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*e reduced-order model can accurately and efficiently predict unsteady problems in many aerospace engineering applications.
*e traditional reduced-order model based on proper orthogonal decomposition (POD) and Galerkin projection has poor
robustness and large error in predicting complex problems. In this paper, a reduced-order model combining POD and deep
learning is proposed to predict cavity flow oscillations under different flow conditions. Firstly, POD modes and corresponding
coefficients are obtained by POD. *en, two deep learning frameworks, including multilayer perceptron (MLP) and long short-
term memory (LSTM) neural networks, are used to predict the future POD coefficients, respectively. Finally, the cavity flow
oscillations across multi-Mach numbers are predicted by the PODmodes and the future coefficients.*e results show that both of
these frameworks can accurately predict cavity flow oscillations when the flow conditions change, and the time cost is reduced by
order of magnitude. In addition, due to the performance of LSTM is better than that of MLP, its calculation speed is faster.

1. Introduction

Cavity flow oscillations exist in many aerospace engineering
fields [1–4], such as weapon bays [5, 6] and landing gears
[7, 8]. *e physical mechanism in a cavity is complex. *e
shear layer above the cavity generates a vortex, which col-
lides with the trailing wall to generate sound waves. *e
generated sound waves radiate forward and continue to
excite the shear layer to generate new vortices. *is process
causes intense pressure oscillations in the cavity. *e study
of oscillation characteristics in the cavity is helpful to un-
derstand the mechanism of cavity noise and suppress cavity
noise.*erefore, the cavity flow oscillation issue has received
more and more attention [9–11]. *e experimental inves-
tigations of cavity flow oscillations are usually carried out in
wind tunnels or water tunnels. *e maintenance of exper-
imental equipment and the complexity of working condi-
tions require many costs, while computational fluid
dynamics (CFD) can effectively solve this problem. It not
only fundamentally changes the design process of aerospace

vehicles but also effectively reduces the number of experi-
ments and deeply understands the physical mechanism.

CFD numerical simulation mainly includes direct nu-
merical simulation (DNS) [12–14], Reynolds averaged
Navier–Stokes (RANS) [15, 16], and large eddy simulation
(LES) [17–19]. DNS is a direct high-fidelity method for
solving Navier–Stokes equations, which requires very fine
grids. *erefore, when the flow conditions change, the
calculation cost will increase sharply.

In order to effectively reduce the calculation cost in
engineering practice, the research of reduced-order model
(ROM) has been widely concerned. Since the 1990s, re-
searchers [20, 21] have developed a variety of unsteady
ROMs. On the one hand, ROM can save expensive calcu-
lation costs. On the other hand, it can effectively extract the
main characteristics of the flow field and provide a theo-
retical basis for analyzing the mechanism and oscillation
characteristics of complex systems.

Proper orthogonal decomposition (POD) is an efficient
method for establishing a ROM. Rowley et al. [12] and
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Golerfelt [22] accurately predicted the oscillation in a cavity
that has a ratio of L/D � 2 by POD and Galerkin projection.
POD modes were obtained by extracting a series of or-
thogonal bases, and the high-dimensional governing
equations were transformed into the low-dimensional or-
dinary differential equations by the Galerkin projection.

*e traditional method applying POD and Galerkin
projection can establish the ROM, but the robustness of the
method is poor [23–25]. In order to effectively solve non-
linear problems, deep learning is introduced in this work. As
an important branch of machine learning, deep learning [26]
has been widely recognized and developed in many appli-
cations [27–32], such as speech recognition [27, 28] and
image processing [29, 30].*e excellent ability to process big
data and nonlinear relationships makes deep learning de-
velop rapidly in the fluid mechanics for recent several years.
In 2016, Ling et al. [33] realized deep learning of RANS
turbulence model by embedding Galileo invariants into the
deep neural network structure and predicted the channel
flow and separated flow. It is considered the first combi-
nation of deep learning and fluid mechanics [34]. Miya-
nawala and Jaiman [35] realized the prediction of flow
characteristics in the wake region of a two-dimensional
cylinder by convolution neural network (CNN). Lee and
You [36] applied generated antagonistic network (GAN) to
predict the laminar vortex shedding over a cylinder.

