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)is study presents the multi-stepped functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate model for
the first time, and its free and forced vibration is analyzed by employing the domain decomposition method. )e segmentation
technique is employed to discretize the structure along the length direction. )e artificial spring technique is applied to the
structural boundary and piecewise interface for satisfying the boundary conditions and the combined conditions between
subplates. Based on this, the boundary conditions of subdomains could be considered as a free boundary constraint, reducing the
difficulty in constructing the allowable displacement function. Since all the structures of subdomains are identical, the allowable
displacement functions of them can be uniformly constructed using the two-dimensional ultraspherical polynomial expansion.
)e potential energy function of the plate is derived from the first-order shear deformation theory (FSDT). )e allowable
displacement function is substituted into the potential energy function, and then the natural frequencies and mode shapes of the
multi-stepped FG-CNTRC plate are decided by using the Rayleigh–Ritz method. )e accuracy and reliability of the proposed
method are confirmed by the results of the previous literature and finite element method (FEM). On this basis, the influences of
the geometric and material parameters on free and forced vibration of the multi-stepped FG-CNTRC plate are also studied.

1. Introduction

As the advanced manufacturing technology is rapidly de-
veloped, the FG-CNTRC has appeared as a prospective kind
of composites in the past few years. )e FG-CNTRC is
composed of carbon nanotubes (CNTs) and functionally
graded materials (FGMs) and considered as the advanced
material with extraordinary mechanical, optical, thermal,
and electrical features. Because of its excellent features, a lot
of experimental and theoretical research studies have been
conducted to study its mechanical and thermomechanical

characteristics [1–5]. )e basic research of Shen [6] on the
bending behavior of CNT reinforced composite plates in-
dicated that the bending moments of the plates can be
significantly enhanced by introducing the functionally
graded distribution of CNTs in a polymeric matrix. In ad-
dition, lots of efforts were made to study the FG-CNTRC
beams, plates, and shells of various forms. Liew et al. [7]
brilliantly summarized these investigations, in which the
mechanical behavior of FG-CNTRC structures was de-
scribed in detail including static vibration, dynamic vibra-
tion, free vibration, buckling and post-buckling, and linear
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and non-linear analysis. )e wide range of investigations on
the free vibration analysis has firstly paid attention to the
analysis of the vibrational behavior of functionally graded
materials [8–15]. )en, the research was enlarged to the
analysis of the FG-CNTRC. )e following paragraphs il-
lustrate several research studies related to the analysis of the
free vibration of FG-CNTRC shell structures. Applying the
FSDT, Zhu et al. [16] studied the bending and free vibration
behavior of thin-to-moderately thick FG-CNTRC plates by
employing the finite element method. Zhang and his co-
authors introduced several results on the vibrational be-
havior of FG-CNTRC rectangular [17], triangular [18], and
skew [19] plates. In addition, Zhang et al. analyzed the free
vibration characteristics of FG-CNTRC cylindrical panels
[20]. In these articles, the FSDT theory and the kp-Ritz
method were employed to obtain the governing equations of
the cylindrical panels, and the influence of the distribution
and volume fraction of CNTs was also studied.

Recently, an interesting study concerning the free vi-
bration analysis of arbitrarily shaped FG-CNTRC plates was
introduced by Fantuzzi et al. [21]. In this study, the FSDT
theory was applied for the approximation of the displace-
ment field of nanoplates, and the mapping of arbitrary
shapes with holes and discontinuities of nanoplates rein-
forced by CNTs was conducted using the Non-Uniform
Rational B-Spline (NURBS) curves. Based on the FSDT
theory, Malekzadeh et al. [22, 23] analyzed the free vibration
characteristics of laminated plates with FG-CNTRC layers
using the differential quadrature method (DQM) for the
numerical solutions. )e comparative results of the natural
frequencies, which were obtained by applying the extended
rule of mixture, Eshelby–Mori–Tanaka method, and FSDT
theory, respectively, were presented byMehrabadi et al. [24].
)e parametric studies were also provided, in this research,
to analyze the effects of different kinds of CNTs and geo-
metrical parameters on the free vibration characteristics of
FG-CNTRC plates. In addition, Kiani studied the free vi-
bration behavior of different types of FG-CNTRC plates [25]
and skew plates [26]. Using the FSDT theory to describe the
kinematics of the considered structure, Mirzaei and Kiani
[27] employed the Ritz method to obtain the vibrational
solutions, and they summarized the research studies men-
tioned above which were studying the influence of carbon
nanotube reinforcements on the improvement of the vi-
brational behavior of FG-CNTRC structures. Mirzaei and
Kiani applied the framework of the FSDT theory to inves-
tigate the natural frequencies of FG-CNTRC plates with
cutout. In this research, the Ritz method with Chebyshev
basis polynomials was used to find the numerical solutions,
and it was shown that this solution method was effective for
the arbitrary in-plane and out-of-plane boundary conditions
of the FG-CNTRC plate. In other studies, Kiani applied the
piezoelectric effect to the CNTRC plates [28], and the effect
of electrical parameters on the fundamental frequency of
FG-CNTRC piezoelectric plates was considered under the
two kinds of electrical boundary conditions such as closed
circuit and open circuit. Wang et al. [29] proposed a stepped
functionally graded piezoelectric material (FGPM) plate
model for the first time and studied its free and forced

vibration by using the domain energy decomposition
method. Based on the widely used FSDT, lots of other re-
search studies on the free and forced vibrations analysis of
FG-CNTRC plate structures have also been conducted
[30–33]. Selim et al. [34] analyzed the free vibration behavior
of FG-CNTRC plates based on Reddy’s higher-order shear
deformation theory (HSDT) and element-free kp-Ritz
method in the thermal environment. Parametric effects such
as CNTdistribution, boundary conditions, plate aspect ratio,
plate thickness-to-width ratio, and CNT volume fraction on
the dimensionless frequencies were also examined. In the
same way, Mehar et al. [35] conducted the vibration analysis
of carbon nanotube reinforced composite plates. In addition,
Wattanasakulpong and Chaikittiratana [36] studied the
static and dynamic analysis of FG-CNTRC plates resting on
the Pasternak elastic foundations. )e governing equations
were derived from the HSDT theory, and the accurate so-
lutions were obtained to study the static as well as the vi-
brational behavior of such behavior. In addition, the
vibration analysis of FG-CNTRC structures such as beam
[37–41], panel [42–50], and shells [34, 51–58] has been also
widely conducted.

As can be seen from the previous works, until now, the
research on the FG-CNTRC plate has been mainly focused
on the non-stepped plates with uniform thickness, and the
multi-stepped FG-CNTRC plate has not been studied yet.
Moreover, from the consideration of previous research
studies, it can be known that it is still important to develop
the simple and efficient integrated solution method for the
free and forced vibration analysis of the multi-stepped
plates. )erefore, the purpose of this study is to provide the
integrated solution method for the free and forced vibration
analysis of the multi-stepped FG-CNTRC plates. In this
research, a unified modeling method is employed to con-
struct the dynamic characteristic analysis model of multi-
stepped FG-CNTRC plate. Within the framework of the
domain decomposition method, the rectangular plates are
segmented along the length direction using the segmenting
technology, and then, the thickness of each subplate is taken
differently, so that the stepped rectangular plates are con-
structed successfully. )e potential boundary and combined
conditions of segmented interfaces are obtained through the
application of artificial spring technique. )e allowable
displacement functions in subdomains are established using
the two-dimensional ultraspherical polynomials. In addi-
tion, the global potential energy functional of the multi-
stepped FG-CNTRC plate is constructed by employing the
FSDT. )e polynomials’ unknown coefficient is treated
using the standard variational operation to study the dy-
namic characteristics of the FG-CNTRC plate. )e con-
vergence and accuracy of the proposed model are validated
using numerical examples.

2. Formulation

2.1. Model of the Multi-Stepped FG-CNTRC Plate.
Figure 1 shows the calculation model of the multi-stepped
FG-CNTRC plate. As can be seen in Figure 1(a), the multi-
stepped plate consists of several subplates with different
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thicknesses in x and y directions, and the lengths of indi-
vidual subplates are expressed as ai (i= 1, 2, . . .) and bj (j= 1,
2, . . .) in x and y directions, respectively.

