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A novel method is proposed based on the transmissibility concept and matrix regularization for indirectly measuring the
structural responses.,e inputs are somemeasured responses that are obtained via physical sensors.,e outputs are the structural
responses corresponding to some critical locations where no physical sensors are installed. Firstly, the transmissibility concept is
introduced for expressing the relationship between the measured responses and the indirectly measured ones. Herein, a
transmissibility matrix is formulated according to the theory of force identification under unknown initial conditions. ,en, in
order to reduce the size of the transmissibility matrix, structural responses are reshaped in a form of a matrix by using the concept
of moving time windows. According to the matrix form of input-output relationship, indirect reconstruction of responses is
boiled down to an optimization equation. Since inverse problem may be ill-conditioned, matrix regularization such as F-norm
regularization is then recommended for improving the optimization problem. Herein, the penalty function is defined by using a
weighted sum of two F-norm values, which correspond to the estimated responses of physical sensors and the ones of the
concerned critical locations, respectively. Numerical simulations and experimental studies are finally carried out for verifying the
effectiveness and feasibility of the proposed method. Some results show that the proposed method can be applied for indirectly
measuring the responses with good robustness.

1. Introduction

Measurement of structural responses is a fundamental task in
structural health monitoring (SHM). ,e common measuring
methods can be divided into two categories: contact and
noncontact methods. Physical sensors are needed for the
contact methods. ,e physical sensors are often limited due to
some reasons such as the limited funds and the inaccessibility
of locations for measurement. For the noncontact methods,
structural responses can be usually measured by using the laser
measuring technology, image/video-based measuring method,
or even global positioning systems (GPS) [1–3]. Compared to
the contact methods, noncontact technologies such as the
image/video-based measuring method can be usually applied
for monitoring multiple points at the same time. However, it is
also hard for the noncontact methods to obtain the responses
occurring in a covert area.

To extrapolate the responses at some covert locations,
structural response reconstruction has been drawing a lot of
attention. In the earlier research, a representative research
work is published by Kammer [4]. He proposed amethod for
estimating the structural responses by using a transforma-
tion matrix, which is formulated via system Markov pa-
rameters determined from a vibration test. Since then,
technology for response reconstruction has developed
rapidly, and many methods have been proposed [5]. In
general, existing methods for response reconstruction can be
divided into two major categories: data-driven methods and
model-based methods. ,e data-driven methods are model-
free. ,ey often train black-box models based on the his-
torical real-life measurement data and use them in the
reconstructed process [6, 7]. ,e model-based methods
often utilize an analysis model of the structure for describing
the structural dynamic behavior. In view of this, the
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relationship between structural inputs and outputs can be
expressed by using some mathematical models. Contrary to
the data-driven methods, the model-based methods always
require few real-life measured responses.

,e majority of existing model-based methods are
proposed based on the transmissibility concept. Transmis-
sibility is applied for reflecting the relationship between
responses obtained from different locations of the structure
[8–10]. ,e transmissibility concept can be expressed in the
frequency domain [11]. Maia and his collaborators have
published a lot of excellent papers for the theory and ap-
plication of this topic [12–14]. A good review of the
transmissibility-based research in the field of SHM has re-
cently been done by Yan et al. [9]. For the application of
transmissibility function, Law et al. [15], for example, have
proposed a method for response reconstruction in a full
structure or in a substructure. ,e transmissibility concept
can be also developed based on the basic theory of force
identification [16–18]. In these methods, the dynamic forces
acting on the structure are firstly identified by using the
measured responses. ,en, the task of response recon-
struction can be easily done as a forward problem [19, 20]. In
fact, no matter what the specific form of the transmissibility
concept is, the basic idea is using sensor measurements at a
convenient location to extrapolate the responses at the
desired locations via a transformation matrix or function.
,e transmissibility-based methods have a clear physical
meaning. Most of them are applied for dealing with response
reconstruction in a case when acting locations of the dy-
namic forces are known while time histories are unknown.

Another type of response reconstruction is developed
based on the theory of modal expansion. ,e basic idea is to
estimate the model responses by using the measured
structural responses. ,en, according to the theory of modal
expansion, structural responses occurring at the desired
locations can be calculated [21, 22]. ,e number of real
sensors applied to the modal expansion-based method
should not be less than the number of considered modal
orders.

In addition to the above methods, advance signal pro-
cessing technology has also been studied for response re-
construction. Empirical mode decomposition (EMD) and
Kalman filter are two classical technologies. He et al. [23]
proposed an empirical mode decomposition-based method
for response reconstruction in time domain, wherein EMD
is applied for estimating the model responses. ,is idea can
be also seen in other research works [24, 25]. Kalman filter is
an effective technology for estimating the vibration state of
the structure; hence, it can be utilized for response recon-
struction. Using moving windows, Zhang and Wu [26]
proposed a Kalman filter-based method for predicting the
structural responses under unknown measurement noises.
Many articles relating to Kalman filter can be also found in
the topic of structural response reconstruction [27–30]. One
advantage of the Kalman filter-based strategy is that it can be
used for dealing with different types of structural responses
[31]. However, these methods solved the problem step by
step in the time domain. Hence, some characteristics of
signal cannot be effectively applied for analysis. In addition

to the above methods, several model-based strategies have
been also proposed for response reconstruction in recent
decades [32–34].

For the model-basedmethods, the model error of structure
and the measurement noises are two important factors that
could affect the reconstructed accuracy. ,e former one could
affect the basic mathematical model that plays a foundation
role. A refined model can often reduce the negative effect of
model error to some extent. ,e latter ones can induce some
estimated errors or even an unacceptable reconstructed result.
,is is because the problem of response reconstruction es-
sentially belongs to the class of inverse problems. Many
strategies can be applied for reducing the effects of measure-
ment noises, for example, improving signal quality by opti-
mizing sensor placement [35] and introducing the
regularization method [36]. Herein, regularization method is a
commonly used technology. It has been widely studied in the
field of SHM [37, 38]. Furthermore, the transmissibilitymatrix-
based methods, which are developed in the time domain, may
not be an ideal technology when a long-time duration problem
is considered.,is is mainly because the size of transmissibility
matrix will increase with increasing the number of sampling
points. ,is characteristic will bring more memory cost and
more computing time.

,is paper mainly focuses on the indirect reconstruction
of structural responses in the time domain. Transmissibility
matrix, which is formulated based on theory force identi-
fication under unknown initial condition, is applied for
formulating a governing equation, so that it can use a
transmissibility matrix with relatively small size to deal with
a long-time duration problem. ,e problem of response
reconstruction is boiled down to an optimization problem.
Frobenius norm (F-norm) matrix regularization is intro-
duced for reducing the effects of measurement noises. It is
beneficial to note that the F-norm regularization applied in
this study belongs to a matrix regularization method, but not
the commonly used vector-based regularization method.

,e paper is organized as follows. Structural response
reconstruction is reviewed in Section 1. ,eoretical back-
ground is introduced in Section 2. Numerical simulations
and experimental verification are illustrated in Section 3 and
Section 4, respectively. Finally, some conclusions are drawn
in Section 5.