In this work, ROMs are based on multilayer perceptron
(MLP) and long short-term memory (LSTM) neural net-
work for predicting cavity flow oscillations when the Mach
number changes are established, respectively. Although
there is some literature on establishing the ROM by deep
learning, they are mainly applied to simple incompressible
flows. For example, Yu and Hesthaven [23] proposed a flow
reconstruction method based on POD and artificial neural
network (ANN). *ey validated the efficiency of this ap-
proach in two-dimensional viscous nozzle flows, an inviscid
M6 wing flow, a viscous hypersonic flow of a complex
configuration, and an unsteady two-dimensional Riemann
problem. San et al. [25] also proposed an efficient framework
based on POD and ANN and accurately predicted a non-
linear wave-propagation problem. *e compressible cavity
flow is extremely unsteady and complex. *ere are intense
flow oscillations in the cavity. *ere are complex nonlinear
interactions among the shear layer, vortex, sound waves, and
cavity walls. Even a small change in Mach number will make
the internal oscillation of the cavity change unpredictably. It
is meaningful to establish the ROMof cavity flow oscillations
across multi-Mach numbers based on deep learning.

In addition to the approach proposed in this paper,
nonlinear approaches (such as autoencoders) can be the
substitute for POD, but the establishment of the ROM is
completely different. *e ROM proposed in this paper can
obtain the flow field distributions of the multiple physical
quantities through the predicted POD coefficients. However,
nonlinear approaches can only obtain the flow field distri-
butions of the input physical quantity. We need to readjust
the hyperparameters and retrain the neural network if we

want to obtain the flow field distributions of other physical
quantities. Furthermore, although POD is a linear approach,
the loss of efficiency in the intrusive ROM frameworks can
be compensated by nonintrusive reduced-order models
(NIROMs) [37–39]. *erefore, we did not try to use non-
linear approaches for the approximation of the solution
space.

*e paper is organized as follows: Section 2 introduces
the basic mathematical process of POD. *e theory and
characteristics of MLP and LSTM neural networks are de-
scribed in Section 3 and Section 4. Moreover, Section 5
discusses POD results and the predicted results applied MLP
and LSTM neural networks, respectively. Finally, conclu-
sions are summarized in Section 6.

2. Proper Orthogonal Decomposition

*e snapshots PODmethod [40] is applied in this work. *e
snapshots q(x, tk) � qk(x) | k � 1, 2, . . . , N , q � [u, v, c],
where c is the sound speed. *e snapshots are divided into
the average quantity and the pulse quantity:

qk(x) � q(x) + qk
′(x), (1)

where q(x) � (1/N) 
N
k�1 qk(x). We hope to obtain a set of

optimal orthogonal bases:

φ(x) � φi(x) | i � 1, 2, . . . , M, M≤N . (2)

*e kth pulse quantity can be approximated as

qk
′(x) ≈ 

M

i�1
ai tk( φi(x), (3)

where ai(tk) is the coefficient of the ith POD mode con-
stituting the kth snapshot.

*e snapshot qk
′ (x) and the basis function φi(x) are in

the same spatial domain, so φi(x) can be represented by a
linear combination of all snapshots:

φi(x) � 
N

k�1
Ai tk( qk

′ (x), (4)

where Ai(tk) is a complex coefficient. In order to obtain the
orthogonal basis φi(x), the above problem can be converted
into the eigenvalue problem [41]:

CmnAi � λiAi, (5)

where Ai is the coefficients matrix, Ai � [Ai(t1),

Ai(t2), . . . , Ai(tN)], λi is the eigenvalue of the i th mode, and
Cmn is a N × N self-adjoint matrix (m, n � 1, 2, . . . , N),
which is calculated by

Cmn �
1
N
〈qm
′ (x), qn
′ (x)〉. (6)

*e inner product of energy based on isentropic as-
sumption is applied as follows [42, 43]:
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〈qm
′ , qn
′ 〉 � 

S
um
′ un
′ + vm
′ vn
′ +

2
c(c − 1)

cm
′ cn
′ dS. (7)

*e eigenvalue decomposition of the matrix Cmn is
obtained.*e eigenvector matrix is A, and the eigenvalues λi

are arranged in descending order.