Also, the heights of individual subplates are indicated as
hi. In this research, the heights of individual subplates are
expressed as h1 and h2 for the convenient calculation, and
u, v, andw are the displacements in x, y, z directions, re-
spectively. )e artificial spring technique is introduced for
the generalization of boundary conditions, and the four sides
of the plate are modeled to be supported by the artificial
springs (Figure 1(b)).

Each side has a boundary spring group consisting of
three artificial springs (ku, kv, kw) and two rotating artificial
elastic springs (kφ, kθ), and the boundary condition can be
generalized by adjusting the stiffness of individual springs.
)e boundary conditions at four sides are expressed by
adding subscript 0 at x= 0 and y= 0 boundary and subscript
1 at x= a and y= b boundary. )e stepped plates can be seen
to be made up of the strong combinations of the individual
subplates, and the connective condition can be modeled in a
similar way with the boundary condition. )at is, by setting
the stiffness of connective springs as infinity, the strong
connective condition of individual plates can be accom-
plished. Figure 1(c) shows the connective conditions of
individual plates.

2.2.MaterialProperties. )e stepped plate considered here is
composed of the isotropic matrix reinforced with CNTs.)e
distribution of CNTs in the matrix can be either uniform or
functionally graded according to the thickness of plates.
Figure 2 shows five types of CNT distributions such as UD-
CNTRC, FG-Λ CNTRC, FG-V CNTRC, FG-X CNTRC, and
FG-O CNTRC.

)e CNT volume fractions VCNT in the various kinds of
FG-CNTRC plates are indicated as follows [57, 58]:

VCNT(z) �

V
∗
CNT, (UD − CNT),

1 +
2z

h
􏼒 􏼓V

∗
CNT, (FGV − CNT),

1 −
2z

h
􏼒 􏼓V

∗
CNT, (FGΛ − CNT),

4
|z|

h
V
∗
CNT, (FGX − CNT),

2 1 − 2
|z|

h
􏼠 􏼡V

∗
CNT, (FGO − CNT),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

in which

V
∗
CNT �

wCNT

wCNT + ρCNT/ρm( 􏼁 − ρCNT/ρm( 􏼁wCNT
, (2)

where wCNT is the mass fraction of nanotube and ρCNT and
ρm are the mass densities of CNT and matrix constituents,
respectively.

Figure 3 shows the variation characteristics of CNT
volume fractions VCNT according to z/h in five patterns. It
shows that the value of VCNT is constant regardless of
thickness of plates in UD-CNTRC, while it increases or
decreases in FG-Λ CNTRC and FG-V CNTRC, respec-
tively. In cases of FG-X CNTRC and FG-O CNTRC, the
value of VCNT changes symmetrically about the middle
surface.

h1

a1 a2 a3

h2 h1
h1

h1

h1

h2

h2

x

y

z u

vw

a

b

b 1
b 2

b 3

b 4
b 5

(a)

Metal

Ceramic

Middle
surface

kw,x1
kφ,x1

kθ,x1

ku,x1

kv,x1

ku,y0
kφ,y0

kθ,y0

kv,y0

kw,y0

(b)

kθ,y

kθ,x

kv,y

ku,x kw,x

kv,x

kw,y
ku,y

kφ,x

kφ,y

i, j

i – 1, j – 1
i, j – 1

i + 1, j – 1

i – 1, j

i + 1, j

(c)

Figure 1: Multi-stepped FG-CNTRC plate model. (a) Geometric relationship. (b) Boundary condition. (c) Combined condition.
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Figure 2: Distribution patterns of CNTs in FG-CNTRC plates. (a) UD-CNTRC. (b) FG-Λ CNTRC. (c) FG-V CNTRC. (d) FG-O CNTRC.
(e) FG-X CNTRC.
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Figure 3: Change of the CNT volume fractions VCNT on the thickness of plate. (a) V∗CNT � 0.1. (b) V∗CNT � 0.2.
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Based on the improved rule of mixtures, effective
Young’s modulus, shear modulus, Poisson’s ratio, and mass
density for CNTRC materials can be written as follows
[56, 58]:

E11(z) � η1VCNT(z)E
CNT
11 + Vm(z)E

m
,

η2
E22(z)

�
VCNT(z)

E
CNT
22

+
Vm(z)

E
m ,

η3
G12(z)

�
VCNT(z)

G
CNT
12

+
Vm(z)

G
m ,

G
m

�
E

m

2 1 − μm
( 􏼁

,

μ12(z) � VCNT(z)μCNT12 + Vm(z)μm
,

μ21(z) �
μ12(z)

E11(z)
E22(z),

ρ(z) � VCNT(z)ρCNT + Vm(z)ρm
,

Vm(z) � 1 − VCNT,

(3)

where ECNT
11 , ECNT

22 , GCNT
12 , Em, Gm represent Young’s modu-

lus and shear modulus of CNTand matrix, η1, η2, and η3 are
CNT/matrix efficiency parameters, and μCNT12 , μm denote
Poisson’s ratios of CNT and matrix.

2.3. Energy Function. )e displacement components of the
individual subplate can be expressed with the displacements
of the midsurface and the rotations of the cross section using
the FSDT as follows:

U
i,j

(x, y, z, t) � u
i,j
0 (x, y, t) + zφi,j

(x, y, t),

V
i,j

(x, y, z, t) � v
i,j
0 (x, y, t) + zθi,j

(x, y, t),

W
i,j

(x, y, z, t) � w
i,j
0 (x, y, t),

(4)

where u0, v0, andw0 represent the middle surface dis-
placements of the i, jth subplate in the x, y, and z directions,
φ and θ indicate the transverse normal rotations in regard to
x and y axes, and t denotes the time variable. )e strain

elements at a random point of the ith FG-CNTR subplate
can be written as follows:

εi,j
xx � εi,j

xx,0 + zχi,j
xx,

εi,j
yy � εi,j

yy,0 + zχi,j
yy,

c
i,j
xy � c

i,j
xy,0 + zχi,j

xy,

c
i,j
xz � c

i,j
xz,0,

c
i,j
yz � c

i,j
yz,0,

(5)

where εi,j
xx,0, ε

i,j
yy,0, c

i,j
xy,0, c

i,j
xz,0, and c

i,j
yz,0 indicate the middle

surface strains and χi,j
xx, χi,j

yy, and χi,j
xy denote the surface

curvatures of i, jth subplate, respectively; these surface
strains and curvatures are defined as follows:
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,

c
i,j
xz,0 �

zw
i,j
0
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,
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0
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,

χi,j
xx �
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,

χi,j
yy �

zθi,j
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,

χi,j
xy �

zθi,j

zx
+

zφi,j

zy
.

(6)

Following the state of generalized Hooke’s law, the
constitutive relations of FG-CNTRC plate can be written as
follows:

σi,j
xx

σi,j
yy

τi,j
yz

τi,j
xz

τi,j
xy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

Q11(z) Q12(z) 0 0 0

Q12(z) Q22(z) 0 0 0

0 0 Q44(z) 0 0

0 0 0 Q55(z) 0

0 0 0 0 Q66(z)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

εi,j
xx

εi,j
yy

c
i,j
yz

c
i,j
xz

c
i,j
xy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (7)

where Qij (i, j= 1, 2, 4, 5, 6) are the reduced material stiffness
coefficients compatible with plane-stress conditions and

expressed in terms of elastic and shear moduli and Poisson’s
ratio as
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Q11(z) �
E11

1 − μ12μ21
,

Q22(z) �
E22

1 − μ12μ21
,

Q12(z) �
μ21E11

1 − μ12
,

Q44 � G23,

Q55 � G13,

Q66 � G12,

(8)

where G13 and G23 indicate the shear moduli of CNTRC
materials. )e relationship between the shear moduli is
supposed to be G13 =G12, G23 = 1.2 G12 [57, 58]. )rough the
integration of the stresses and moments of the in-plane
stresses across the plate thickness, the force and moment
resultants can be expressed as follows:

N
i,j
xx

N
i,j
yy

N
i,j
xy

M
i,j
xx

M
i,j
yy

M
i,j
xy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
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Q
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Q
i
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⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
� κ