2. Theoretical Background

As shown in Figure 1, a diagram of frame structure is taken
as an example for expressing the main intention of this
study.,e real sensors are applied for directly measuring the
structural responses. ,e virtual sensor does not exist in
practice. However, obtaining the structural responses hap-
pening at the position of virtual sensor is the main purpose
of this study. Because of this, this paper aims to propose a
matrix regularization-based method for indirectly estimat-
ing the structural responses corresponding to the virtual
sensor. Herein, the input signal of the proposed method is
the structural responses obtained from the real sensors. To
achieve this goal, the related theoretical background is firstly
introduced in Section 2.
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2.1. Structural Responses Induced by Excitation Sources. A
relationship between structural responses and dynamic force
is firstly given as follows. Herein, the structural initial
conditions are assumed to be equal to zero. A dictionary
consisted of Nf atoms is introduced for expanding the force
as [38, 39]

f � d1,d2, · · · , dNf
􏼔 􏼕

α1
α2
⋮

αNf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Dα, (1)

where f = [ f(Δt), f(2Δt), . . ., f(nΔt)]Tmeans a force vector. Δt
is a time interval for the forward analysis.D is the introduced
dictionary and di represents the i-th atom of dictionary D.
Herein, it assume that nΔt is equal to tw, which means that
the discussions of structural response mainly locate in a time
range (0, tw]. α is a coefficient vector, whose element αi is a
factor corresponding to di. Nf represents the number of
atoms in the dictionary D. Some sensors installed on the
structure are considered. ,e structural responses induced
by dynamic force can be expressed as

bif � hi1,hi2, · · · ,hiNf
􏼔 􏼕

α1
α2
⋮

αNf

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Hifα, i � 1, 2, · · · , Ns,

(2)

where bif= [ b(Δt̅), b(2Δt̅), . . ., b(kΔt̅)]T is a response vector
of the i-th sensor. Δt̅ (Δt̅≥Δt) represents the sampling time
interval. Hif is a system matrix of the i-th sensor corre-
sponding to the force. hij is the j-th component of structural
responses caused by atom dj. Herein, the subscript “i” means
the i-th sensor. ,ese response components can be calcu-
lated by applying the mode superposition method. Ns
represents the number of sensors.

Let us focus on the analysis of structural responses
caused by the structural initial conditions. Modal space is

used for expressing the initial conditions. Structural dy-
namic behavior is assumed that it can be approximately
described by using the first Nm orders. ,en the initial
conditions can be organized as a vector like [40]

y(0) � yN1(0), _yN1(0), yN2(0), _yN2(0), · · · , yNNm
(0), _yNNm

(0)􏽨 􏽩
T
,

(3)

where yNi(0) and ẏNi(0) are the i-th mode initial displacement
and i-th mode initial velocity, respectively. ,e corresponding
mode shape matrix Φ� [φ1, φ2, . . ., φNm] satisfies ΦTMΦ=I.
M represents the mass matrix of the structure. According to
equation (3), the structural responses caused by initial con-
ditions can be expressed via linear equations like

biy � hi1, hi2, hi3, · · · , hi2Nm
􏽨 􏽩 � Hiyy(0), i � 1, 2, · · · , Ns,

(4)

where biy represents the structural responses caused by the
initial conditions. Hiy is the system matrix corresponding to
the initial conditions. ,e column hij means the structural
responses caused by the unit j-th initial condition compo-
nent, i.e., y(0)= [0(1), . . ., 0(j-1), 1(j), 0(j+1), . . ., 0(2Nm)]T.
Hence, the matrixHiy actually can be calculated by applying
the classical linear vibration theory. In the above equation,
subscript “i” represents the i-th sensor.

Now, if both external force and initial conditions are
considered as the excitation sources, then structural re-
sponses obtained from the i-th sensor can be expressed as

bi � bif + biy � Hif,Hiy􏽨 􏽩
α

y(0)
􏼢 􏼣 � Hiβ, i � 1, 2, · · · , Ns,

(5)

where bi means structural responses of the i-th sensor. Hi=
[Hif,Hiy] is a system matrix corresponding to two excitation
sources. β= [αT, y(0)T]T represents the structural excitation
sources. Furthermore, if more than one sensor is considered,
then equation (5) can be rewritten into one equation such as

b1
b2
⋮

bNs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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�

H1

H2

⋮

HNs

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

β⇒b � Hβ. (6)

In addition, in order to reduce the possible large dif-
ference of numerical values among columns of system
matrix H, equation (5) can be further rewritten as [40]

b � Hβ � AΛβ, (7)

whereA� [A1,A2, . . .,AN] is a normalized systemmatrix, in
which the i-th atom Ai is calculated as Ai �Hi/||Hi||2.
Λ� diag(||H1||2, ||H2||2, . . ., ||HN||2) is a diagonal scaling
matrix. Hi represents the i-th column in matrix H.

2.2. 0eoretical Derivation of Transmissibility Matrix.
Two sets of sensors are considered. As shown in Figure 1, all
real sensors are grouped into the first set, while the virtual

Virtual sensor
f

Sensor 2

Sensor 3

Sensor 1

Real sensors

Indirectly
Reconstruction

Figure 1: Frame structure as example for expressing intention of
the proposed method.
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sensor is considered as the second set. ,e virtual sensor
means that its corresponding structural responses will be
indirectly reconstructed from the responses corresponding
to the real sensors. According to equation (7), the structural
responses corresponding to two sets of sensors can be
expressed as

br � ArΛrβ, (8)

bv � AvΛvβ, (9)

where the subscripts “r” and “v” represent the real sensors
and virtual sensor, respectively. According to equation (8),
the structural excitation sources (force and initial condi-
tions) can be approximately estimated as

βe � Λ−1
r A+

rbr, (10)

where βe represents the structural inputs identified from the
measured structural responses br. A+

r is a pseudoinverse
matrix of Ar. Substituting equation (10) into equation (9)
yields

bve � AvΛvΛ
−1
r A+

r br � Tvrbr, (11)

where Tvr � AvΛvΛ−1
r A+

r is a transmissibility matrix calcu-
lated from real sensor set to virtual sensor set. bve represents
the structural responses corresponding to virtual sensor
estimated from structural responses br.

According to the above analysis, it can be seen that the
transmissibility matrix is developed based on the theory of
force identification under unknown initial conditions. ,e
first step is to estimate the excitation sources, and the second
step is to reconstruct the responses by using the identified
excitation sources. In view of this, the key issue for this
definition is that the real sensors should provide enough
information for effectively identifying the unknown exci-
tation sources. ,e number of real sensors is better to be
bigger than the number of considered forces. Herein, it is
beneficial to note again that both dynamic force and initial
conditions are applied for the calculation of the transmis-
sibility matrix. ,is definition is different from the one
proposed by Zhu et al. [16] due to the latter one is calculated
without considering unknown initial conditions.

From equation (11), it can be seen that structural re-
sponses of virtual sensor can be indirectly calculated by
using the structural responses obtained from real sensors.
However, equation (11) is not recommended to be directly
applied for the response reconstruction. ,e reason comes
from the influences of measurement noises. In real appli-
cation, the measurement noises are inevitable. ,e recon-
structed responses directly estimated from equation (11) can
be expressed as

bve � Tvrbr + Tvrε, (12)

where ε is a vector used for representing the measured
noises. Essentially speaking, applying the transmissibility
matrix to calculate the structural responses in the covert area
is actually an inverse problem. In view of this, the second
term such as Tvrε shown in equation (12) may lead to a large

fluctuation in the estimated results so that the reconstructed
responses may be unacceptable. Furthermore, from equation
(11) it is not hard to find that the size of the transmissibility
matrix is related to the number of sampling points. It will
consume more computing resources for the calculation if a
problem with long-time duration is considered. To over-
come these drawbacks, structural responses will be reshaped
in a matrix form, and then the F-norm regularization
method will be introduced to ensure that the reconstructed
responses are robust to the measured noises.