3. Multilayer Perceptron

Artificial neural networks are often referred to as neural
networks or multilayer perceptrons. Multilayer perceptron,
also known as multilayer perceptron neural network, is a
traditional supervised learning method that simulates hu-
man neurons [44]. When dealing with the nonlinear re-
gression problem, it can approach the actual mapping
relationship between input feature space X and output tag
vector Y infinitely by learning nonlinear functions. Per-
ceptron is a single neuron model, which is the precursor of
the large neural network [45]. *e power of neural networks
lies in their ability to represent the training data and how to
relate it to the output variables you want to predict [46].
Mathematically, they can learn any mapping function and
have been proved to be a general approximation algorithm
[47]. *e prediction ability of a neural network comes from
the hierarchical or multilayer structure of the network [48].
Data structures can select (learn to represent) features of
different scales or resolutions and combine them into
higher-order features [49].

*e basic MLP structure includes the input layer, hidden
layer, and output layer, in which the number of the hidden
layer can be more or less [45]. Each layer is composed of
many nodes. *e node of each layer is a neuron. Except that
the input layer needs to deal with the input characteristics,
the other neurons have a nonlinear activation function, and
all neurons are fully connected with the next layer. A simple
MLP framework with a single hidden layer is shown in
Figure 1. *ere are N nodes in the hidden layer. *e POD
coefficient of every POD mode at the current time instant
ai(tk) is regarded as the input layer. *e POD coefficient of
each POD mode at the next time instant ai(tk+1) is regarded
as the output layer. *e mathematical formula can be
expressed by

ai tk+1(  � f ai tk( ; W, c, w, b(  � w
T max 0, W

T
x + c  + b,

(8)

where W and w is the weight in the mapping from the input
layer to the hidden layer and from the hidden layer to the
output layer, respectively. c and b is the bias in the mapping
from the input layer to the hidden layer and from the hidden
layer to the output layer, respectively.

*e rectified linear unit (ReLu) is selected as the acti-
vation function. ReLu is the most common activation
function at present, which can effectively solve the gradient
disappearance problem of sigmoid and tanh, and its con-
vergence speed is much higher than that of sigmoid and tanh
[50]. *e superiority of ReLu has been proved in many
studies [51, 52]. *e training of the neural network is based
on the backpropagation algorithm. *e parameters of each

node are updated layer by layer in real time. In addition, the
adaptive moment estimation (Adam) algorithm [53] is used
to find the optimal solution of the weight and bias, which is
an excellent gradient optimization algorithm. Its main ad-
vantage is to use the same learning rate for each parameter
and adapt independently as the learning progresses [54].*e
loss function is the mean-absolute-error. Comparisons of
the activation functions and optimizers are shown in Fig-
ure 2. It can be found that the results predicted by the
framework with the ReLu activation function and the Adam
optimizer are the most accurate. Although the results by the
ReLu and tanh are almost the same, the computational speed
by ReLu is faster than that by tanh. *erefore, the ReLu
activation function and Adam optimizer are used in this
work.

4. Long Short-Term Memory Neural Network

LSTM is a special kind of recurrent neural network (RNN),
which is good at processing time sequence data. *e tra-
ditional neural network cannot achieve continuous memory,
but RNN can solve this problem. When the traditional RNN
processes long sequences, RNN may face the problem that
the gradient disappears or bursts [55].

LSTM can create a path that allows the gradient to flow
sustainably for a long time by introducing controllable
self-circulation.*e architecture of the LSTM cell is shown
in Figure 3. *e reason why LSTM can remember long-
term information lies in the design of the gate structure,
which is a way to allow information to pass selectively. *e
LSTM cell contains the forget gate, input gate, and output
gate. *e specific mathematical process [56, 57] is as
follows.