A55 0

0 A44
􏼢 􏼣

c
0,i
xz

c
0,i
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⎧⎪⎨

⎪⎩

⎫⎪⎬

⎪⎭
,

(9)

where Ni,j
xx, Ni,j

yy, and Ni,j
xy indicate the in-plane force re-

sultants, Mi,j
xx, Mi,j

yy, and Mi,j
xy represent the bending and

twisting moment resultants, and Qi
xz and Qi

yz denote the
transverse shear force resultants. In addition, κ= 5/6 stands
for the shear correction factor, and Aij, Bij, and Dij (i, j= 1, 2,
4, 5, 6) represent the stretching, coupling, and bending
stiffnesses defined as follows:

Aij, Bij, Dij􏼐 􏼑 � 􏽚
h/2

− (h/2)
Qij(z) 1, z, z

2
􏼐 􏼑dz. (10)

)e strain energy of stretching and bending of the FG-
CNTRC cylindrical shell is expressed as follows. )e strain
energy U

i,j

S stored in i, jth subplate can be written as

U
i,j

S �
1
2

􏽚
a

0
􏽚

b

0
N

i,j
xxε

i,j
xx,0 + N

i,j
yyε

i,j
yy,0 + N

i
xyc

i,j
xy,0 + M

i
xxχ

i,j
xx + M

i,j
yyχ

i,j
yy + M

i,j
xyχ

i,j
xy + Q

i,j
xzc

i,j
xz + Q

i,j
yzc

i,j
yz􏼐 􏼑dydx. (11)

By substituting equations (6) and (9) into equation (11),
the strain energy of the FG-CNTRC plate can be represented
using the displacements (u0, v0, w0) and rotation compo-
nents (φ, θ).

For the simplification of the equation, equation (11) is
represented as U

i,j

S � U
i,j

T + U
i,j

TB + U
i,j
B , where U

i,j

T , U
i,j
B and

U
i,j

TB indicate stretching, bending, and bending-stretching
coupling energy expressions, respectively.
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U
i,j

T �
1
2

􏽚
a

0
􏽚

b

0

A11
zu

i,j
0

zx
􏼠 􏼡

2

+ A66
zu
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0

zy
􏼠 􏼡

2

+ 2A12
zu

i,j
0

zx

zv
i,j
0

zy
+ 2A66

zu
i,j
0

zy

zv
i,j
0

zx

+ A22
zv

i,j
0

zy
􏼠 􏼡

2

+ A66
zv

i,j
0

zx
􏼠 􏼡

2

+ κA66
zw
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0
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􏼠 􏼡

2

+ κA66
zw

i,j
0
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􏼠 􏼡

2

+2κA66
zw

i,j
0

zx
φi,j

+ 2κA66
zw

i,j
0

zy
θi,j

+ κA66 φi,j
􏼐 􏼑

2
+ κA66 θi,j

􏼐 􏼑
2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dy dx,

U
i,j

TB �
1
2

􏽚
a

0
􏽚

b

0

2B11
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i,j
0

zx

zφi,j

zx
+ 2B12

zu
i,j
0

zx

zθi,j

zy
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zv
i,j
0
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zφi,j

zx
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zv
i,j
0
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zθi,j
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+2B66
zv

i,j
0

zx

zθi,j

zx
+ 2B66

zv
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0

zx

zφi,j
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i,j
0
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zθi,j

zx
+ 2B66
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i,j
0

zy

zφi,j
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⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

dy dx,

U
i,j
B �

1
2

􏽚
a

0
􏽚

b

0

D11
zφi,j

zx
􏼠 􏼡

2

+ 2D12
zφi,j

zx

zθi,j
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+ 2D66

zφi,j
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zθi,j

zx

+D66
zφi,j
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􏼠 􏼡

2

+ D66
zθi,j

zx
􏼠 􏼡

2

+ D22
zθi,j
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􏼠 􏼡

2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

dy dx.

(12)

)e kinetic energy of a certain segment could be ob-
tained as follows:

T �
1
2
B

A
ρ _u

i,j
0 + z _φi,j

􏼐 􏼑
2

+ _v
i,j
0 + z _θ

i,j
􏼒 􏼓

2
+ _w

i,j
0􏼐 􏼑

2
􏼢 􏼣dA

�
1
2
B

A
􏽚

h/2

− (h/2)
ρ _u

i,j
0􏼐 􏼑

2
+ 2 _u

i,j
0 _φi,j

z + z
2

_φi,j
􏼐 􏼑

2
+ _v

i,j
0􏼐 􏼑

2
+ 2 _v

i,j
0

_θ
i,j

z + z
2 _θ

i,j
􏼒 􏼓

2
+ _w

i,j
0􏼐 􏼑

2
􏼢 􏼣dzdA

�
1
2
B

A
I0 _u

i,j
0􏼐 􏼑

2
+ _v

i,j
0􏼐 􏼑

2
+ _w

i,j
0􏼐 􏼑

2
􏼔 􏼕 + 2I1 _u

i,j
0 _φi,j

+ _v
i,j
0

_θ
i,j

􏼒 􏼓 + I2 _φi,j
􏼐 􏼑

2
+ _θ

i,j
􏼒 􏼓

2
􏼢 􏼣􏼨 􏼩dA.

(13)

)e dots on the symbols indicate the differentiation of
displacement components with respect to time.

I0, I1, I2( 􏼁 � 􏽚
h/2

− (h/2)
ρ(z) 1, z, z

2
􏼐 􏼑dz. (14)

)e potential energy stored in the boundary springs is
expressed as follows:

Ub �
1
2

􏽚
b

0
ku,x0u

2
0 + kv,x0v

2
0 + kw,x0w

2
0 + kφ,x0φ

2
0 + kθ,x0θ

2
0􏽨 􏽩

x�0 + ku,x1u
2
0 + kv,x1v

2
0 + kw,x1w

2
0 + kφ,x1φ

2
0 + kθ,x1θ

2
0􏽨 􏽩

x�L
􏽮 􏽯dy

+
1
2

􏽚
a

0
ku,y0u

2
0 + kv,y0v

2
0 + kw,y0w

2
0 + kφ,y0φ

2
0 + kθ,y0θ

2
0􏽨 􏽩

y�0 + ku,y1u
2
0 + kv,y1v

2
0 + kw,y1w

2
0 + kφ,y1φ

2
0 + kθ,y1θ

2
0􏽨 􏽩

y�L
􏼚 􏼛dx,

(15)
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where kt,0 (t= u, v, w, φ, θ) and kt,1 represent the boundary
spring stiffness of the both ends of FG-CNTRC plate,
respectively.

)e potential energy stored in the connective springs is
represented as follows:

U
i,j
c �

1
2

􏽚
b

0
ku u

i
0 − u

i+1
0􏼐 􏼑

2
+ kv v

i
0 − vi+1􏼐 􏼑

2
+ kw w

i
0 − wi+1􏼐 􏼑

2
+ kφ φi

− φi+1􏼐 􏼑
2

+ kθ θi
− θi+1􏼐 􏼑

2
􏼚 􏼛dy

+
1
2

􏽚
a

0
ku u

j
− u

j+1
􏼐 􏼑

2
+ kv v

j
− v

j+1
􏼐 􏼑

2
+ kw w

j
− w

j+1
􏼐 􏼑

2
+ kφ φj

− φj+1
􏼐 􏼑

2
+ kθ θj

− θj+1
􏼐 􏼑

2
􏼚 􏼛dx,

(16)

where ku, kv, kw, kφ, and kθ represent the stiffnesses of the
springs between individual subplates and the superscripts i
and i+ 1 denote the ith and i+ 1th subplates.

)erefore, total potential energy including boundary
conditions and connective conditions can be represented as
follows:

U � 􏽘

Nx

i�1
􏽘

Ny

j�1
U

i,j
s + 􏽘

Nx− 1

i�1
􏽘

Ny− 1

j�1
U

i,j
c + Ub. (17)

As a result, the arbitrary boundary conditions can be
freely modeled in the proposed model by setting the stiffness
of the springs as proper values.