2.3. Response Reconstruction Based on F-Norm
Regularization. As shown in Figure 2, moving time window
with a length of k sampling points is applied for extracting
local signal of the structural responses [41]. ,e length of
overlap between any two adjacent windows contains k0
(k0< k) sampling points. ,e structural responses extracted
from each time window are stored as a column of a structural
response matrix. ,e structural response matrix can be
expressed as

B �

b1 b1 k−ko( )+1 b2 k−ko( )+1 · · · b nw−1( ) k−ko( )+1

b2 b1 k−ko( )+2 b2 k−ko( )+2 · · · b nw−1( ) k−ko( )+2

b3 b1 k−ko( )+3 b2 k−ko( )+3 · · · b nw−1( ) k−ko( )+3

⋮ ⋮ ⋮ ⋱ ⋮

bk b1 k−ko( )+k b2 k−ko( )+k · · · b nw−1( ) k−ko( )+k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(13)

where B means the structural response matrix corre-
sponding to one measured point. nw represents the number
of moving time windows. bi represents the i-th sampling
point. Taking the matrix form of structural responses into
consideration, equation (11) can be rewritten as

Bve � TvrBr, (14)

where Bve is the estimated structural responses corre-
sponding to the virtual sensor. Br means the structural
responses corresponding to the real sensors. It can be
expressed as

Br � BT
1 BT

2 · · · BT
Ns

􏽨 􏽩
T
, (15)

where Bi represents the structural responses corresponding
to the i-th real sensor. From equation (14), it is not hard to
find that the size of the transmissibility matrix is only de-
termined by the length of moving time window. ,is
characteristic means that a transmissibility matrix with
relatively small size can be used for dealing with a problem of
response reconstruction even though a problem of long-time
duration is considered.

As we have briefly discussed above, it is not recom-
mended that the relationship between two sets of sensors is
directly used for the reconstruction of structural responses
due to influences of the measured noises. Herein, least
square method is introduced for estimating the structural
responses corresponding to the real sensors. ,is step can be
expressed as an optimization problem like

4 Shock and Vibration



Bre � argmin
Bre

TrrBre − Br

����
����
2
F

􏼚 􏼛, (16)

where ||∗||F means an F-norm of the considered matrix.
Bre is a denoised response matrix. Trr means a trans-
missibility matrix calculated from the real sensors
to themselves. According to the physical meaning of
Trr, this matrix actually can be selected as an identity
matrix I.

Equation (16) can be used for estimating the responses
Bre. However, it may cause an overfitting. Regularization
technology is introduced for avoiding the overfitting
problem. Herein, we can find that the estimated responses
are organized in a form of matrix. Hence, the classical
vector-based regularization method, whose estimated vari-
able is organized as a vector, cannot be directly used in this
case. Matrix regularization is utilized in this study. Herein,
matrix regularization generalizes notions of the vector-based
regularization to cases where the object to be estimated is a
matrix. In view of this, matrix regularization such as F-norm
regularization can be applied as

Bre � argmin
Bre

Bre − Br

����
����
2
F

+ λ ΓBre

����
����
2
F

􏼚 􏼛, (17)

where λ is a regularization parameter. ||ΓBre||F2 is a penalty
function, in which Γ is a smooth matrix. ,e smooth matrix
Γ can be used for representing some reasonable prior
knowledge of the estimated result. It can be often selected as
an identity matrix I. However, this selection is not rec-
ommended because it does not take any information of
Bve �TvrBre into consideration. In fact, it should be noted
that what we want is the estimation of structural responses
Bve. ,e structural responses Bre actually play a role of in-
termediate variable. Hence, it is better to take some rea-
sonable prior knowledge of Bve �TvrBre into the definition of
the penalty function. To achieve this goal, however, it may be
difficult to formulate a specific matrix of Γ in an explicit
form.

According to the above consideration, the smooth
matrix Γ will be defined in an implicit form that is similar to
the one proposed by Pan et al. [42]. In view of this, equation
(17) can be rewritten as

Bre � argmin
Bre

Bre − Br

����
����
2
F

+ λ Bre

����
����
2
F

+ ω TvrBre

����
����
2
F

􏼒 􏼓􏼚 􏼛,

(18)

where the penalty function is defined as a weighted sum of
‖Bre‖

2
F and ‖Bve‖

2
F. ω is a weighted factor. Herein, it is not

hard to find that the former part of penalty function can
avoid the overfitting problem corresponding to real sensors,
while the latter part can make sure that signal energy of the
reconstructed responses corresponding to the virtual sensor
will not be too large.

Let us calculate the derivative of function shown in
equation (18) with respect to Bre, and let the corresponding
result be equal to 0. ,en, the estimated response matrix
solved by equation (18) can be obtained as

Bre � I + λ I + ωTT
vrTvr􏼐 􏼑􏽨 􏽩

− 1
Br. (19)

From equation (19), we can find that the matrix
(I + ωTT

vrTvr) is an additional matrix for the original
problem. ,e spectrum distribution of the matrix
(I + ωTT

vrTvr) should be relatively centralized; otherwise, the
problem shown in equation (19) will be ill-conditioned if a
big regularization parameter is considered. In view of this,
the values ofω should be limited. As done by Pan et al. [42], a
ratio factor defined between the maximal and minimal ei-
genvalues of (I + ωTT

vrTvr) is used for reflecting the spectrum
distribution. ,is factor can be calculated as

r �
1 + ωemax

1 + ωemin
, (20)

where emax and emin are the maximal and minimal eigen-
values of TT

vrTvr, respectively. Denoting the maximal ac-
ceptable value of r as rmax, then we can calculate the maximal
acceptable value of ω as

ωmax �

rmax − 1
emax − rmaxemin

, emax > rmaxemin,

∞, emax ≤ rmaxemin,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(21)

where ωmax represents the maximal acceptable value of ω. In
this study, the value of rmax will be set as rmax � 109. ,is

k sampling points

ko sampling points

Figure 2: Extracting local signal of structural responses via moving time window.
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value means that the requirement for the concentration of
eigenvalues of matrix (I + ωTT

vrTvr) is not very strict. In this
way, the selection of weighted factor ω will be more flexible.
Furthermore, equation (18) can be also rewritten as

Bre � argmin
Bre

Bre − Br

����
����
2
F

+ λ Bre

����
����
2
F

+ ω TvrBre

����
����
2
F

􏼒 􏼓􏼚 􏼛

� argmin
Bre

Bre − Br

����
����
2
F

+ λ tr BT
re I + ωTT

vrTvr􏼐 􏼑Bre􏼐 􏼑􏽨 􏽩􏼚 􏼛.

(22)

,e matrix (I + ωTT
vrTvr) is a positive definite matrix so

that it can be expressed as factorization of the matrix ΓTΓ.
,erefore, equation (18) is equivalent to equation (17) even
though the explicit form of matrix Γ is unknown to us. To
sum up, the response reconstruction described by equation
(18) is an F-norm regularization-based optimization prob-
lem. ,is is one of the main contributions of this study.