*e input of the forgetting gate is the output of the above
layer ht−1 and the sequence data xt.*e outputft is obtained
by a sigmoid activation function. *e output value is in the
range of [0, 1], which indicates the probability that the state
of the cell in the previous layer will be forgotten, 1 is
completely reserved, and 0 is completely abandoned:

ft � σ Wf ht−1, xt  + bf . (9)

*e next step is to decide what information we want to
keep in the neuron cell, which consists of two parts. First, a
sigmoid layer called the input gate layer determines the
values we want to update. *en, a tanh layer generates a new
candidate value, Ct, which is added to the neuron state:

Input
layer

Hidden
layer

Hidden
layer

Hidden
layer

Hidden
layer

Output
layer

ai (tk+1)ai (tk)

Figure 1: MLP architecture.
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it � σ Wi ht−1, xt  + bi( ,

Ct � tanh WC ht−1, xt  + bC( .
(10)

In order to obtain the current cell state, the forgotten
state of the last cell obtained through the forget gate is added
to the new information after screening:

Ct � ft ∗Ct−1 + it ∗ Ct. (11)

*e output gate is used to control how much of the cell
state of the layer is filtered. Firstly, the sigmoid activation
function is used to get the output gate ot. *en, the output ht

in the current layer is obtained by that the cell state Ct

disposed by the tanh activation function multiplies with ot:

ot � σ Wo ht−1, xt  + bo( ,

ht � ot ∗ tanh Ct( .
(12)

In the above formulas, σ and tanh are the sigmoid and
tanh activation functions, respectively, which are shown as

σ(x) �
1

1 + e
− x, (13)

tanh(x) �
e

x
− e

− x

e
x

+ e
−x . (14)

5. Results and Discussion

5.1. *e Whole Architecture. In this work, the cavity flow
oscillations are numerically simulated by direct numerical
simulation (DNS).*e flow chart of the ROM for cavity flow
oscillations is shown in Figure 4. *e goal of this work is to
combine POD and deep learning to predict cavity flow
oscillations across multi-Mach numbers. *e specific pro-
cess of this method can be divided into five steps:

(1) Select the cavity velocity fields at Ma� 0.51, 0.52 to be
used as the training datasets and velocity fields at
Ma� 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6 to be
used as the test datasets.

(2) Achieve dominant POD modes and their corre-
sponding POD coefficients of the training and test
datasets, respectively. *e POD coefficients of the
test dataset will be compared with the true simula-
tion results.

(3) Train MLP/LSTM neural networks for the dominant
POD modes.

(4) Use the test dataset POD coefficients to predict the
coefficient at the next time instant. Repeat this step
for all the dominant POD modes.

(5) Use PODmodes and theMLP/LSTM predicted POD
coefficients to reconstruct the velocity field.

5.2. DNS Results. *e cavity flow oscillations across multi-
Mach numbers are obtained by 2D DNS in the OpenFOAM
open-source software. In our previous work [58], the sim-
ulation details and grid convergence have been described,
and the accuracy of the simulation method has also been
verified. *e sonicFoam solver is applied, which is based on
the PISO (pressure implicit with splitting of operator) al-
gorithm. *e time derivative discretization is the Euler
scheme, the gradient discretization is the Gauss linear
scheme, and the divergence discretization is the Gauss
upwind scheme.*e baseline rectangular cavity has a length-
to-depth ratio of L/D � 4 and L/W � 0.5, p∞ � 70422 Pa,
T∞ � 294.5K, and Ma � 0.5 , ReD � 5,000. *e nonuniform
mesh, which is dense near the cavity wall, is used. *e
number of grid points within the cavity is 260 × 200 and
312 × 240, as shown in Figure 5. *e Strouhal numbers are
compared with the theoretical and experimental results, as
shown in Table 1.*e theoretical results are calculated by the
modified Rossiter’s formula [59]. *e Strouhal numbers
obtained by the present DNS are consistent with the the-
oretical and experimental results.
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Figure 2: Comparisons of the activation functions and optimizers.
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Figure 5: Cavity mesh structure [58].

Table 1: Comparison of Strouhal numbers with the theoretical and experimental results.