It is supposed that the external force act on the entire
middle surface of the FG-CNTRC plate. )e virtual work
done on the i, jth subplate by the distributed load com-
ponents can be expressed as follows [59]:

W
i,j

�
1
2
C

V
f

i,j
u u

i,j
0 + f

i,j
v v

i,j
0 + f

i,j
w w

i,j
0 + m

i,j
φ φ

i,j
0 + m

i,j

θ θ
i,j
0􏼐 􏼑dV. (18)

2.4. Solution Procedure. )e convergence and accuracy of
the analysis results rely on the selection of the displacement.
In this research, the vibration characteristics of FG-CNTRC
plate are studied using the suitable allowable displacement
function. Finally, all the displacement functions including
boundary and continuous conditions are chosen as ultra-
spherical polynomials. )e ultraspherical polynomial is a
special case of the Jacobi orthogonal polynomial, and main
advantage is that it can guarantee the very high accuracy and
robustness of computation [60–62]. When the polynomial’s
parameter λ= 0, the ultraspherical polynomials P(λ)

m (ξ) are

called as first kind of Chebyshev polynomials (Cm (ξ)), while
they are represented as Legendre polynomials Lm (ξ) if
λ= 0.5. When λ= 1, P(λ)

m (ξ) is indicated as second kind of
Chebyshev polynomials. )e ultraspherical polynomials
P(λ)

m (ξ) are defined in the interval ξ ∈ [− 1, 1].

I(ξ) � 1 − ξ2􏼐 􏼑
λ− (1/2)

, λ> −
1
2
. (19)

)e orthogonality condition is

􏽚
1

− 1
1 − ξ2􏼐 􏼑

λ− (1/2)
P

(λ)
m (ξ)P

(λ)
n (ξ)dx �

��
π

√
n!Γ(2λ)Γ(λ + (1/2))

Γ(n + 2λ)(n + λ)Γ(λ)
, m � n,

0, m≠ n.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(20)

)e ultraspherical polynomials P(λ)
m (ξ) can be also

expressed with the recurrence relation [63, 64].

(m + 2λ)P
(λ)
m (ξ) � 2(m + λ)ξP

(λ)
m (ξ) − mP

(λ)
m− 1(ξ), (21)

where m= 1, 2, 3, . . ..
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)erefore, the allowable displacement function of FG-
CNTRC plate can be more generalized using the ultra-
spherical polynomials and written as

u � 􏽘

Mx

mx�0
􏽘

Ny

ny�0
UmnP

(λ)
mx

ξx( 􏼁P
(λ)
ny

ξy􏼐 􏼑e
iωt

,

v � 􏽘

Mx

mx�0
􏽘

Ny

ny�0
VmnP

(λ)
mx

ξx( 􏼁P
(λ)
ny

ξy􏼐 􏼑e
iωt

,

w � 􏽘

Mx

mx�0
􏽘

Ny

ny�0
WmnP

(λ)
mx

ξx( 􏼁P
(λ)
ny

ξy􏼐 􏼑e
iωt

,

φ � 􏽘

Mx

mx�0
􏽘

Ny

ny�0
ΦmnP

(λ)
mx

ξx( 􏼁P
(λ)
ny

ξy􏼐 􏼑e
iωt

,

θ � 􏽘

Mx

mx�0
􏽘

Ny

ny�0
ΘmnP

(λ)
mx

ξx( 􏼁P
(λ)
ny

ξy􏼐 􏼑e
iωt

,

(22)

where Umn, Vmn, Wmn,Φmn, andΘmn indicate the unknown
coefficients of the ultraspherical polynomials andMx, Ny are
maximum m-order and n-order, respectively. P(λ)

m (ξx),

P(λ)
n (ξy) denote the m-order and n-order ultraspherical

polynomials in regard to displacement in x and y directions,
and ω, t represent the angular frequency and time, re-
spectively. As the ultraspherical polynomials are complete
and the orthogonal polynomials are defined at interval of
ξ ∈ [− 1, 1], the linear transformation statute should be ap-
plied for the coordinate conversion from the interval x ∈ [0,
L] of the divided beam to the interval ξ (ξ ∈ [− 1, 1]) of the
ultraspherical polynomials, that is, ξ = 2x/L − 1.

)e total Lagrangian energy functions of FG-CNTRC
plate can be written as follows:

L � 􏽘

Nx

i�1
􏽘

Ny

i�1
T

i,j
− U

i,j
􏼐 􏼑 + W

i,j
. (23)

)e total Lagrangian energy function can be minimized
in regard to the unknown coefficients based on the Ray-
leigh–Ritz method.

zL
zI

� 0, I � Um, Vm, Wm,Φm,Θm. (24)

)erefore, the vibration governing equation of FG-
CNTRC plate can be indicated as follows:

K − ω2M􏼐 􏼑A � F. (25)

)e stiffness matrix K, mass matrix M, and unknown
coefficient matrix A are represented by the following equa-
tions. )e natural frequencies of the FG-CNTRC plate can be
calculated when the right term F in equation (25) equals zero.
)e detailed expression of stiffness matrix K and mass matrix
M in equation (25) can be found in the Appendix.

3. Convergence and Validation Study

To ensure the validity and accuracy of the suggested method,
the calculation examples for the free and forced vibration

analysis of FG-CNTRC under the several boundary con-
ditions are presented. )e calculation results from the
suggested method are compared with those of the previous
works or obtained by the finite element analysis software
ABAQUS. Based on the validation results, the effects of
geometric and material parameters on the free or forced
vibration response are studied. MATLAB is applied for the
calculation process of the proposed method, which is run on
a Intel(R) Core(TM) i7-7500 2.20GHz PC.

3.1. Convergence Study. As can be seen from the theoretical
formula, the accuracy of the solution calculated by the
proposed method is determined by the degree of the
ultraspherical polynomial and polynomial parameters.
)erefore, it is necessary to conduct the convergence study
to determine these parameters. It is certain that the accuracy
of solution becomes higher as the degree of polynomial
increases infinitely. However, in this case, as it requires high
level of hardware and increased amount of calculation time,
it is important to determine the reasonable degree of
polynomial. For the convergence study, it is supposed that
the material has the characteristics of uniform distribution
and the material and geometric properties are set as follows:

E
m

� 3GPa,

ρm
� 1000 kg/m3

,

μm
� 0.3,

E
CNT
11 � 5 TPa,

E
CNT
22 � 7 TPa,

G
CNT
12 � 2 TPa,

ρCNT � 1500 kg/m3
,

μCNT12 � 0.2,

V
∗
CNT � 0.1,

η1 � 0.1,

η2 � 1,

η3 � 0.7,

a � 1m,

b � 1m,

h � 0.05m.

(26)

Also, in all the following processes, the dimensionless
frequency is calculated by the formula Ω � (ωa2

1/h1������
ρm/Em

􏽰
).

Table 1 shows the convergence characteristics of non-
dimensional frequency of the FG-CNTRC plates, in which
four sides are fully clamped, according to the increase of
ultraspherical polynomial degreeMx ×Ny. From Table 1, it
can be known that as the degree of polynomial increases,
the dimensionless frequency of FG-CNTRC plates ap-
proximate to a certain value, and then it does not change
any more after the degree of polynomial is beyond
Mx ×Ny = 10 ×10. )erefore, in this research, in all the
calculation of the numerical examples, the degree of
Mx ×Ny is set as Mx ×Ny = 10 ×10. In addition, the
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calculation time by the method proposed in Table 1 and the
calculation time by FEM (ABAQUS) are shown. As shown
in Table 1, when the number of elements is 40000, it is the
most similar to the result of the proposed method, and the
calculation time required at this time is 30.3 s. In the case of
the proposed method, the calculation time is 0.77 s (in the
case of Mx ×Ny = 10 ×10), and it can be seen that the
calculation time is much shorter than that of the FEM. In
other words, it can be seen that the proposed method has
the advantage of very high calculation accuracy and cal-
culation efficiency.

As mentioned above, as the ultraspherical polynomial
is characterized by the polynomial’s parameter λ, it is
necessary to conduct the study on the determination of
polynomial parameters. Figure 4 presents the percentage
error (Ωλ − Ωλ = 0)/Ωλ = 0 of the solution of the ultra-
spherical polynomial parameter λ in the FG-CNTRC
plate. Figure 4 indicates that the error of dimensionless
frequency in the FG-CNTRC plate does not exceed
1.5 ×10− 4 regardless of the change of polynomial pa-
rameter λ. )erefore, in this research, the polynomial
parameter λ is set as 0.

As mentioned in the previous section, the artificial elastic
spring technique is introduced to generalize the boundary
conditions for the vibration analysis of the stepped FG-
CNTRC plate.)e boundary condition is changed according
to the selection of the stiffness of artificial elastic spring.
)erefore, it is necessary to conduct the determination study
of the boundary conditions.

