN, the K-fold cross-validation method is added to obtain as many abnormalities from the sample set as
possible. (e information is finally trained using the 1-CNN and classified by softmax regression. In order to verify the per-
formance of the algorithm, the original vibration signal was used as the input of the 1-CNN, and the wavelet energy feature
without PCA dimensionality reduction was used as the input of the 1-CNN. (e experimental results showed that the 1-DCNN
model with PCA dimension-reduced feature data as input can effectively extract and identify the features of normal and abnormal
states and has high fault identification accuracy, and good results have been obtained.

1. Introduction

(e elevator is essential special equipment in modern life. In
order to ensure the safe and reliable operation of elevator
equipment, it is of great practical significance to carry out
elevator condition monitoring research, which can provide
technical support for elevator safety risk identification and
evaluation [1–3]. Since the vibration signal is easier to reflect
the operating status of the elevator, the most frequently used
monitoring method in the field of elevator fault monitoring
is to use the vibration signal as the original signal. (e fault
diagnosis method based on signal processing mainly extracts
the vibration signal in time domain and frequency domain
to obtain the characteristic information, which can represent
the elevator running state. (e traditional time-domain and
frequency-domain features can directly reflect the charac-
teristic information of elevator operation state. (e time-

domain features mainly include slope, kurtosis, peak value,
mean value, and variance. (e frequency-domain features
mainly include frequency slope, frequency kurtosis, mean
square frequency, root mean square frequency, stability
factor, and amplitude corresponding to the second har-
monic frequency.

In order to complete the extraction of time-domain and
frequency-domain features, scholars at home and abroad
have studied many traditional methods: wavelet transform,
fast Fourier transform, empirical mode decomposition, and
so on. Xu et al. [4] used wavelet transform and empirical
mode decomposition (EMD) vibration signal extraction
methods to monitor and extract features of vibration signals
of elevator traction gearbox under normal and abnormal
noise conditions, so as to realize the state monitoring and
identification of potential fault sources of elevator me-
chanical components without dismantling the machine. (e
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frequency spectrum obtained by Zhang and Wang [5] after
using fast Fourier transform can be used to analyze the
abnormal vibration fault of elevator traction machine caused
by bearing problem, and the error caused by spectrum
aliasing can be avoided by order analysis. Li et al. [6]
proposed an adaptive time-frequency signal processing
method, and Dragomiretskiy and Zosso [7] proposed a
completely nonrecursive variational mode decomposition
model and used the alternating direction method of mul-
tiplier method to optimize the variational model, which has
stronger robustness.

With the rise of machine learning [8] and deep learning
[9], more and more fault monitoring researches are com-
bined with them. (e fault diagnosis technology based on
deep learning can be divided into four categories: fault
diagnosis method based on trestle self-coding (SAE), fault
diagnosis method based on deep confidence network (DBN),
fault diagnosis method based on convolutional neural
network (CNN), and fault diagnosis method based on re-
current neural network (RNN) [10]. Shi et al. [11] used the
fusion of multiple superimposed sparse self-encoders to
monitor the tool condition in ultraprecision machining, and
the classification accuracy of this method for ultraprecision
machining cases reached more than 96%. Chen et al. [12]
proposed a fault diagnosis method based on improved depth
confidence network, which optimized the network feature
extraction ability, to improve the ability of network learning
and classification to reduce the dependence of network
training on data. (e performance of the improved deep
confidence network model is tested by using the open
network dataset, and the improved network model is applied
to the fault data set of small samples. Janssens et al. [13] used
a single-layer convolutional layer for bearing fault diagnosis
and achieved an accuracy of 93.16%. Shaowu et al. [14]
proposed to use convolutional neural network to classify and
identify hydraulic pump time-frequency images with dif-
ferent volumetric efficiencies to realize the health moni-
toring of hydraulic pumps. First, collect the vibration signal
data of the hydraulic pump. (e time–frequency diagram
has short-time Fourier transform, wavelet transform, and
Wigner-Will distribution. (en, the generated time-
–frequency graph is divided into training set and test set.(e
training set is used to train the convolutional neural net-
work, and the test set is used to verify the recognition results,
and the recognition rate reaches 99%. Xia [15] proposed a
method to extract features by discrete wavelet transform and
then establish a cyclic neural network model. Cui et al. [16]
used FFT to transform time-domain signals into frequency-
domain signals to extract features and train the recurrent
neural network model.