Finally, according to equation (19), the matrix form of
structural responses Bre can be firstly calculated. ,en, the
matrix form of responses corresponding to the virtual senor
can be estimated as

Bve � TvrBre. (23)

,e estimated structural responses Bve can be reor-
ganized into a form of vector. Herein, some sampling points
may have more than one estimated result due to overlapping
areas of moving time windows. To obtain a single identified
value, the measured result at one sampling point will be
selected as an average value of all the estimated values
corresponding to the considered sampling point. In view of
this, we can indirectly measure the structural responses
corresponding to the virtual senor by using the measured
responses obtained from some real sensors.

2.4. Brief Summary of the Proposed Method. An F-norm
regularization-based method is proposed for structural re-
sponse reconstruction. ,e proposed method is a model-
based method, and transmissibility matrix is applied for
formulating a governing equation. One highlight is that the
transmissibility matrix applied in this study is calculated
based on the basic theory of force identification under
unknown initial conditions. Furthermore, problem of re-
sponse reconstruction is considered as an optimization
problem, in which the optimization variable is considered as
a response matrix. F-norm regularization is applied for
ensuring that the estimated results are not very sensitive to
the measurement noises. Hence, another highlight is the
application of matrix regularization. According to the above
analysis, the basic process of this method can be summarized
as Figure 3.

3. Numerical Simulations

3.1. Plane Frame Structure. Figure 4(a) shows the finite el-
ement model (FEM) of a 7-story plane frame structure. ,e
frame structure is modeled by 49 beam elements. ,e beam
element has 2 nodes and 6 degrees of freedom. ,e

properties of the material are simulated as follows: Young’s
modulus E� 35GPa, density of the material ρ� 2500 kg/m3.
,e cross section area is equal to 0.32m2, and the moment of
inertia is set as 0.017m4. Each element has a length of 2m
[43]. ,e first five nature frequencies are 2.43Hz, 7.81Hz,
14.72Hz, 22.56Hz, and 23.94Hz, respectively. ,e frame
structure is subjected to a dynamic force, as shown in
Figure 4(b). ,e time history of this force is simulated as a
random process. Its signal energy is located in a frequency
range from 2Hz to 50Hz. Two real sensors are simulated to
be installed at nodes 38 and 34 for measuring the horizontal
acceleration responses. In this paper, the structural re-
sponses are calculated by using the mode superposition
method. ,eoretical modal analysis is firstly carried out.
,en, the modal force for each order is calculated according
to the corresponding modal shape. For each order, the
modal responses are calculated via using the simplified
discrete convolution model. To ensure calculation accuracy,
the first ten orders are used for analysis. ,e damping ratio
for each order is set as 0.012. ,e analysis time interval is set
as 0.001 s. Finally, the structural responses are calculated as a
weighted combination of the modal responses. White noises
are considered by using an equation shown as

bn � b + lev ×
1
n

􏽘 n
i�1 bi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 × rand, (24)

where bn and b represent two response vectors for noise and
noiseless, respectively. n is the element number in vector b.
lev is the noise level. rand is a standard normal distribution
vector. Figures 4(b)–4(d) show the dynamic force and the
simulated acceleration responses obtained via two sensors.
Herein, the noise level is set as lev� 10%. Figure 4(e) shows
the simulated acceleration responses corresponding to the
virtual sensor installed at node 30.,e sampling frequency is
considered as 1000Hz, and the total time length is set as 60 s.

3.1.1. Response Reconstruction from Two Sensors. ,e ac-
celeration responses obtained from two real sensors are
taken as the input data. It is better for the number of real
sensors to be more than the number of external force, be-
cause unknown initial conditions are considered in the
proposedmethod. Hence, more measured data are needed to
make sure that equation (8) is not an underdetermined
system of equation. ,e virtual sensor is installed at node 30
for measuring the lateral acceleration responses. ,e
structural responses shown in Figure 4 are reshaped in a
form of matrix. ,e length of time window is selected as
k� 1000 sampling points. ,e length of overlap between any
two adjacent windows is set as k0 � 500 sampling points. In
view of this, it is not hard to find that the number of moving
time windows is 119. Time domain discretization is applied
for expressing the force. Hence, the i-th atom of dictionary
D, as shown in equation (1), can be selected as

di � d(1) d(2) · · · d(i − 1) d(i) d(i + 1) · · · d Nf􏼐 􏼑􏽨 􏽩
T

� 0 0 · · · 0 1 0 · · · 0􏼂 􏼃
T

, i � 1, 2, · · · , Nf,

(25)
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where the number of considered basis functions Nf is equal
to the number of sampling points contained in one moving
time window. Herein, a key point for the selection of force
atom is that the space constructed by the selected atoms
should be complete enough to reflect the main information
of the force.

According to equation (21), the maximal acceptable
value of ω can be calculated as ωmax � 7.1174. In this case, all
sensors including the virtual senor are used for measuring
the acceleration responses. ,ere may be no significant
numerical difference between responses corresponding to
real sensors and virtual senor. An intuitive example can be
seen from Figures 4(c)–4(e). Hence, we will treat every
sensor equally so that the weighted factor is selected as
ω� 1<ωmax. In addition, the idea of a posteriori criterion is
used for the selection of regularization parameter [44]. A

function is firstly defined for roughly representing a ratio
value of the estimated noise energy to the signal energy of
estimated responses such as

RVS(λ) �
Bre(λ) − Br

����
����
2
F
/Nre

Bre(λ)
����

����
2
F

+ TvrBre(λ)
����

����
2
F
/Nre + Nve􏼒 􏼓

× 100%,

(26)

where Bre(λ) is a function of λ and it represents the es-
timated structural responses corresponding to the real
sensors. Nre and Nve are the numbers of elements con-
tained in matrices Bre and TvrBre, respectively. RVS(λ) is a
function whose independent variable is the regularization
parameter λ. According to equation (26), different values
of λ located in a range from 10−6 to 101 are used for

Establishing finite element model

Performing modal analysis
&

Determining number of modal orders for calculation

Calculation of system matrices
corresponding to external force

Calculation of system matrices
corresponding to initial conditions

Formulating transmissibility matrix such as
Tvr

Direct measurement of structural responses
via real sensors

Determining length of time window and
length of overlapping

Formulating two-dimensional matrix form
of structural responses Bi for each sensor

Calculation of estimated results of structural
responses corresponding to real sensors

Bre=[I+λ(I+ωTT
vrTvr)]–1[Br]

Calculation of structural responses corresponding to
virtual sensor
Bve = TvrBre

Obtaining final responses at virtual sensor
in vector form via average method

Determining values of λ and ω (ω≤ωMax)

Formulating F-norm regularization based equation like:
Bre = arg min{||Bre – Br||F

2 +λ(||Bre||F
2 + ω||TvrBre||F

2 )}
Bre

Figure 3: Flowchart of the proposed method for indirect measurement of structural responses.
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calculation, and then their corresponding values of RVS
are plotted in Figure 5. Two additional horizontal curves,
which are used for representing the acceptable levels of the
RVS, are added to the figure. As shown in Figure 5, it is
assumed that the signal energy of the estimated noises
roughly is located in a range from 0.5% to 5% of the signal
energy of the estimated structural responses. Herein, it
should be noted that the values of lower limit (0.5%) and

upper limit (5%) are not the only determined values.,ese
two values actually play a role of some prior information,
and they are usually selected according to experience and
actual situations. From Figure 5, we can roughly deter-
mine an acceptable range of λ. On this basis, the regu-
larization parameter is finally selected as λ� 0.05. Herein,
it is beneficial to note again that λ� 0.05 is not the only
option, but a reasonable selection.
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Figure 4: Frame structure with corresponding force and acceleration responses. (a) Seven-story frame structure. (b) Simulated force.
(c) Acceleration responses of real sensor 1 with 10% noise level. (d) Acceleration responses of real sensor 2 with 10% noise level.
(e) Acceleration responses of virtual sensor installed at node 30.