Figure 5 shows the variation characteristics of the non-
dimensional frequency in the FG-CNTRC plate according to
the change of stiffness of the boundary elastic spring. In
order to analyze the variation characteristics of the FG-
CNTRC plate according to the change of stiffness of the
individual boundary spring, except for the considered
boundary spring, the stiffness of all other boundary springs
is set as zero, and then the stiffness of the considered spring

is changed from 102 to 1016. As can be seen from Figure 5,
the frequency shows almost no change when the stiffness of
boundary spring is below 104, and then it increases dra-
matically beyond this value until the stiffness reaches 1011.
When the stiffness is beyond 1011, the frequency does not
change again. Based on these results, the classic and elastic
boundary conditions for the calculation of vibration char-
acteristics in the FG-CNTRC plate can be set as shown in
Table 2. In Table 2, F, S, C, and E indicate the free, simple,
clamped, and elastic boundary conditions. In addition, in
the following processes, the boundary condition CFSE1
represents the clamped boundary condition at x = 0 , free
boundary condition at x = a, simple-supported boundary
condition at y = 0, and elastic boundary condition at y = b,
respectively.

3.2. Validation

3.2.1. Free Vibration. In the previous section, through the
convergence study, parameters including the boundary
parameter for the vibration analysis of multi-stepped FG-
CNTRC plates are determined. Based on these results, the
accuracy of the suggested method is validated. )e accuracy
is validated by comparing the results from the proposed
method with those from the previous works or finite element
method. Table 3 shows the comparison results of the di-
mensionless frequency of the non-stepped plates with iso-
tropic materials. Here, Poisson’s ratio is 0.3. Table 3 indicates
that the results from the proposed method agree well with
those of the previous works.

Next, the natural frequency result of stepped plates with
isotropic materials is compared with that obtained by the
finite element method. )e stepped plate consists of three
subplates in x and y directions, respectively, and the geo-
metric parameters are a1 = 0.5m, a2 = 0.1m, a3 = 0.5m,
b1 = 0.5m, b2 = 0.1m, b3 = 0.5m, hx1 = 0.1m, hx2 = 0.2m,

Table 1: Convergence of dimensionless frequencies of stepped FG-CNTRC plate.

Mode

Truncated number 1 2 3 4 5 6 7 8 9 10 Time (s)
Present

3× 3 6.6971 11.128 13.265 16.000 18.294 23.371 26.201 26.572 28.040 28.605 0.544
4× 4 5.3525 7.3636 11.755 12.918 15.009 18.220 18.434 20.143 20.892 22.72 0.542
5× 5 5.3382 6.8156 10.035 11.476 12.358 14.533 16.898 18.218 18.868 19.487 0.548
6× 6 5.3379 6.8133 9.9013 11.473 12.354 14.344 14.434 17.909 18.217 18.770 0.555
7× 7 5.3378 6.8121 9.8712 11.472 12.353 14.274 14.415 17.857 18.217 18.760 0.563
8× 8 5.3378 6.8121 9.8707 11.472 12.353 14.238 14.415 17.829 18.217 18.760 0.568
9× 9 5.3377 6.8121 9.8704 11.472 12.353 14.237 14.415 17.829 18.217 18.760 0.590
10×10 5.3379 6.8120 9.8704 11.472 12.353 14.237 14.415 17.828 18.217 18.760 0.770
11× 11 5.3378 6.8120 9.8704 11.472 12.353 14.237 14.415 17.828 18.217 18.760 0.829
12×12 5.3378 6.8120 9.8704 11.472 12.353 14.237 14.414 17.828 18.217 18.760 1.007
13×13 5.3378 6.8120 9.8704 11.472 12.353 14.237 14.414 17.828 18.217 18.760 1.158
Number of element FEM (ABAQUS)
1600 5.3429 6.8255 9.9275 11.499 12.376 14.395 14.458 17.946 18.230 18.836 1.3
2500 5.3411 6.8206 9.9068 11.489 12.368 14.338 14.442 17.904 18.227 18.809 1.9
10000 5.3387 6.8142 9.8794 11.476 12.356 14.262 14.421 17.847 18.219 18.772 6.7
22500 5.3381 6.8130 9.8745 11.474 12.354 14.248 14.417 17.836 18.217 18.765 14.5
40000 5.3380 6.8126 9.8726 11.473 12.353 14.243 14.416 17.832 18.217 18.763 30.3
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hx3 = 0.1m, hy1 = 0.1m, hy2 = 0.2m, and hy3 = 0.1m. )e fi-
nite element analysis software ABAQUS is used in the finite
element method, and the element type is S4R and the
number of elements is 8476.

)rough the comparison results of Tables 3 and 4, it can
be known that the suggested method is suitable for the free
vibration analysis of non-stepped or stepped plates. )e
main purpose of this research is to study the vibration
analysis method of the multi-stepped FG-CNTRC plate;
therefore, the accuracy of the proposed method is validated
by comparing the results of natural frequency in the FG-
CNTRC plate using the suggested method. Table 5 shows the
comparison results of natural frequency in the non-stepped
FG-CNTRC plate. )e material and geometric parameters
are as follows [16]:

E
m

� 2.1GPa,

ρm
� 1150 kg/m3

,

μm
� 0.34,

E
CNT
11 � 5.6466 TPa,

E
CNT
22 � 7.08 TPa,

G
CNT
12 � 1.9445 TPa,

V
∗
CNT � 0.11,

η1 � 0.149,

η2 � 0.934,

η3 � 0.934,

a � 1m,

b � 1m.

(27)

As can be seen from Table 5, the dimensionless fre-
quency in the non-stepped FG-CNTRC plate with uniform
thickness agrees well with the previous works.

Next, the natural frequency results of the multi-stepped
FG-CNTRC plate are compared with that obtained by the
finite element method. )e material properties are the same
as the case mentioned above, and the geometric properties
and the parameters for the finite element analysis are set as
shown in Table 3. Tables 5 and 6 show that the results from
the proposed method agree well with those of the previous
works or obtained by the finite element method, and
through the convergence and validity study, it can be known
that the suggestedmethod is the accurate method for the free
vibration analysis for not only the isotropic materials but
also the non-stepped and multi-stepped plates of FG-
CNTRC. )e finite element analysis software ABAQUS is
used in the finite element method, and the element type is
S4R and the number of elements is 10868.

3.2.2. Forced Vibration. In engineering applications, the
external loads act on the plate which is the foundation
construction, so it is needed to consider the forced response
of structures. Considering the forced response, there mainly
exist two parts such as the stability response analysis in
frequency domain and transient response analysis in time
domain. In this section, the accuracy of the proposed
method is validated by comparing the forced vibration re-
sults obtained by the proposed method with those from the
finite element method. For the analysis of the forced vi-
bration, in the following research processes, the external
forces are considered as three cases such as point force, line
force, and area force, and it is assumed that the uniform load
(fw = 1N) is applied in the Z direction [63, 69].
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Figure 4: Percentage error of the dimensionless frequencies for the ultraspherical polynomial parameters λ. (a) CCCC. (b) FFFF.
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Figure 6 represents the comparison results between
steady-state responses in the non-stepped andmulti-stepped
FG-CNTRC plate under the CCCC boundary condition.)e
geometric and material parameters are the same as those
shown in Tables 5 and 6. )e ranges of natural frequency are
from 300 to 900 in the non-stepped plates and from 300 to
800 in the multi-stepped plates, respectively. )e interval is
set as 1Hz. Here, the harmonic point force fw acts in the
thickness direction. )e point load is fw � fw

δ(x − lx1)(y − lx1), in which fw � − 1N and δ indicates the
Dirac delta function.)e applied point of force and response

measurement point are all set as A= (0.3m, 0.3m) and
B= (0.3m, 0.3m). )e comparison is made with the data
obtained from the finite element analysis software ABAQUS,
and the calculation is conducted under the same conditions.

)e comparison results in Figure 6 indicate that the
proposed method is suitable for the steady-state vibration
analysis of multi-stepped FG-CNTRC plate.

Next, the comparison study for the transient response
analysis is conducted. In this case, it is supposed that four
kinds of transient loads are applied. Figure 7 shows four
types of transient loads used in this paper.
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Figure 5: Convergence characteristics of dimensionless frequencies on the boundary spring stiffness. (a) Mode1. (b) Mode2. (c) Mode3.
(d) Mode4.
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Table 3: Comparison of dimensionless frequencies of non-stepped isotropic plate.