In this paper, the research object is focused on the el-
evator, which has more extensive application and more
complex vibration fault causes. First, the original signal is
preprocessed by singular value decomposition and wavelet
transform and then is trained by 1-CNN to extract features
automatically. Finally, the classification is carried out by
softmax regression. Aiming at the problem of high di-
mensionality and high complexity of feature data in the
process of feature extraction, in this paper, principal

component analysis (PCA) method is used to optimize the
dimensionality of feature data. Full use of PCA can effec-
tively reduce the complexity of feature data, identify the
most important features, and effectively improve the rec-
ognition rate.

2. Pretreatment of Elevator Vibration Signal

2.1. Singular Value Decomposition for Noise Reduction.
Because people move around in the elevator car, the vi-
bration signal of the elevator will produce more noise
components in the measurement process. At the same time,
the acceleration sensor will produce more noise components
in the measurement process. (erefore, before using the
vibration signal for fault monitoring, the original signal
needs to be denoised. In this paper, the singular value de-
composition (SVD) method is used. SVD is a signal pro-
cessing method with good numerical robustness and
adaptability, which can effectively identify noise component
and fault feature component by singular value decompo-
sition. In the field of signal processing, SVD is a classical
orthogonal transformationmethod.(is method transforms
an orthogonal matrix into a singular value matrix (diagonal
matrix) by multiplying an orthogonal matrix by its left and
right, respectively. (e number of singular values obtained
reflects the number of independent row (column) vectors in
the original matrix, and its size represents the intrinsic
properties of the signal. (e algorithm has good stability and
invariance and can be used for denoising, feature extraction
and weak signal separation. According to SVD theory, for a
matrix A ∈ Rmxn, there must be an orthogonal matrix U, V
such that

A � Um∗mSV
T
n∗ n, (1)

where diagonal matrix S � [dial[σ1, σ2, σ3, . . . , σq]0] or its
transposition. (e singular value matrix Sm−1 is obtained by
SVD decomposition of Hankel. (e singular value curvature
spectrum method and the principle of singular value con-
tribution rate are used to adaptively eliminate noise singular
values and smooth signal singular values (singular value is
set to zero) to retain the effective singular value of abrupt
signal. (en, the singular value matrix of sudden change
signal is reconstructed by SVD inverse operation method,
and the mutation signal x′(t) is obtained. (e specific
content of SVD is shown in [17]. (e original vibration
signal waveform and SVD filtered waveform are shown in
Figure 1. (e waveforms of the elevator during normal
operation, the waveforms during abnormal operation (small
jitter amplitude), and the waveforms when there is severe
jitter are listed, respectively.

2.2. Wavelet Energy Extraction. When an elevator traction
machine fails, its transfer function will change accordingly,
so the amplitude frequency and phase frequency charac-
teristics of different frequency signals will change. (e en-
hancement and inhibition of each frequency component of
the output signal changed obviously. At this time, compared
with the output of normal elevator traction machine, the
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signal energy with the same frequency band will be greatly
different. Wavelet packet can decompose different compo-
nents of the signal into independent frequency bands
without omission and redundancy. (e energy of signals in
these subbands provides important information for elevator
operation conditionmonitoring and fault diagnosis. Because
the energy of each frequency of elevator car vibration
contains rich fault information, if one or more frequency
energy changes, it means that a fault occurs. (erefore,
compared with the traditional spectrum analysis, wavelet
packet is suitable for energy detection according to fre-
quency band. Taking the vibration signalW(t) of an elevator
car as an example, the specific steps are as follows:

(1) Decomposition of Vibration Signal. (e collected
elevator car vibration signal W(t) is decomposed by

wavelet packet in time domain and frequency do-
main, and the characteristic frequency bands in each
range are extracted. Using a three-layer wavelet
packet decomposition, the decomposition structure
is shown in Figure 2, where S is the original signal, A
is the high-frequency signal, and D is the low-fre-
quency signal.

(2) Wavelet Packet Decomposition Coefficient Recon-
struction. (e decomposition coefficients of each
layer after wavelet packet decomposition are
reconstructed, and each subband signal is extracted.
(e reconstructed signal is represented by AAA3,
and the total signal reconstruction is as follows:

S � AAA3 + DA A3 + A DA 3 + D D A3 + AA D3 + DA D3 + A DD 3 + D D D3. (2)

(3) Calculation of the Energy of Each Subband. Let Ej be
the total energy of each subband signal Sj; then,

Ej � 􏽚 Sj(t)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
dt

� 􏽘 xjk

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌.

(3)

(4) (e feature vector is constructed with energy as the
element. When the elevator car system fails, the
signal energy in each frequency band will change
greatly:

R � E0′, E1′, . . . , Ei
′, . . . , Ej

′􏽨 􏽩, (4)

where Ei represents the feature vector with prom-
inent energy changes in each subband energy Ej.