8 Shock and Vibration



Figure 6 shows the reconstructed structural responses
corresponding to node 30. From Figure 6, it can be seen that
the proposed method can effectively reconstruct the lateral
acceleration responses in this case.,ere are some numerical
differences between the estimated responses and real ones.
,is phenomenon is reasonable because influences of the
measured noises are considered. In spite of this, the re-
sponses shown in Figures 6(b) and 6(c) intuitively show that
the reconstructed responses match well the real ones on the
whole.,is result, to some extent, shows the feasibility of the
proposed method in this case.

3.1.2. Effect of Different Regularization Parameters. ,e
former case is further considered in this section. However,
the value of regularization parameter is no longer selected
via equation (26). To intuitively understand the effect of
different regularization parameters, six cases with different
values of regularization parameter, namely, 0, 5×10−6,
5×10−3, 5×10−2, 5×10−1, and 5×100, are simulated for
discussion. Figure 7 shows the local structural responses
calculated from different cases.

Figure 7(a) clearly shows that the estimated responses
fluctuate seriously when penalty function is not considered in
this case; i.e., λ� 0.,e reasonmay be due to the ill-conditioning
of the considered problem. On the contrary, Figure 7(d) shows
that the estimated responses, which are obtained considering an
appropriate value of λ such as λ� 5×10−2 for the penalty term,
are obviously close to the real ones. ,is is mainly because the
penalty term can effectively reduce the influences of measure-
ment noises. ,is phenomenon is actually the main reason why
we do not recommend reconstructing the structural responses
by directly using the transmissibility relationship.

Figure 7(b) shows that the estimated responses have a large
fluctuation when the regularization parameter is selected as
λ� 5×10−6 in the considered case.,is result is much the same
as the one shown in Figure 7(a). ,e reason behind this
phenomenon is that a small value of regularization parameter
indicates that the governing equation pays less attention to the
added penalty term so that the matrix regularization cannot
improve the estimated result effectively. ,is drawback can be
overcome when a larger value of regularization parameter is

considered, for example, the estimated result shown in
Figures 7(c) and 7(d).However, this does notmean that a larger
regularization parameter will naturally lead to a better esti-
mated result. A too large value of regularization parameter may
lead to an underfitting problem. As a result, the estimated
structural responses will become smoother than the real
structural responses, as shown in Figures 7(e) and 7(f).

Furthermore, different noise levels such as 5%, 10%,
15%, 20%, 25%, 30%, and 50% are considered. ,irteen
values of the regularization parameter are selected for for-
mulating the matrix regularization-based governing equa-
tion. ,ese values are located in a range from 1× 10−3 to
1× 10−0, as listed in Table 1. In order to evaluate the
identified accuracy of each case, a relative percentage error
(RPE) is defined as

RPE �
br − be

����
����1

br

����
����1

× 100%, (27)

where br and be represent the real structural responses and the
estimated structural responses, respectively. According to
equation (27), the RPEs are calculated and listed in Table 1.

From Table 1, three obvious phenomena can be found.
,e first one is that the estimated accuracy decreases with
increasing the noise level in the considered cases if a specific
regularization parameter is applied. ,is result shows that
the noise level could bring negative effects to the estimated
responses. ,e second one is that the RPE first falls and then
rises with increasing the value of regularization parameter if
a specific noise level is considered. ,e reason behind these
results can be intuitively seen from Figure 7. ,at is, a small
value of regularization parameter cannot avoid the ap-
pearance of overfitting, while a large one could cause an
underfitting result. ,e third phenomenon is that the op-
timal regularization parameters are not exactly equal to each
other among different conditions of noise level. Herein, the
optimal regularization parameter represents a value of λ
corresponding to the smallest RPE in the considered cases
whose noise levels are the same. ,e optimal regularization
parameter, on the whole, increases with increasing the noise
level in the considered cases. ,is is reasonable since the
reduction of greater measured noises needs a higher weight
for the penalty term in the matrix regularization model. In
addition, the above results also indicate that it is difficult to
select an optimal regularization parameter if the noise level is
unknown to us. ,is is the reason why a preliminary esti-
mation of noise energy is required in this paper for selecting
the regularization parameter, as shown in Figure 5.

To sum up, the above results clearly show the importance
of the selection of regularization parameter.,is is actually a
common problem in the application of regularization-based
method. It is beneficial to note that the optimal selection of
regularization parameter is still a key issue in this paper, even
though there is a posteriori method proposed in this paper.

3.1.3. Effect of Different Positions of Virtual Sensors.
,ree cases with different positions of the virtual sensor are
considered. As shown in Figure 4(a), three virtual sensors are
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Figure 5: Diagram for selection of regularization parameter.
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installed at nodes 30, 36, and 40, respectively. ,e accel-
eration responses corresponding to each sensor are calcu-
lated independently. ,ree noise levels, namely, 5%, 10%,
and 15%, are considered for each case. Regularization pa-
rameter λ for each case is selected as that we have done in
Section 3.1.1. Figure 8 shows a diagram for the selection of
regularization parameter for the cases with 15% noise levels
considered. From Figure 8, it can be seen that λ� 0.05 can
ensure that its corresponding value of RVS is intuitively
located in a range from RVS� 0.5% to RVS� 5% in the case
of node 30, while the regularization parameter playing a
similar role in the other cases can be selected as λ� 0.075.
Because of this, the regularization parameters are roughly
selected as λ� 0.05 for the case of node 30 and λ� 0.075 for
the other two cases. Other parameters are set the same as the
ones that have been done in the previous section.

Table 2 lists the RPEs of the structural responses esti-
mated considering different positions of virtual sensors.
From Table 2, it can be seen that the estimated accuracies, on
the whole, are close to each other in the cases considering the
same virtual sensor, even though the RPE increases with
increasing the noise level. ,is phenomenon indicates again
that the measured noises may bring negative effects to the
estimated responses. However, the estimated result is not
very sensitive to the measured noises in the considered cases.
In addition, the RPEs corresponding to virtual sensors at
node 36 and node 40 are smaller than the ones corre-
sponding to virtual sensor at node 30. It seems that the
position of virtual sensor could affect the accuracy of the
estimated result in the considered cases. However, the
reason behind this may be due to many factors; for example,
it may be related to the selection of regularization parameter.
As listed in Table 1, the RPE value can decrease to 15.85% if
the regularization parameter is selected as λ� 1× 10−2 for the
case that is denoted as node 30 and 5% noise level.

For more detailed study, Figure 9 shows the local responses
calculated from different virtual sensors and noise levels. From
the first row of Figure 9, it can be seen that the acceleration
responses calculated considering different noise levels are all close
to the real structural responses.,is phenomenon, on the whole,
means that the estimated result is not very sensitive to the
measured noises in the case of virtual sensor installed at node 30.
Similar results can also be seen from the other rows of Figure 9.