1st 2nd 3rd 4th
*eory [59] 0.334 0.780 1.226 1.672
Experiment [60] 0.403 0.885 1.367 1.897
Present DNS 0.439 0.878 1.317 1.756
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5.3. POD Analysis. *e POD analysis was conducted on the
velocity fields of cavity flow oscillations at different Mach
numbers to extract the dominant POD modes and the
corresponding coefficients. *e eigenvalue λi reflects the
energy that the POD mode holds. It is now generally ac-
cepted that the 99% energy is enough to reconstruct the flow
field. *e eigenvalues and the cumulative eigenvalues for
cavity flow oscillations at Ma � 0.51, 0.6 are shown in Fig-
ure 6. *e low-order modes occupy the highest energy. *e
first two modes occupy 78% of the energy at a Mach number
of 0.51 and 77% at a Mach number of 0.6. *e eigenvalues at
the lower orders are almost identical at the two Mach
numbers, but there are differences at the higher orders. *is
is due to the increase of Mach number, the increase of
airflow velocity in the cavity, and the more complicated flow
structure. Whether Ma� 0.51 or 0.6, 13 POD modes already
occupy 99% of the energy, so we extract the first 13 POD
modes and their corresponding coefficients.

*e most important requirement for deep learning is
that the data has some common features. *e totally dif-
ferent data cannot be well learned. In order to test the
similarity of the POD modes at different Mach numbers, the
first two POD modes at Ma� 0.51 and Ma� 0.6 are com-
pared, as shown in Figure 7. PODmode 1 and mode 2 at two
Mach numbers have three large-scale structures, which are
located near the leading edge, the middle of the cavity, and
the trailing edge, respectively. Mode 2 also has a small-scale
structure at the trailing edge corner. Although these large-
scale structures are different in size and direction, their
position and shape are similar. *e flow structures at dif-
ferent Mach numbers are qualitatively similar, but there are
differences in size and direction. *ese differences are ir-
regular and unpredictable.

5.4. MLP and LSTM Frameworks

5.4.1. Selection of Parameters. In this part, we employ MLP
and LSTM frameworks to predict the POD coefficient of the
first POD mode. *e performance of the two neural net-
works depends on the selection of parameters such as the
number of layers, the number of nodes in the hidden layer,
the number of iterations, and the learning rate. In order to
achieve better performance, we manually adjust these pa-
rameters. *e effects of these parameters on the model
performance are shown in Tables 2 and 3, respectively.
Increasing the number of nodes and layers of the hidden
layer will improve the performance of the model, but it will
also lead to overfitting of the training data. If the learning
rate is too small, the calculation time will be too long. If the
learning rate is too large, and the optimal solution may be
missed. *e number of iterations corresponds to the
learning rate. If the learning rate is small, the number of
iterations will be more, and if the learning rate is large, the
number of iterations will be less. If the batch size is too large,
the convergence speed of the model is slow. If the batch size
is too small, the model will not converge.

In the MLP1, MLP2, MLP3 framework, when there are
10 nodes, the test loss is the smallest, and there is little

difference in the training loss. *erefore, the number of
nodes is fixed at ten. *e number of hidden layers is in-
creased to 2 and 3 layers. *e results show that the training
loss of MLP5 is the smallest, and there is little difference in
the test loss. In addition, with the increase or decrease of the
learning rate, the test loss does not decrease. With the in-
crease of iterations, the training loss and test loss will de-
crease slightly, but the calculation cost will increase. *e
optimal LSTM framework can also be determined by using
the same single variable method. *erefore, considering the
training loss, test loss, and calculation cost, we choose the
network framework MLP5 and LSTM7.

5.4.2. Predicted PODCoefficients. *e key to establishing the
ROM is to predict POD coefficients accurately. Its accuracy
directly affects the accuracy of the reconstructed velocity
field across multi-Mach numbers. Figure 8 shows the time
evolution curves of different modal coefficients achieved by
the MLP and LSTM framework. Due to the limited space in
the paper, we only list the first four POD modal coefficients
across partial test Mach numbers.

*e coefficients predicted by MLP and LSTM frame-
works are very similar to the real coefficients. *e predicted
coefficients can well reflect the change of the POD coeffi-
cients. No matter when Mach numbers are 0.53, 0.57, 0.6, or
even other Mach numbers not shown in this paper, the
predicted coefficients are not much different from the real
coefficients. However, it is worth noting that, in the case of
higher order, the deviation between the predicted coefficient
and the real coefficient will increase, which is determined by
the high instability and nonlinearity of the higher-order
modal coefficients. Because the energy occupied by higher-
order POD modes is extremely low, it has little influence on
the final velocity field reconstruction results. In addition, we
also find that the coefficients predicted by the MLP
framework have small fluctuations in some positions, which
may be caused by the method only considering the infor-
mation of the current time instant.