(5) (e normal signal is compared with the fault signal
to determine the frequency band position of the fault
signal, so as to diagnose the possible fault.

By extracting the signal energy of each frequency band of
characteristic quantity and comparing with the normal
signal of corresponding frequency band, the characteristic
difference value of different frequency band can be obtained.
Combining with the characteristics of different parts of
elevator, the factors related to elevator car vibration can be
analyzed. Elevator car vibration is often not only a single
fault, but also a combination of multiple faults.
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Figure 1: Original waveform and filtered waveform.
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(e above-mentioned is the energy calculation method
of wavelet packet decomposition. (e x′(t) after SVD
denoising is taken as the input signal of wavelet analysis.
(rough wavelet analysis, the energy of each subband is
obtained, and an arrayR � [E0′, E1′, . . . , Ei

′, . . . , Ej
′] is formed.

(e energy array will form the dataset of the later 1-CNN.

2.3. PCA Dimensionality Reduction Processing

2.3.1. Normalization. (e core of PCA dimensionality re-
duction is orthogonal decomposition. (e purpose is to
select new mutually orthogonal spatial basis vectors to ex-
press the original data. Based on a few key principal com-
ponent vectors, data dimensionality reduction is achieved by
reconstructing the original data. PCA dimensionality re-
duction can be understood as looking for one or more
vectors, obtaining a new vector space, and then mapping the
samples that need dimensionality reduction to the new
vector space.

2.3.2. Calculating the Dimensionality Reduction Matrix.
First, calculate the covariance matrix Σ of the sample fea-
tures, as in formula (5). In the actual calculation, it can be
considered that the covariance processing and analysis
process of the wavelet energymatrix is actually the process of
principal component analysis of the wavelet energy matrix
[18]. (en, use singular value decomposition to find the
eigenvalue λi of Σ and the corresponding orthogonalized
unit eigenvector ai. After dimensionality reduction, the
dimensionality reduction matrix is obtained, and the sample
can be mapped to a low-dimensional space through the
dimensionality reduction matrix.

Σ � Sij􏼐 􏼑
p∗p

. (5)

Among them, Sij � (1/n − 1) 􏽐
n
k−1(xki − xi)(xkj − xj),

i, j � 1, 2, . . . , p, and xki and xkj in this article represent the
energy values of the rows and columns in the wavelet energy
matrix, whilexi andxj are the average values of the i-th row
and j-th column in the wavelet energy matrix, respectively.

2.3.3. Contribution Rate. Calculate the contribution rate, as in
formula (6). m is the number of eigenvectors in the selected
dimension reduction matrix U. (e larger the m is, the more
the feature vectors in U are and the smaller the dimensionality
reduction error is, that is, the more the original features are
preserved.(e value ofm can be determined by the cumulative
contribution rate number G(m), as in formula (7). When the

cumulative contribution rate is greater than 85%, it can suf-
ficiently reflect the information of the original variable, and the
corresponding m is the first m extracted principal ingredient.

αi �
λi

􏽐
m
i�1 λi

, (6)

G(m) �
􏽐

m
i�1 λi

􏽐
p
j�1 λj

. (7)

3. Design of Elevator Operation State
Monitoring Model Based on 1-CNN

3.1. 1-CNN Model Design

3.1.1. Convolution Lay. (e core structure of convolution
neural network is convolution layer, and the weight pa-
rameter matrix in convolution layer is also called convo-
lution kernel. (e function of convolution kernel is
equivalent to different filter functions, which perform dif-
ferent filtering operations on the input signal in order to
extract the characteristics of the input signal.(ere are many
kinds of convolution kernels, such as 1, 3, 5, and 7. (is
paper selects 64 convolution kernels and 3 convolution
kernels. Different sizes of convolution kernels can connect
different numbers of neurons; that is to say, different sizes of
visual field can be sensed from input signals, and different
features can be extracted.

3.1.2. Pooling Layer. Pooling layer is actually a form of
downsampling. (e role of pooling layer is to retain the main
features while reducing the amount of calculation of network
parameters, which can improve the generalization ability of the
model for different input data and prevent the overfitting
phenomenon. Different from the convolution layer, the pool
layer does not need parameters and is easier to optimize. (e
pooling layer is usually used with the convolution layer; that is,
the output of the convolution layer is used as the input of the
pooling layer. (ere are many different forms of nonlinear
pooling functions. (ere are two common pooling layers:
maximum pooling and mean pooling. (e maximum pooling
is used in this article.