,is advantagemainly benefits from the penalty function such as
a term of (‖Bre‖

2
F + ω‖TvrBre‖

2
F). Furthermore, Figure 9 clearly

shows that the proposed method can be used for reconstructing
the acceleration responses at nodes 30, 36, and 40 with a good
accuracy in these cases. Combining the estimated accuracies
shown inTable 2,we can see that the proposedmethod is not very
sensitive to the positions of the considered virtual sensors, al-
though there are some differences between the RPEs in the cases
considering different positions of the virtual sensors. ,e reason
behind this result may be that structural responses obtained from
two simulated real sensors can provide enough information for
reflecting the signal features of the simulated force. In such
situation, the structural responses can be naturally reconstructed
with a relatively better accuracy even thoughdifferent positions of
the virtual sensors are considered in the above cases.

3.1.4. Effect of Different Lengths of Moving Time Window.
,e length of moving time window is one of the significant
parameters of the proposed method. ,is parameter directly
relates to the size of the transmissibility matrix Tvr. To get an
intuitive understanding, five cases with different lengths of
moving time windows, as listed in Table 3, are carried out.
,e lengths of moving time windows considered in Case 1,
Case 2, Case 3, Case 4, and Case 5 actually correspond to 1 s,
2 s, 3 s, 4 s, and 5 s, respectively. ,e length of overlapping
part between any two adjacent windows is auto-selected as
half the length of the moving window. ,e regularization
parameter is selected as λ� 0.05. Other parameters are se-
lected as the ones that have been done in Section 3.1.1.

All the cases are calculated via the same program with
different calculation parameters and a personal computer with
information CPU (AMD Ryzen 7 2700X Eight-Core Processor
3.70GHz), RAM 16.0GB, Windows 10, Matlab R2015a. ,e
analysis times for five cases are gathered and listed in Table 3.
From Table 3, it is not hard to find that the computational time
increases rapidly with increasing the length of the moving time
window in the considered cases.,e direct cause is that a longer
length of moving time window actually leads to a larger size of
transmissibility matrix, as listed in Table 3. In addition, Case 1
and Case 5 are picked up as two representative cases. Com-
parison of the reconstructed responses obtained from these two
cases is plotted in Figure 10. From Figure 10, it can be seen that

-0.05

0

0.05

m
*s

-2

4.8 54.6
Time (s)

Real responses
Estimated responses

(e)

-0.05

0

0.05

m
*s

-2

4.8 54.6
Time (s)

Real responses
Estimated responses

(f )

Figure 7: Local structural responses estimated considering different regularization parameters. (a) λ� 0. (b) λ� 5×10−6. (c) λ� 5×10−3.
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there are no significant differences between two reconstructed
responses on the whole. Overall, Case 1 can spend less calcu-
lation time on reconstructing the acceleration responses.
,erefore, with a comprehensive consideration of calculation
time and reconstructed accuracy, it is not hard to find that the
case with window length of 1000 sampling points is the best
solution way among the five cases listed in Table 3. To some
extent, the advantage of Case 1 actually benefits from the
consideration of unknown initial conditions. It is because this
consideration is the theoretical basis for the formulation of
equation (18), which is a governing equation expressed in a
matrix form.

Furthermore, different noise levels such as 5%, 10%, and
15% are considered. ,e RPEs are calculated and listed in
Table 4. From Table 4, two phenomena can be obtained. ,e

first one is that the measured noises could bring negative
effects to the estimated results in the considered cases. ,is
phenomenon is the same as the one discussed in the former
sections. ,e second phenomenon is that the estimated
accuracy increases with increasing the length of time win-
dows in the considered cases. In fact, the estimated errors at
the beginning of each moving time window may be larger
than the ones at other zones due to the interference of
structural initial conditions. Hence, if more moving time
windows are applied for covering the total time range, the
estimated responses may have a lower accuracy. To provide a
more intuitive understanding, Case 1 and Case 5 are picked
up as two representative cases, and their estimated errors
between the estimated responses and the real responses are
plotted in Figure 11. From Figure 11, it can be seen that more
spikes appear in the estimated errors in Case 1. ,ese spikes
actually correspond to the beginning of each time window.
,at is why the coordinate values of the spikes shown in
Figure 11(b) are close to the integral multiple of 0.5 seconds,
while the coordinate values of the spikes shown in
Figure 11(d) are near to the integral multiple of 2.5 seconds.
,e above phenomenon is actually the direct reason why
estimated accuracy of Case 5 is better than that of Case 1.

3.2. Further Verification on Plane Truss Structure. A plan
truss structure is simulated for further verifying the pro-
posed method. As shown in Figure 12, the truss is simply
supported with pin joint at one end and roller support at the
other end. Both horizontal and vertical members have a
length of 1.0m. ,e cross section area is 0.0016m2. ,e
density and Young’s modulus are 7850 kg·m−3 and 2.06GPa,
respectively [45]. Lumped mass matrix is considered. ,e
first five nature frequencies are 1.56Hz, 5.17Hz, 6.94Hz,
11.98Hz, and 17.72Hz, respectively. One dynamic force is
considered, and its time history is simulated as

f(t) � 50[1 − cos(10πt)]sin(30πt). (28)

Four real sensors installed at nodes 6, 8, 10, and 12 are
used for measuring the vertical acceleration responses. ,e

Table 1: Relative percentage errors calculated with different regularization parameters.

Regularization parameters
Relative percentage errors (%)

5% noise 10% noise 15% noise 20% noise 25% noise 30% noise 50% noise
λ� 1× 10−3 47.04 92.58 138.39 184.27 230.21 276.16 460.04
λ� 2.5×10−3 29.56 56.62 84.06 111.64 139.27 166.94 277.80
λ� 5×10−3 20.29 36.32 52.96 69.81 86.77 103.78 172.11
λ� 7.5×10−3 17.11 28.16 40.04 52.21 64.53 76.93 126.93
λ� 1× 10−2 15.85 23.98 33.11 42.61 52.30 62.08 101.72
λ� 2.5×10−2 16.28 18.53 21.67 25.33 29.31 33.50 51.26
λ� 5×10−2 20.17 20.81 21.82 23.14 24.71 26.48 34.88
λ� 7.5×10−2 23.94 24.24 24.71 25.36 26.15 27.08 31.88
λ� 1× 10−1 27.39 27.56 27.84 28.22 28.69 29.25 32.29
λ� 2.5×10−1 42.77 42.80 42.86 42.93 43.02 43.13 43.73
λ� 5×10−1 57.39 57.40 57.42 57.44 57.47 57.50 57.68
λ� 7.5×10−1 65.94 65.95 65.96 65.97 65.98 66.00 66.08
λ� 1× 10−0 71.60 71.60 71.60 71.61 71.62 71.63 71.68
Bold values in each column represent the minimum value.
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Figure 8: Diagram for selection of regularization parameter in
cases with 15% noise level considered.

Table 2: Relative percentage errors calculated with different virtual
sensors.

Positions of virtual sensor
Relative percentage errors (%)

5% noise 10% noise 15% noise
Node 30 20.17 20.81 21.82
Node 36 14.59 15.02 15.70
Node 40 14.04 14.17 14.39

12 Shock and Vibration



sampling frequency is set as 1000Hz. ,e structural re-
sponses are calculated using the mode superposition method
and considering the first fifteen modal orders. A basic
process for simulating the structural responses is the same as
the one described in Section 3.1. ,ree noise levels such as
5%, 10%, and 15% levels are considered. ,e discrete time
interval is selected as 0.001 s, and the total sampling time
length is set as 10 s. ,e damping ratio for each order is
selected as 0.012. ,e initial conditions are set as zeros.