In order to analyze the training results in more detail, the
training and test loss obtained by different frameworks are
shown in Figure 9. In general, under the same number of
iterations, the training loss and test loss of LSTM are smaller
than those of MLP (except for the second modal coefficient),
and the LSTM framework can achieve convergence with
fewer iterations. *is shows the superiority of the LSTM
framework in dealing with time series problems. *e
comparison of the two frameworks will be described in
Section 5.4.4.

5.4.3. Velocity Field Reconstruction. According to the pre-
dicted coefficients and POD modes, the reconstructed ve-
locity field can be obtained. Figure 10 and Figure 11 show the
velocity field simulated by DNS and predicted by two deep
learning frameworks at Ma� 0.54 and 0.6. Both of these two
deep learning frameworks can accurately capture large-scale
structures in instantaneous velocity fields. *e results of
contours at other Mach numbers are similar. It shows that
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Figure 6: (a) Eigenvalues and (b) cumulative eigenvalues for cavity flow oscillations at Ma� 0.51, 0.6.
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Table 2: Training loss and test loss of MLP frameworks with different parameters.

Framework Number of nodes Number of hidden layers Learning rate Number of iterations Training loss Test loss
MLP1 10 1 0.001 5000 0.11768 0.11003
MLP2 20 1 0.001 5000 0.11705 0.11007
MLP3 50 1 0.001 5000 0.11722 0.11050
MLP4 10 2 0.001 5000 0.11069 0.10551
MLP5 10 3 0.001 5000 0.10836 0.10566
MLP6 10 3 0.0001 5000 0.11645 0.10973
MLP7 10 3 0.01 5000 0.10617 0.10939
MLP8 10 3 0.001 10000 0.10665 0.10487
MLP9 10 3 0.001 50000 0.10217 0.10835

Table 3: Training loss and test loss of LSTM frameworks with different parameters.

Framework Number of nodes Number of epochs Batch size Training loss Test loss
LSTM1 10 150 32 0.11912 0.09644
LSTM2 20 150 32 0.11837 0.09507
LSTM3 50 150 32 0.11900 0.09697
LSTM4 20 50 32 0.13180 0.10413
LSTM5 20 300 32 0.11859 0.09799
LSTM6 20 150 8 0.11930 0.09703
LSTM7 20 150 64 0.12269 0.09310
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Figure 8: *e first four POD modal coefficients predicted by MLP and LSTM at Ma� 0.53, 0.57, and 0.6. (a) a1(t) at Ma� 0.53. (b) a1(t) at
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Figure 10: *e reconstructed velocity field by DNS and deep learning frameworks at Ma� 0.54. (a) DNS (tU∞/L� 98.26), (b) DNS (tU∞/
L� 101.57), (c) MLP (tU∞/L� 98.26), (d) MLP (tU∞/L� 101.57), (e) LSTM (tU∞/L� 98.26), and (f) LSTM (tU∞/L� 101.57).
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Figure 11: *e reconstructed velocity field by DNS and deep learning frameworks at Ma� 0.6. (a) DNS (tU∞/L� 98.26), (b) DNS (tU∞/
L� 101.57), (c) MLP (tU∞/L� 98.26), (d) MLP (tU∞/L� 101.57), (e) LSTM (tU∞/L� 98.26), and (f) LSTM (tU∞/L� 101.57).
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Figure 12: Comparison of the time trace of velocity. (a) Ma� 0.53, (b) Ma� 0.54, (c) Ma� 0.55, (d) Ma� 0.56, (e) Ma� 0.57, (f ) Ma� 0.58,
(g) Ma� 0.59, and (h) Ma� 0.6.
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Figure 13: Comparison of RMSE predicted by two deep learning frameworks (Ma� 0.53, 0.54, 0.55). (a) RMSE (MLP,Ma� 0.53), (b) RMSE
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Ma� 0.55).
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the ROMs based on the MLP or LSTM framework are ac-
curate and reliable.