3.1.3. Activation Function. (e basic requirement of ac-
tivation function is nonlinear. Adding activation function
to convolutional neural network can increase the non-
linearity of the network and increase the expression ability
of the network, so as to better fit the target. Common

S

A1 D1

AA2 AD2DA2 DD2

AAA3 AAD3DAA3 DAD3ADA3 ADD3DDA3 DDD3

Figure 2: Wavelet packet decomposition diagram.
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activation functions include sigmoid function, tanh
function, ReLU function, and SReLU function. It is found
that the tanh function is more suitable for the case that the
original signal is vibration signal, and the tanh function is
selected as the activation function in this paper.

3.1.4. Full Connection Layer. After passing through multiple
groups of convolution layers and pooling layers, a fully con-
nected layer will be connected. It can be applied to different
classification models. (e full connection layer is followed by a
hidden layer, and the softmax regression layer completes the

Convolutional
layer

Convolutional
layerPooling layer Pooling layer Fully connected

layer
Convolutional

layer Pooling layer

Figure 3: One-dimensional convolution neural network model.

Table 1: Design parameters of model structure.

Parameter name Parameter value
Convolution level 3
Pool layer number 3
Convolution kernel size 64 ∗1, 3 ∗1
Pool size 16, 2
Convolution kernel layer number of convolution kernels 16, 32, 64
Input dimension 370 ∗1, 256 ∗1

Table 2: Data sets.

Elevator 1 Elevator 2
Dataset I Dataset II Dataset III Dataset IV

Number of groups 172 172 272 272
Data points per group 370 256 370 256

Training set

Training folds

1st iteration

2nd iteration

3rd iteration

10th iteration

Test fold

E1

Ei

E2

E3

E10

E = 1/10
10

i=1

Figure 4: K-fold cross-validation process.
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classification.

3.1.5. :e Structure and Parameter Design of the Elevator
Operation State Monitoring Model. Because the dimensions
of the vibration signal and the picture are different, the one-
dimensional signal is best solvedwith a one-dimensionalmodel.
(erefore, a one-dimensional convolution neural network
model as shown in Figure 3 is established in this paper. (e
model consists of input layer, feature extraction layer (com-
posed of multiple convolution layers and pooling layers alter-
nately), full connection layer, and output layer. In this pool, the
number of convolution layers and the number of convolution
layers in the pool can be reduced. (e first set of convolution
kernels is 64∗1 in order to enlarge the receptive field of the
input signal and avoid the input signal whose value is limited to
a small range. (e size of the last two convolution kernels is
3∗1, because 3∗1 is the most frequently used convolution
kernel. (e specific design parameters of the network structure
are shown in Table 1.

3.2. Construction of InputDataset of 1DConvolutionalNeural
Network. (e data used in this article comes from two traction
elevators with a long service life and intermittent abnormal
operation in the school complex, a total of 15 floors. It mainly
collected the vibration signal in the car and collected it during

the time periodwhenmany people took the elevator and no one
did.(is work lasted for a month.(e original vibration data of
the two elevators are segmented, and noise reduction operation
is carried out.(e size of each segment is 370, and the datasets I
and III are obtained. Each group of data in datasets I and III is
decomposed by wavelet transform “db3” in eight levels. Two
hundred and fifty-six components are obtained in the eighth
layer, and the energy value of the components is calculated to
obtain datasets II and IV, as shown in Table 2.

3.3. K-Fold Cross Validation. In order to improve the ac-
curacy of training results and make the results more con-
vincing, the K-fold cross-validation method is introduced.

(e steps of this method are as follows:

(1) First, all samples are divided into k subsets of equal
size, as shown in Figure 4.

(2) (e K-subset is traversed in turn. Each time, the
current subset is used as the verification set, and all
other samples are used as the training set to train and
evaluate the model.

(3) Finally, the average value of K times evaluation index
is taken as the final evaluation index. In practical
experiments, K is usually taken as 10. At this time,
the training set becomes k∗D (d represents the
number of data samples contained in each copy).

Start

Original signal preprocessing

Build training set and test set

Parameter initialization

Batch training on the
training set to get the output

Calculate the deviation of the
output value

Backpropagation of errors, adjustment
of weights and offsets

Meet the
requirements

N

Y
Testing phase

Training phase

Enter the test set to get the result

End

Figure 5: Modeling flowchart.
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4. Experiment

4.1. Comparison Experiment before and after Wavelet Energy
Feature Extraction. (e process of establishing one-di-
mensional neural network model is shown in Figure 5.
According to the design parameters of the model structure
in Table 1, the network structure is built. (e training
samples in the training set are input into the network to
calculate the output, and the loss function will calculate
the difference between the real value and the output value.
Taking the minimum loss function as the objective

function, the backpropagation algorithm can calculate the
gradient of all parameters in the network and use the set
optimization algorithm Adam to update the weight and
bias, and the learning rate is set to 0.001 until the objective
function value (loss function value) meets the require-
ments or the number of training rounds reaches the preset
value. When testing, only the test set is input into the
network, and the result obtained is the final monitoring
result.