,e objective is to reconstruct the acceleration responses
at nodes 15, 17, and 19, respectively. Effects of different
numbers of real sensors are considered. For more details,
structural responses corresponding to each virtual sensor will
be estimated by using structural responses measured from

two sensors at nodes 6 and 8; three sensors at nodes 6, 8, and
10; and four sensors at nodes 6, 8, 10, and 12, respectively.
Hence, it is not hard to find that there are twenty-seven cases
simulated in this section. Acceleration responses are reshaped
in a matrix form by using parameters such as length of time
window of 1000 sampling points and length of overlap part of
500 sampling points. ,e weighted factor is set as ω� 1. It
should be noted that ω� 1 satisfies the condition ω<ωmax in
every considered case. ,e regularization parameter λ is
carefully selected as the one that has been done in the previous
section. Herein, the lower limit value of RVS is reduced
appropriately, and finally λ will be selected as λ� 0.05.

According to equation (27), the RPEs corresponding
to nine cases are calculated and listed in Table 5. From
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Figure 9: Local responses calculated considering different virtual sensors and noise levels. (a) Node 30 and 5% noise level. (b) Node 30 and
10% noise level. (c) Node 30 and 15% noise level. (d) Node 36 and 5% noise level. (e) Node 36 and 10% noise level. (f ) Node 36 and 15% noise
level. (g) Node 40 and 5% noise level. (h) Node 40 and 10% noise level. (i) Node 40 and 15% noise level.

Table 3: Comparison of calculation performance of cases with different lengths of time windows.

Cases
Number of sampling points Size of matrices Calculation performances

Each window Overlap part Tvr Bre Calculation time (s) Ratio value (tcase i/tcase 1)
Case 1 1000 500 1000× 2000 2000×119 2.004091 1.00
Case 2 2000 1000 2000× 4000 4000× 59 9.842216 4.91
Case 3 3000 1500 3000× 6000 6000× 39 29.991308 14.97
Case 4 4000 2000 4000× 8000 8000× 29 66.063602 32.96
Case 5 5000 2500 5000×10000 10000× 23 132.703213 66.22
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Table 4: Relative percentage errors calculated with different lengths of time windows and noise levels.

Cases
Number of sampling points Relative percentage errors (%)

Each window Overlap part 5% noise 10% noise 15% noise
Case 1 1000 500 20.17 20.81 21.82
Case 2 2000 1000 15.77 16.55 17.76
Case 3 3000 1500 14.02 14.90 16.22
Case 4 4000 2000 13.29 14.18 15.54
Case 5 5000 2500 13.00 13.91 15.30
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Figure 11: Estimated errors between estimated responses and real responses with 10% noise level considered. (a) Total length in Case 1.
(b) Local length in Case 1. (c) Total length in Case 5. (d) Local length in Case 5.
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Table 5, it can be seen that the effect of the measured
noises is almost the same as the ones discussed in the
previous sections. In addition, Table 5 also shows that the
estimated accuracy of each virtual sensor increases with
increasing the real sensors in the simulated cases. ,e
reason may be that more sensors can provide more

information for reflecting the external force so that the
reconstructed acceleration responses are closer to the real
ones. However, more sensors will lead to a larger size of
transmissibility matrix. Along with this, more computing
resources are needed. In view of this, a good balance
between the calculation accuracy and efficiency should be

1
3 5 7 9 11 13 15 17 19 21 23 25

2

4 6 8 10 12 14 16 18 20 22 24

26

x
y

f Virtual sensors

Real sensors

Figure 12: Plan truss for numerical simulations.

Table 5: Relative percentage errors calculated from different sets of real sensors.

Real sensors
RPEs at node 15 (%) RPEs at node 17 (%) RPEs at node 19 (%)

5% noise 10% noise 15% noise 5% noise 10% noise 15% noise 5% noise 10% noise 15% noise
Nodes 6 and 8 10.11 10.75 11.72 15.00 15.22 15.54 8.91 11.68 15.20
Nodes 6, 8, and 10 6.91 7.11 7.43 9.68 9.84 10.06 6.28 8.19 10.63
Nodes 6, 8, 10, and 12 5.99 6.14 6.38 6.76 6.86 7.00 5.52 6.91 8.77
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Figure 13: Reconstructed responses calculated from nodes 6, 8, 10, and 12 considering 15% noise level. (a) Total time range and node 15.
(b) Local time range and node 15. (c) Total time range and node 17. (d) Local time range and node 17. (e) Total time range and node 19.
(f ) Local time range and node 19.
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carefully considered in practical applications. In addition,
Figure 13 shows the time histories of reconstructed ac-
celeration responses that are calculated from nodes 6, 8,
10, and 12 considering 15% noise level. From this figure, it

can be seen that the reconstructed responses match pretty
well the real ones for each virtual sensor. ,is result means
that the proposed method is feasible and effective in the
considered cases to some extent.

(a) (b)

(c)

x
y

3 m

0.6 m
1.2 m

1.8 m
2.4 m

Impact position
x=1.65 m

(d)

kr

(e)

Figure 14: Experimental setup. (a) Aluminum beam. (b) Data acquisition system. (c) Experimental support. (d) Sensor placement in
experimental test. (e) Finite element model.
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Overall, the above discussions show that the proposed
method can be used for indirectly measuring the accel-
eration responses corresponding to the considered virtual
sensors. ,e proposed method can reduce influences of
the measured noises to some extent. Hence, the estimated
responses shown in this section also have good
robustness.

4. Experimental Verifications

Experimental studies of an aluminum beam are conducted
in a laboratory, as shown in Figure 14. ,e beam has a
length of 3m.,e cross section is a rectangle with 150mm
width and 10mm height. Four accelerometers (B&K)
installed at 0.6 m, 1.2 m, 1.8m, and 2.4m are stuck on the

Table 6: Comparison of the first four natural frequencies.

Orders
Frequencies (Hz)

Relative errors |fe − fa|/fe × 100% Damping ratios (experimental)
Experimental (fe) Analytical (fa)

1st 3.063 3.005 1.89% 1.02
2nd 10.682 10.822 1.31% 0.17
3rd 23.894 23.807 0.36% 0.22
4th 42.271 41.978 0.69% 0.16
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Figure 15: Sensor groups and measured responses. (a) Diagrammatic sketch of sensor groups. (b) Acceleration responses of sensor S1.
(c) Acceleration responses of sensor S3.
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Figure 16: Diagram for selection of regularization parameter in test cases. (a) Case 1. (b) Case 2.
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lower surface of the beam in order to measure the
structural responses. Sensitivity values of the acceler-
ometers are set as the original factory defaults. A data
acquisition system made by China Orient Institute of
Noise & Vibration is used for measuring the structural
responses. ,e sampling frequency is set as 1024Hz.
Furthermore, there are two lightweight foam guides in-
stalled on the upper surface of the beam. Some strain
gauges are installed on the lower surface of the beam.
However, these guides and strain gauges are actually used
for another experiment that is related to moving force
identification.

4.1. Modal Analysis. A modal experiment analysis (MEA) is
firstly carried out. In this step, the beam is impacted by using a

hammer with a hollow soft plastic hammerhead. ,e impact
position is set as x� 1.65m. Acceleration responses aremeasured
by using the installed sensors. Herein, the total sampling time is
selected as 20 s. ,e vibration responses are then applied for
estimating the modal parameters by using software of modal
analysis. ,e measured frequencies are listed in Table 6.