Boundary conditions h Refs.
Modes

1 2 3 4 5 6 7

SSSS

0.1

Present 19.065 45.482 45.482 64.368 64.368 69.793 85.523
Reference [65] 19.098 45.636 45.636 64.384 64.384 70.149 85.5
Reference [66] 19.09 45.622 45.622 64.383 64.383 70.112 85.502
Reference [67] 19.09 45.619 45.619 64.383 64.383 70.104 85.488

0.2

Present 17.448 32.176 32.176 38.149 38.149 45.526 55.144
Reference [65] 17.528 32.192 32.192 38.488 38.488 45.526 55.802
Reference [66] 17.528 32.192 32.192 38.502 38.502 45.526 55.843
Reference [67] 17.526 32.192 32.192 38.483 38.483 45.526 55.787

CCCC

0.1

Present 32.53 62.051 62.051 86.963 103.89 104.94 123.11
Reference [65] 33.009 63.043 63.043 88.411 104.28 105.29 123.73
Reference [66] 32.797 62.672 62.672 87.941 103.71 104.7 123.6
Reference [67] 32.782 62.63 62.63 87.869 103.61 104.6 123.59

0.2

Present 26.522 46.29 46.29 61.531 61.531 63.756 71.962
Reference [65] 27.065 47.346 47.346 62.00 62 63.635 72.604
Reference [66] 26.974 47.253 47.253 61.944 61.944 63.57 72.568
Reference [67] 26.906 47.103 47.103 61.917 61.917 63.348 72.286

FFFF

0.1
Present 12.734 18.945 23.328 31.994 31.994 55.377 55.377

Reference [65] 12.728 18.956 23.346 31.965 31.965 55.493 55.493
Reference [68] 12.726 18.955 23.347 31.965 31.965 55.493 55.493

0.2
Present 11.702 17.4 21.194 27.58 27.58 40.194 42.81

Reference [65] 11.71 17.433 21.252 27.648 27.648 40.192 42.775
Reference [68] 11.71 17.433 21.252 27.647 27.647 40.191 42.776

Table 2: )e spring stiffness values of the elastic boundary conditions.

Boundary conditions ku,0, ku,1 kv,0, kv,1 kw,0, kw,1 kφ,0, kφ,1 kθ,0, kθ,1
F 0 0 0 0 0
S 0 1014 1014 0 1014

C 1014 1014 1014 1014 1014

E1 108 106 106 1014 1014

E2 1014 1014 1014 108 108

E3 108 108 108 108 108

Table 4: Comparison of natural frequency of non-stepped isotropic plate.

Frequency
Boundary conditions

CCCC SSSS CCFF
Present FEM Error (%) Present FEM Error (%) Present FEM Error (%)

1 812.7764 813.05 0.0337 439.6185 439.62 0.0003 467.8344 468.13 0.0632
2 1513.904 1516.1 0.1451 1100.106 1101.4 0.1176 488.3953 488.53 0.0276
3 1513.954 1516.1 0.1418 1100.115 1101.4 0.1168 909.7355 909.7 0.0039
4 1998.549 1999.9 0.0676 1551.629 1552.6 0.0626 1190.218 1192.4 0.1834
5 2479.551 2486.7 0.2883 2028.033 2032.9 0.24 1232.625 1234 0.1115
6 2485.876 2493 0.2866 2043.13 2048.4 0.2579 1263.875 1265.4 0.1207
7 2603.5 2605.8 0.0883 2308.151 2312.3 0.1798 1668.472 1670.3 0.1095
8 2603.787 2605.8 0.0773 2308.153 2312.3 0.1797 1736.655 1738.3 0.0947
9 2783.303 2789.1 0.2083 2603.5 2605.3 0.0691 2148.347 2155.9 0.3516
10 2783.338 2789.1 0.207 2603.787 2605.3 0.0581 2165.632 2172.7 0.3264
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Four kinds of transient loads employed in this research
are represented in Figure 7, and the load functions are
written as follows.

Rectangular pulse:

f(t) �
ft, 0≤ t≤ τ,

0, t> τ.
􏼨 (28a)

Triangular pulse:

f(t) �

2t

τ
ft, 0≤ t≤

τ
2
,

ft −
2
τ

t −
τ
2

􏼒 􏼓ft,
τ
2
≤ t≤ τ,

0, t> τ.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(28b)

Half-sine pulse:

f(t) �

ft sin
πt

τ
􏼒 􏼓, 0≤ t≤ τ,

0, t> τ.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(28c)

Exponential pulse:

f(t) �
fte

− ξt
, 0≤ t≤ τ,

0, t> τ,

⎧⎨

⎩ (28d)

where ft is the load amplitude; τ is the pulse width; and t is
the time variable.

Figure 8 presents the comparison results of transient
response data between the proposed method and finite el-
ement software ABAQUS. )e geometric parameters, ma-
terial constants, and boundary conditions are set as shown in

Table 5: Comparison of dimensionless frequency of non-stepped FG-CNTRC plate.

Boundary
conditions b/h Ω

FG-V FG-X FG-O
Reference

[16]
Reference

[16] (ANSYS) Present Reference
[16]

Reference
[16] (ANSYS) Present Reference

[16]
Reference

[16] (ANSYS) Present

SSSS

10

1 12.452 12.495 12.486 14.616 14.659 14.655 11.55 11.6 11.581
2 17.06 17.21 17.055 18.646 18.824 18.651 16.265 16.409 16.256
3 19.499 19.479 19.569 19.499 19.479 19.554 19.499 19.479 19.595
4 19.499 19.479 19.569 19.499 19.479 19.554 19.499 19.479 19.595
5 27.34 27.524 27.009 28.519 28.742 28.2 26.513 26.687 26.179

20

1 15.11 15.103 15.136 19.939 19.916 19.975 13.523 13.531 13.542
2 19.903 19.879 19.882 23.776 23.773 23.77 18.486 18.464 18.458
3 31.561 31.233 31.12 34.389 34.123 33.977 30.166 29.83 29.719
4 38.998 38.958 39.138 38.998 38.958 39.108 38.998 38.958 39.19
5 38.998 38.958 39.138 38.998 38.958 39.108 38.998 38.958 39.19

CCCC

10

1 17.211 17.247 17.175 18.083 18.129 18.047 16.707 16.744 16.677
2 22.818 22.922 22.65 23.606 23.728 23.438 22.253 22.353 22.089
3 33.07 33.06 32.876 34.338 34.338 33.661 32.378 32.372 32.188
4 33.552 33.534 32.903 34.467 34.464 34.303 32.857 32.837 32.228
5 36.528 36.804 36.359 37.447 37.4 37.578 35.809 36.083 35.656

20

1 26.304 26.248 26.196 30.421 30.38 30.327 24.486 24.443 24.375
2 31.496 31.405 31.262 35.036 35.003 34.839 29.795 29.699 29.55
3 43.589 42.991 42.635 46.48 45.984 45.591 41.895 41.279 40.93
4 56.249 55.894 55.76 61.98 61.692 61.558 53.557 53.204 53.058
5 59.221 59.09 58.79 64.562 63.321 62.5 56.617 56.464 56.164

Table 6: Comparison of natural frequency of multi-stepped FG-CNTRC plate.