In order to further analyze the reconstruction results in
detail, Figure 12 compares the time trace of velocity at the
monitor (x/L� 0.9, 0). It can be seen from the figure that the
shapes of time trace curves of the velocity across different
Mach numbers are basically the same, but their magnitudes
are different. *e two deep learning frameworks can capture
the speed value at all Mach numbers. *e prediction results
by the LSTM framework are more stable and will not
oscillate.

5.4.4. Comparison ofMLP and LSTMFrameworks. From the
above analysis of reconstruction results, it can be seen that
the MLP and LSTM frameworks can well predict the flow
field in the future, but MLP has a certain degree of oscil-
lation. In order to further compare the performance of the
two frameworks, Figure 13–15 compare the root mean
square error (RMSE) of the reconstruction results. Except at
a Mach number of 0.53, the RMSE predicted by the LSTM
framework is slightly larger than that by the MLP frame-
work. At all other Mach numbers, the RMSE predicted by
the LSTM framework is obviously lower than that by the
MLP framework. Especially at Mach number 0.54, the
maximum RMSE predicted by the MLP framework is 0.05,
while the maximum RMSE predicted by the LSTM frame-
work is 0.025. In addition, all the maximum RMSEs occur
near the cavity leading edge, which may be related to the
instability of speed caused by inflow passing through the
cavity leading edge.

*e calculation time of the ROM in this paper mainly
includes the time of POD analysis and the training time of

deep learning frameworks. Table 4 compares the calculation
time of these two ROMs with the DNS simulation. All the
calculations were carried out on a computer with 44 cores
(Intel Xeon E5-2699) and 256GB RAM, and these calcula-
tions are based on a single core. As can be seen from the table,
both of the two deep learning frameworks can significantly
reduce the calculation time by order of magnitude on average.
*e LSTM framework has the least calculation time.

6. Conclusions

In this paper, a reduced-order model based on POD and
deep learning was established for predicting cavity flow
oscillations across multiple Mach numbers. *e specific
conclusions are concluded as follows:

(i) After the POD analysis of the numerical simulation
data, the first 13 POD modes were extracted, which
occupy 99.9% of the energy. *e POD modal
structures at Ma� 0.51, 0.6 are qualitatively similar,
so the deep learning method can accurately learn
their common features. In addition, their size and
direction are different, and the variation between
different Mach numbers is irregular and unpre-
dictable. *erefore, it is of great significance to
establish the reduced-order model of cavity flow
oscillations across multi-Mach numbers.

(ii) By comparing the predicted coefficients with the
actual POD coefficients, it is found that the MLP
and LSTM frameworks can accurately predict the
POD coefficients, but there are some small oscil-
lations in the coefficients predicted by the MLP
framework.
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Figure 15: Comparison of RMSE predicted by two deep learning frameworks (Ma� 0.59, 0.6). (a) RMSE (MLP, Ma� 0.59), (b) RMSE
(LSTM, Ma� 0.59), (c) RMSE (MLP, Ma� 0.6), and (d) RMSE (LSTM, Ma� 0.6).

Table 4: Comparison of the calculation costs between DNS, MLP, and LSTM.

Method POD time (s) Training time (s) Total time (s) Time reduction (s)
DNS 0 0 2976 -
ROM (MLP) 176 572 748 2228
ROM (LSTM) 176 169 345 2631
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(iii) Both of the frameworks can accurately reconstruct
the velocity field at different Mach numbers, but the
results reconstructed by the LSTM framework are
more accurate, and the root mean square error is
smaller than the results reconstructed by the MLP
framework. Comparing the total computation time
of the two frameworks with DNS, it is found that the
time computed by the ROM proposed in this paper
is reduced by at least one order of magnitude and
that by the LSTM framework is the least.

Nomenclature

D: Depth of cavity (m)
L: Length of cavity (m)
M: Number of POD modes
Ma: Mach number
N: Number of POD snapshots
p: Pressure (Pa)
Re: Reynolds number
T: Temperature (K)
t: Time (s)
u, v: x, yCartesian components of velocity fluctuation (m/s)
U∞: Free stream velocity (m/s)
W: Width of cavity (m).
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