An FEM is built for simulating the experimental beam, as
shown in Figure 14(e). ,e FEM contains 20 beam elements.
Each element has 2 nodes and 4 degrees of freedom. Torsion
spring is added to the end of the beam for restraining the
bending deformation. ,e reason is mainly due to the in-
stallation precision of the beam. In fact, our installation
process is not always meticulous. ,e end of the real beam
and the screws installed on the support are in contact.
Hence, the beam is actually constrained by the screws to
some extent. ,e weight of the experiment beam is obtained
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by using an electronic scale.,en, the density of unite length
can be obtained as ρA� 4.15 kg·m−1. ,e bending stiffness of
the beam and the stiffness of torsion springs are carefully
selected via adjustment many times, and finally these two
values are set as EI� 9.17×102N·m2 and
kr � 2.8×102N·m·rad−1. Comparison of the first four natural
frequencies is presented in Table 6. From Table 6, it can be
seen that the calculated frequencies are close to themeasured
ones. ,ese results actually show the applicability of the
proposed FEM to some extent.

4.2. Vibration Experiment and Response Reconstruction.
,e aluminum beam is continuously impacted by using the
hollow soft plastic hammer. ,e impact location is set as
x� 1.65m. ,e acceleration responses are recorded by using
the installed sensors. All the measured responses are filtered
by using a low-pass filter with stop frequency of 200Hz. In
the following analysis, the responses obtained from two
sensors installed at x� 0.6m and x� 1.8m are applied as the
input of algorithm. ,e responses obtained from the
remaining sensors are used for the evaluation of the
reconstructed results. Figure 15 shows the details of the
sensor groups and the measured responses obtained from
sensors S1 and S3.

Two experimental cases are considered here for
accessing the effectiveness and feasibility of the proposed
method. ,e first one is used to reconstruct the responses at
sensor S2 (Case 1), and the second case is used to estimate
responses at sensor S4 (Case 2). ,e length of moving
window is selected as k� 1024 sampling points.,e length of
overlap between any two adjacent windows is set as k0 � 512
sampling points. Time domain discretization is applied for
expressing the force as we have selected in Section 3.1.1. ,e
first eight orders of the beam are applied for the calculation
of the proposed transmissibility matrix. Herein, the damping
ratios of the first four orders are set as the ones listed in
Table 6, while the ones for other orders are set as 0.16%. ,e
discrete time interval is set as 1/1024 s.

Two maximal acceptable values of the weighted factor ω
are firstly calculated. ,ey are ωmax � 2.0571× 108 and
ωmax � 2.0330×108 for Case 1 and Case 2, respectively. As
the consideration discussed in previous section, the
weighted factor ω will be set as ω� 1 (ω<ωmax) in two

experimental cases. ,e regularization parameter is selected
as we have done in previous section. Herein, it should be
noted that the measurement noises in the laboratory are
relatively small. Hence, the values of lower limit and upper
limit of the RVS, shown in equation (26), can be adjusted
appropriately. ,e acceleration responses obtained via S1, as
shown in Figure 15(b), are taken for roughly determining the
above two limit values. ,e responses corresponding to (0 s,
2 s] and the ones corresponding to (10 s, 12 s] are firstly
extracted. Herein, acceleration responses in the former
segment are regarded as the measurement noises. A ratio of
signal energies corresponding to (0 s, 2 s] and (10 s, 12 s] is
calculated. It is equal to 6.0274×10−6. In view of this, two
values of lower limit and upper limit of the RVS can be set as
10−7 and 10−5, respectively. Figure 16 shows the RVS curves
for selecting the regularization parameters. According to
Figure 16, two regularization parameters are roughly se-
lected as 5×10−4 for two experimental cases.

Comparisons of the measured responses and the
reconstructed responses are shown in Figure 17. From
Figures 17(a) and 17(d), it can been seen that the recon-
structed responses match well the measured responses
throughout the time range in the considered cases. More
details about the reconstructed responses can further be seen
from the other subfigures of Figure 17.,ese four subfigures
actually show us a clearer result; that is, the reconstructed
responses are close to the measured ones. ,is phenomenon
means that the proposed method is feasible and effective in
solving the problem of response reconstruction in the ex-
perimental cases. Furthermore, Figure 18 illustrates the
power spectral densities of the responses. ,ese curves are
estimated by using aMatlab function named pwelch( ). From
Figure 18, it can be seen that two curves match each other
well in some ranges, where they are near to the peaks of the
curve.,is phenomenon shows us that the proposedmethod
can effectively reconstruct the main signal components of
the structural responses. ,ere is a relatively large difference
between two curves in some ranges, where they are near to
the valley values. ,is is mainly because signal energies
corresponding to these frequency ranges are relatively small.
As a result, the response components located in these ranges
are easier to be weakened, when the regularization-based
method is applied for reducing the effects of the measure-
ment noises.
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Figure 18: Power spectral density (PSD). (a) PSD corresponding to S2. (b) PSD corresponding to S4.
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To sum up, the reconstructed results shown in Figures 17
and 18 actually show that good correspondence is found in
both the time and frequency domains for demonstrating the
effectiveness of the proposed F-norm regularization-based
method.

5. Conclusions

,is paper investigates the indirect reconstruction of structural
responses. A novel method based on the concept of trans-
missibility and matrix regularization is proposed. Firstly, a
linear relationship between different measured points is for-
mulated based on the theory of force identification. In this step,
a highlight is that structural responses are reshaped in a form of
matrix so that the proposed method has the ability to deal with
the long-time duration problem. Frobenius norm matrix
regularization is then innovatively introduced for ensuring that
the estimated results are robust to themeasured noises. Herein,
the penalty term is defined as a weighted combination of the
measured structural responses and the estimated ones. ,is is
different from the direct application of the regularization
mathematical model. Finally, the problem of response re-
construction is boiled down to an optimization problem in
mathematics. ,e optimization problem aims at searching an
optimal matrix that represents the structural responses cor-
responding to the real sensors. To verify the effectiveness and
feasibility of the proposed method, numerical simulations and
experimental studies are carried out. Some contributions and
conclusions can be summarized as follows:

(1) Time histories of dynamic force and initial vibration
state of the structure are not required for the pro-
posed method.

(2) ,e proposed method can use a transmissibility
matrix with a small size to formulate a governing
equation so that it can spend less cost on solving the
long-time duration problem. Herein, the length of
moving time window is a key determinant of the size
of transmissibility matrix.

(3) Numerical and experimental studies show that the
proposed method is correct, reasonable, and suitable
for indirectly measuring the structural responses
with a good accuracy.

(4) Case studies indicate that measured noises could
bring negative effects to the estimated structural
responses. However, the negative effects are limited,
and the proposed method is not very sensitive to the
measured noises.

(5) Illustrated results also show that selection of regu-
larization parameter is very important for the ap-
plication of the proposed method. Regularization
parameter with too small value or too large value
could cause a poor estimated accuracy.

(6) In the current investigation, the number of dynamic
forces is equal to one. In addition, the structure is
also relatively simple. ,ese two may be different
from the complex engineering practice. Further-
more, the selection of regularization parameter still

depends on experience. Hence, future works are
expected to conduct in-depth research on the above
problems.
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