Frequency
Boundary conditions

CCCC SSSS CCFF
Present FEM Error (%) Present FEM Error (%) Present FEM Error (%)

1 369.1226 369.19 0.0182 264.3662 264.36 0.0023 304.0064 304.06 0.0176
2 529.1282 529.65 0.0986 397.9645 398.28 0.0793 311.0388 311.12 0.0261
3 718.3087 718.74 0.06 675.8775 676.34 0.0684 377.6699 377.61 0.0159
4 794.5131 794.79 0.0349 678.0683 679.45 0.2038 383.4401 383.59 0.0391
5 802.1168 803.97 0.231 714.4617 714.72 0.0362 571.7157 572.12 0.0707
6 858.3181 858.66 0.0398 858.3178 858.53 0.0247 685.7125 686.27 0.0813
7 976.337 977.74 0.1437 881.0082 881.9 0.1012 686.7083 687.17 0.0672
8 1059.832 1061.1 0.1196 995.2035 998.67 0.3483 733.3032 733.49 0.0255
9 1093.59 1095.8 0.2021 1021.29 1022.6 0.1282 827.5539 827.37 0.0222
10 1118.368 1121.2 0.2532 1041.617 1042.6 0.0944 856.6614 857.66 0.1166
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Figure 7: Load pulse shapes. (a) Rectangular pulse; (b) triangular pulse; (c) half-sine pulse; (d) exponential pulse.
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Figure 6: )e comparison of vertical displacement of FG-CNTRC plate. (a) Non-stepped FG-CNTRC plate. (b) Multi-stepped FG-CNTRC plate.
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Figure 8:)e comparison of normal displacement response of FG-CNTRC plate. (a) Non-stepped FG-CNTRC plate. (b)Multi-stepped FG-
CNTRC plate.
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Figure 6. Here, the transient load f (t) is set as rectangular
pulse and the amplitude of the rectangular pulse is set as
ft= − 1N. )e calculating time step is ∆t= 0.02ms, and the
loading time τ and calculating time are set as 20ms, re-
spectively. )e results indicate that the prediction accuracy
of the suggested method agrees well with that of the finite
element method; therefore, the accuracy of the proposed
method is validated.

4. Numerical Example

Based on the convergence and validity study of the proposed
method, in this section, the results of free and forced vi-
bration analysis of the FG-CNTRC plate are suggested. )e
material properties for the CNTRC plate studied here and
the CNT efficient parameters are as follows [56]:

E
m

� 2.5GPa,

ρm
� 1150 kg/m3

,

μm
� 0.34,

ρCNT � 1400 kg/m3
,

μCNT � 0.175,

E
CNT
11 � 5.6446 TPa,

E
CNT
22 � 7.08 TPa,

G
CNT
12 � 1.9445 TPa,

V
∗
CNT � 0.12,

η1 � 0.137,

η2 � 1.022,

η3 � 0.715,

V
∗
CNT � 0.17,

η1 � 0.142,

η2 � 1.626,

η3 � 1.138,

V
∗
CNT � 0.28,

η1 � 0.141,

η2 � 1.585,

η3 � 1.109.

(29)

4.1.FreeVibration. Here, according to the several classic and
elastic boundary conditions and material parameters, new
natural frequency results and mode types of FG-CNTRC
plate are suggested. )e geometric parameters of FC-
CNTRC plate are a= 1m, b= 1m, and h= 0.1m. Table 7
shows the results of dimensionless frequency in the non-
stepped FG-CNTRC plate according to different material
distribution characteristics under the four-side fully clam-
ped boundary condition. As can be seen from Table 7, as
V∗CNT increases, the dimensionless frequency of the FG-
CNTRC plate is also increased. Also, when the material

distributions are FG-Λ and FG-V, the non-dimensional
frequencies are same; therefore, FG-Λ is not considered in
the following process. In the non-stepped FG-CNTRC,
under the same V∗CNT condition, the dimensionless fre-
quency is the highest when the material distribution is FG-X,
while it is the lowest in case of FG-O.

Table 8 shows the results of dimensionless frequency in
the multi-stepped FG-CNTRC plate according to different
material distributions under the several classic classical and
elastic boundary conditions. )e material properties are
considered when V∗CNT � 0.17, η1 = 0.142, η2 = 1.626, and
η3 = 1.138 and the geometric parameters are as follows:
a1 = 0.5m, a2 = 0.1m, a3 = 0.5m, b1 = 0.5m, b2 = 0.1m,
b3 = 0.5m, hx1 = 0.02m, hx2 = 0.05m, hx3 = 0.02m,
hy1 = 0.02m, hy2 = 0.05m, and hy3 = 0.05m. Table 8 shows
that the dimensionless frequencies of multi-stepped FG-
CNTRC plate are different according to the boundary
conditions.

In the multi-stepped FG-CNTRC plate, similar to Ta-
ble 7, the dimensionless frequency is the highest in case of
FG-X, while it is the lowest in case of FG-O. Figure 9 shows
the mode types of the multi-stepped FG-CNTRC plate
corresponding to the FG-X under the boundary conditions
including CCCC and CCFF of Table 8.

To help readers understand the mode shapes of the
multi-stepped FG-CNTRC plate, Figures 10–12 show vi-
sually the different shapes of modes in themulti-stepped FG-
CNTRC plate with different kinds of boundary conditions,
material properties, material distribution, and number of
steps.

4.2. Forced Vibration

4.2.1. Steady-State Vibration Analysis. )is section is mainly
focused on the frequency-displacement characteristics of the
multi-stepped FG-CNTRC plate. Figure 13 shows the fre-
quency-displacement characteristics of the multi-stepped
FG-CNTRC plate with different material distributions under
the four-side fully clamped boundary conditions when three
types of loads are applied.

)e material and geometric properties are the same as
Table 6, and V∗CNT � 0.12, η1 = 0.137, η2 = 1.022, and
η3 = 0.715, respectively. )e applied points of force are at A
(x, y) = (0.3m, 0.3m), A (x1, y1-x2, y2) = (0.3m, 0.3m-0.4m,
0.3m), and A (x1, y1-x2, y2) = (0.3m, 0.3m-0.4m, 0.4m) in
cases of point force, line force, and area force, respectively.
)e external force is assumed that the uniform load
(fw = − 1N) is applied in the rectangular direction. It can be
clearly seen that the external load cannot alter the natural
frequency of the multi-stepped FG-CNTRC plate itself.
However, regardless of the material distribution, at the same
frequency, the displacement is the largest in the application
of point force, while it is the smallest in case of area force.
When the line force is applied, the displacement is medium.
Figure 14 shows the frequency-displacement characteristics
of the multi-stepped FG-CNTRC plate according to the
different V∗CNT when the point force is applied under the
several boundary conditions. )e material and geometric
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Table 7: )e dimensionless frequencies of non-stepped FG-CNTRC plate.

V∗CNT
Modes

1 2 3 4 5 6 7 8 9 10

0.12

UD 3.9703 5.3905 7.4569 7.9074 8.3479 9.3876 10.197 11.081 11.404 11.927
FG-Λ 3.8912 5.3554 7.3247 7.9114 8.2569 9.4264 10.155 11.114 11.277 11.923
FG-V 3.8912 5.3554 7.3247 7.9114 8.2569 9.4264 10.155 11.114 11.277 11.923
FG-X 4.0694 5.5216 7.6146 8.0819 8.5201 9.4799 10.398 11.297 11.561 12.009
FG-O 3.7855 5.2288 7.1826 7.7538 8.1035 9.4417 9.9794 10.927 11.127 11.766

0.17

UD 5.0879 6.9378 9.5634 10.201 10.729 12.129 13.135 14.308 14.663 15.407
FG-Λ 4.9857 6.908 9.4035 10.241 10.634 12.229 13.119 14.404 14.52 15.375
FG-V 4.9857 6.908 9.4035 10.241 10.634 12.229 13.119 14.404 14.52 15.375
FG-X 5.2593 7.1885 9.8249 10.554 11.037 12.352 13.521 14.757 14.947 15.616
FG-O 4.8246 6.6885 9.2026 9.9475 10.393 12.264 12.816 14.046 14.308 15.135

0.28

UD 5.4321 7.3333 10.197 10.724 11.379 12.708 13.857 15.012 15.538 16.155
FG-Λ 5.4472 7.4397 10.245 10.95 11.502 13.053 14.091 15.365 15.733 16.575
FG-V 5.4472 7.4397 10.245 10.95 11.502 13.053 14.091 15.365 15.733 16.575
FG-X 5.7266 7.8639 10.654 11.544 11.995 13.168 14.717 16.105 16.109 16.676
FG-O 5.2877 7.1001 10.086 10.41 11.214 13.173 13.619 14.666 15.616 16.385

Table 8: )e dimensionless frequencies of multi-stepped FG-CNTRC plate with different boundary conditions.