(e datasets I, II, III, and IV are trained and tested by
the constructed one-dimensional convolution neural
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Figure 6: Variation curve of accuracy and loss function.

Table 3: Training results.

Training set Test set
Classification accuracy (%) Loss function value Classification accuracy (%) Loss function value

Dataset I 88.15 0.0256 86.45 0.1063
Dataset II 96.26 0.0230 94.22 0.0956
Dataset III 90.12 0.0322 88.15 0.1131
Dataset IV 97.65 0.0206 95.20 0.1041
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Table 4: Wavelet energy value.

No. 1 2 3 . . . 510 511 512
1 34.25 1.63 0.13 . . . 0.03 0.02 0.03
2 54.17 2.77 0.53 . . . 0.004 0.01 0.003
3 61.12 3.16 0.79 . . . 0.01 0.002 0.01
4 64.96 3.35 1.19 . . . 0.03 0.01 0.01
5 49.21 2.91 1.50 . . . 0.01 0.02 0.01
. . . . . . . . . . . . . . . . . . . . . . . .

268 61.07 2.20 3.46 . . . 0.01 0.001 0.002
269 58.89 1.75 2.52 . . . 0.01 0.003 0.004
270 19.64 5.10 2.28 . . . 0.11 0.01 0.02
271 82.77 3.74 1.17 . . . 0.001 0.005 0.001
272 79.15 4.52 0.59 . . . 0.002 0.02 0.002
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network, and the training results are shown in Figure 6.
Datasets I and III are original vibration signals, and the
accuracy rate is about 88%. Datasets II and IV are datasets
composed of original vibration signals and energy features
extracted by wavelet transform. (e accuracy rate is
significantly improved to 95%. (e training results are
shown in Table 3.

4.2. Comparison Experiment before and after PCA Dimen-
sionality Reduction Optimization. Since there are 512 feature
components in each data sample in dataset III, the number of
features is a bit large. PCA dimensionality reduction can ef-
fectively reduce the complexity of the data and identify themost
important features, so you can first use the 512-dimensional
feature sample. Perform PCA dimensionality reduction pro-
cessing to reduce the complexity of data samples.

First, the 272 groups of original vibration signal data
samples in dataset III are, respectively, decomposed in nine
layers using wavelet transform “db3.” and 512 components
are obtained in the ninth layer, and the energy values of the
components are calculated. (e energy values are as shown
in Table 4 and normal. (e comparison of wavelet energy
during operation and abnormal operation is shown in
Figure 7.

Next, perform PCA dimensionality reduction on the
512-dimensional wavelet energy feature data to obtain a
272 ∗128 two-dimensional matrix. (e results are as
follows.

Finally, the 272∗128 two-dimensional matrix is used as
the input of the 1-CNN for training, and the test is compared

with the results without PCA dimensionality reduction. As
shown in Figures 8 and 9, the accuracy of PCA before di-
mensionality reduction is about 88%, the accuracy of PCA
after dimensionality reduction can reach 96%. (e training
results are shown in Table 5.

5. Conclusion

(is paper proposes an elevator operation fault moni-
toring method based on 1-CNN. Before training the
model, the original vibration is decomposed by wavelet
packet, and the energy features are extracted, and the
energy is used as the input of the network. Comparing the
original signal as the input and the energy as the input, the
accuracy is significantly improved. According to the time-
domain vibration signals collected under different mon-
itoring and working conditions, the method proposed in
this paper is used for verification, and the accuracy rate is
improved. In addition, this paper also compares the
training results before and after PCA dimensionality
reduction. (e results show that the extracted wavelet
energy features are first subjected to PCA dimensionality
reduction and then recognized, which can reduce the
complexity of data samples, optimize input features, and
further improve the recognition rate.(is method also has
some notable and improved problems. For example, the
data used in the test is not comprehensive enough, and the
selection of various layer parameters during network
construction requires multiple attempts to adjust to ob-
tain better results.

Table 5: Comparison of training results before and after PCA dimensionality reduction.

Training set Test set
Classification accuracy (%) Loss function value Classification accuracy (%) Loss function value

Before PCA dimensionality reduction 90.12 0.0322 88.15 0.1131
After PCA dimensionality reduction 96.57 0.0295 96.11 0.0341
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