Modes
Boundary conditions

CCCC SSSS CCFF CCSS CFCF E1E1CC E2E2CC E3E3CC

UD

1 11.878 6.3101 8.4369 10.407 1.763 10.416 11.735 10.354
2 12.355 7.2558 8.6606 10.773 3.2095 11.923 12.326 11.922
3 19.465 13.214 11.804 16.69 6.6438 18.17 19.348 18.124
4 24.726 17.842 12.575 22.531 9.3149 21.39 24.666 21.382

FG-V

1 10.71 5.3941 7.1506 9.5077 1.7169 9.6103 10.604 9.5606
2 11.626 6.85 7.4179 9.6381 3.2676 11.334 11.604 11.345
3 18.872 12.917 10.622 15.928 6.8569 17.884 18.8 17.857
4 22.016 15.53 11.855 21.392 7.8366 19.832 21.972 19.823

FG-X

1 13.299 7.3699 9.8674 11.795 2.2367 11.306 13.125 11.23
2 13.705 8.0438 10.084 12.194 4.0422 13.013 13.666 13.007
3 20.96 14.344 13.195 18.154 7.4092 19.289 20.819 19.255
4 27.991 20.757 13.879 22.693 10.872 22.956 27.912 22.953

FG-O

1 9.7402 4.8733 6.3391 8.6141 1.44 8.8857 9.6834 8.8171
2 10.775 6.4673 6.6011 8.6944 2.9381 10.565 10.795 10.55
3 17.738 12.084 9.6518 14.858 6.3165 16.969 17.662 16.937
4 19.906 13.98 10.979 19.273 6.9302 18.448 19.902 18.418

Mode1 = 13.299 Mode2 = 13.705

Mode3 = 20.96 Mode4 = 27.991

(a)

Figure 9: Continued.
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Mode1 = 9.8674 Mode2 = 10.084

Mode3 = 13.195 Mode4 = 13.879

(b)

Figure 9: Some mode shapes of multi-stepped FG-CNTRC plate. (a) CCCC. (b) CCFF.

(a) (b) (c)

Figure 10: Some mode shapes of multi-stepped FG-CNTRC plate with CCCC boundary condition (FG-V, V∗CNT � 0.28, η1 = 0.141,
η2 = 1.585, η3 = 1.109). (a) Mode1. (b) Mode2. (c) Mode3.

(a) (b) (c)

Figure 11: Somemode shapes of multi-stepped FG-CNTRC plate with SSSS boundary condition (FG-O, V∗CNT � 0.12, η1 = 0.137, η2 = 1.022,
η3 = 0.715). (a) Mode1. (b) Mode2. (c) Mode3.
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(a) (b) (c)

Figure 12: Some mode shapes of multi-stepped FG-CNTRC plate with CCFF boundary condition (FG-X, V∗CNT � 0.17, η1 = 0.142,
η2 = 1.626, η3 = 1.138). (a) Mode1. (b) Mode2. (c) Mode3.
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Figure 13: Continued.
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Figure 13: )e frequency-displacement characteristics of multi-stepped FG-CNTRC plate under three types of load.
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properties are set the same as Figure 13. )e examples of
free vibration analysis clearly show that as V∗CNT increases,
the frequency of multi-stepped FG-CNTRC plate also
increases.

As the last example of the steady-state vibration analysis,
the frequency-displacement characteristics in the non-
stepped and stepped plants with same size are considered.
Materials have FG-X distribution and the study is conducted
when V∗CNT � 0.12, η1 = 0.137, η2 = 1.022, and η3 = 0.715. )e
geometric parameters are a= 1.1m, b= 1.1m, and h= 0.02m
in the non-stepped plates and a1 = 0.5m, a2 = 0.1m,
a3 = 0.5m, b1 = 0.5m, b2 = 0.1m, b3 = 0.5m, hx1 = 0.02m,
hx2 = 0.05m, hx3 = 0.02m, hy1 = 0.02m, hy2 = 0.05m, and
hy3 = 0.02m in stepped plates, respectively.

)e external load is assumed that the unit point force
(fw = − 1 N) is applied in the vertical direction. )e ap-
plied points of force are all set as A (x, y) = (0.55 m,
0.55m) in two cases, and the displacement measurement
points are all taken as B (x, y) = (0.3 m, 0.3 m) in all cases.
Figure 15 shows the frequency-displacement character-
istics curve in two cases under different boundary
conditions.

Figure 15 shows that the frequency is expressed largely in
the stepped plates while the displacement is seen largely in
the non-stepped plates, which is mainly due to the resisting
force of the steps.

4.2.2. Transient Response. Figure 16 shows the displacement
of multi-stepped FG-CNTRC plate under CCCC boundary
condition when three types of load are applied. )e material
and geometric parameters are set as shown in Table 6, and
the size and applied point of force and response measure-
ment point of displacement are the same as Figure 13. )e
transient load f (t) is set as rectangular pulse, and the

calculating time step, loading time, and calculating time are
taken as ∆t= 0.02ms, τ = 10ms, and t= 20ms. As can be
seen from Figure 16, in the application of point force, the
displacement change according to the time is the largest,
while the displacement change is the smallest in case of area
force.

Figure 17 shows the displacement of multi-stepped FG-
CNTRC plate when various transient loads are applied. )e
material has FG-V distribution characteristics; the study is
conducted when V∗CNT � 0.12, η1 = 0.137, η2 = 1.022, and
η3 = 0.715. )e type of applied force is point force, and the
size, applied point of force, and displacement-response
measurement point are set as shown in Figure 16. )e
calculating time step is taken as ∆t= 0.02ms, and the loading
time and calculation time are τ = 10ms and t= 20ms, re-
spectively. As can be seen from Figure 17, the transient
response exhibited by the exponential pulse is the largest,
while it is the smallest in case of the rectangular pulse. In
addition, the change of displacement is very slow when the
half-sine pulse and triangular pulse are applied. Overall
results indicate that the variation of transient response of the
multi-stepped FG-CNTRC plate has a close relationship
with the type of applied loads.

Figure 18 represents the influence of V∗CNT on the
transient response of multi-stepped FG-CNTRC plate when
different kinds of transient loads are applied. )e material is
assumed to have FG-V distribution characteristics, and the
clamped boundary condition is considered.)ematerial and
geometric parameters and the parameters of displacement-
response characteristics including the applied force and
applied time are set as shown in Figure 17. Figure 18 shows
that as V∗CNT increases, the displacement also increases. Also,
if the only absolute variation of displacement is considered,
it is the largest when V∗CNT � 0.12 regardless of the type of
transient loads.
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Figure 14: )e frequency-displacement characteristics of multi-stepped FG-CNTRC plate under three types of V∗CNT. (a) CCCC. (b) SSSS.
(c) CCFF. (d) E1E1CC.
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Figure 15: )e frequency-displacement characteristics of non-stepped and multi-stepped FG-CNTRC plates. (a) CCCC. (b) SSSS.
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Figure 17: )e displacement response of multi-stepped FG-CNTRC with various boundary conditions. (a) CCCC. (b) SSSS. (c) CCFF.
(d) E1E1CC.

Shock and Vibration 23



5. Conclusion

In this paper, using the domain decomposition method,
dynamic behavior of multi-stepped FG-CNTRC plate with
random boundary conditions is analyzed based on the
FSDT. Within the framework of the domain decomposition
method, the rectangular plates are segmented along the
length direction using the segmenting technology and the
thickness of each subdomain is taken differently. In this way,
the multi-stepped FG-CNTRC plate can be constructed
simply. )e artificial spring technique is employed to satisfy
the boundary conditions and the continuity conditions of
the piecewise interface. )e displacement admissible func-
tion of the multi-stepped FG-CNTRC plate is constructed
using ultraspherical polynomials in a unified form. )e
ultraspherical polynomial expansion coefficient is

considered as an unknown independent variable, and the
dynamic solution equation of the multi-stepped FG-CNTRC
plate can be constructed through the calculation of the
extremum of the unknown independent variable. As a result,
a complex system of partial differential equations is con-
verted into the standard system of linear equations. )e
accuracy and convergence of the proposed method are
validated using numerical examples. Next, the effect of
geometric and material parameters on the free vibration
characteristics of multi-stepped FG-CNTRC plate is inves-
tigated. Several natural frequency parameters and mode
shapes which have not been published yet are also intro-
duced in this paper, and they can be referred as comparative
data by future researchers. Based on these results, the forced
response of the multi-stepped FG-CNTRC plate is also
parameterized. )e proposed method will be expanded in a
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Figure 18: )e displacement response of stepped FGPE plate under different pulse types. (a) Rectangular pulse. (b) Triangular pulse.
(c) Half-sine pulse. (d) Exponential pulse.
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further work to include multi-stepped cylindrical, conical,
and double-curved shell with various boundary conditions.
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