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In this paper, the free vibration behaviors of composite laminated annular and circular plates under complex elastic boundary
constraints are investigated. Firstly, Reddy’s high-order shear deformation theory (HSDT) and Jacobi polynomial method are
effectively combined to establish the unified vibration analysis model of composite laminated annular and circular plates.
Secondly, the simulation of complex elastic boundary and coupling boundary is realized by using artificial virtual spring
technology. +en, the energy equation of the composite laminated plate is established by using Rayleigh–Ritz energy technology.
Finally, the free vibration solution equation of the laminated plate is obtained through the Hamilton differential principle.+e fast
and uniform convergence of this method and the accuracy of the calculated results are verified by numerical examples and the
model experimental method. On this basis, the parameterization study is conducted, and the effects of material parameters,
geometric parameters, spring stiffness values, and lamination scheme on the vibration characteristics of the annular or circular
plate are fully discussed, which can provide a theoretical basis for future research.

1. Introduction

+e composite laminated annular or circular plates are
regarded as the basic components of complex structures in
various engineering and industrial application. +erefore,
in-depth investigation of the free vibration characteristics of
this kind of structure is quite meaningful for the vibration
reduction, noise reduction, and impact resistance of the
plate. Many scholars have been trying to find new methods
or improve the existing methods to further study the vi-
bration mechanical properties of the composite plate
structure and have made fruitful research results. Among
these research results, the commonly used theories are two-
dimensional equivalent single-layer plate theory, zig-zag
theory, layerwise theory, and three-dimensional elastic
theory. +e equivalent single-layer plate theory mainly in-
cludes classical thin plate theory (CPT), first-order shear
deformation theory (FSDT), and high-order shear

deformation theory (HSDT). Next, these theories are taken
as the main line and briefly introduce the existing research
results.

According to the Ritz method and CPT, Afsharmanesh
et al. [1] solved the forced vibration problem of laminated
circular plates resting on a Winkler-type foundation.
Parametric research is mainly focused on the various clas-
sical edge constraints and fiber orientation. Amabili et al. [2]
investigated the free vibrations of a bolted (or riveted)
circular plate having elastic constraints variable by using the
Rayleigh–Ritz method. Arshid and Khorshidvand [3]
studied the free vibration analysis of saturated porous
functionally graded (FG) circular plates based on the dif-
ferential quadrature method (DQM) and CPT. Bahrami and
Teimourian [4] presented a wave propagation approach to
analyze free vibration of nonuniform annular and circular
membranes. As the first theory to be put forward, CPT
completely ignores the shear deformation of the plate, so it is
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only suitable for studying the low frequency vibration be-
havior of thin plates or shells.

Compared with CPT, the FSDT simply considers the
effect of shear deformation on structural vibration by in-
troducing the shear factor. +erefore, this theory can easily
solve the vibration behaviors of the plate or shell with
medium thickness. Mercan et al. [5] investigated important
parametric results for annular plates and conical panels with
isotropic, laminated, and FG materials by using FSDT and
discrete singular convolution (DSC) method. On the basis of
FSDT, Viswanathan et al. [6] expanded the Bickley-type
spline function approximation to study the vibration
problem of the symmetric angle-ply laminated annular and
circular plate of variable thickness. Powmya and Nar-
asimhan [7] discussed the free vibration analysis of ortho-
tropic laminated circular and annular plates based on FSDT.
+ey found that the transverse shear effects of orthotropic
laminates are more prominent than that of isotropic lami-
nates. Draiche et al. [8] presented an analytical model to
predict the static analysis of laminated reinforced composite
plates subjected to sinusoidal and uniform loads by using
a simple first-order shear deformation theory. Although the
FSDT further considers the effect of transverse shear de-
formation by introducing shear factor, this theory cannot
reflect the warping deformation of the plate in the thickness
direction more comprehensively.

In order to overcome the limitations of the CPT and
FSDT, the HSDT has been developed, which can better
describe the vibration of the composite laminated plate.
Amabili et al. [9] investigated forced nonlinear vibrations
around the frequency of the fundamental mode by in-
troducing a geometrically nonlinear damping model based
on third-order shear deformation theory. In addition, he and
his team have carried out a series of studies on the nonlinear
mechanics of composite plate and shell structures, based on
the third-order shear deformation theory [10–12]. Bisadi
et al. [13] employed an exact closed-form solution for freely
vibrating annular thick plates under traditional boundary
constraints based on Reddy’s HSDT. Asadi and Jam [14]
employed Mori–Tanaka method to calculate the buckling
property of annular plates reinforced by carbon nanotubes
on the basis of HSDT.+e effects of CNTs’ volume fractions,
orientation angles, boundary conditions, and geometric
ratio of the plate had been analyzed. Vinyas et al. [15] studied
the free vibration behavior of annular and circular magneto-
electro-elastic plates through the combination of finite el-
ement method and HSDT. Hosseini-Hashemi et al. [16]
proposed an exact analytical solution to discuss the freely
vibrating piezoelectric coupled circular/annular thick plate
based on Reddy’s HSDT. +e boundary constraints of the
plate are set to the combinations of free, simply support, or
fixed support. Besides, he and his team [17] presented exact
closed-form solutions to investigate free vibration behavior
of circular thin, moderately thick, and thick plates with
classical boundary constraints based on Reddy’s HSDT.
Compared with the FSDT, the results obtained by HSDTget
closer to the results obtained by 3D elastic theory. Najafi-
zadeh and Heydari [18] considered mechanical buckling of
FG circular plate with uniform radial compression based on

HSDT. +e study found that HSDT accurately predicts the
behavior of the FG circular plate, whereas the CPTand FSDT
overestimate buckling loads. In addition, some scholars have
proposed a simplified higher-order shear deformation
theory to further study the natural characteristics of com-
posite plate or shell structures [19–23]. Katariya et al. [24, 25]
studied the vibration characteristic of composite structures
based on the HSDT and experimental test method. It is not
difficult to find that there are still limitations in the study of
vibration characteristics of composite laminated plate
structures by using HSDT. Especially, for complex elastic
boundary conditions of the laminated plate, the research
results are relatively few.

According to the limitations of the above research re-
sults, this paper effectively combines Reddy’s HSDT and
Jacobi polynomials method to establish the unified analytical
model of the laminated annular plate and circular plate. +is
analysis model can quickly and accurately obtain the free
vibration behaviors of laminated annular and circular plates
under complex elastic boundary constraints. +rough the
parametric study of boundary spring stiffness, the range of
elastic boundary conditions is determined. On this basis,
several groups of different boundary settings are given.
Besides, in order to ensure the continuity when the rotation
angle is 360 degrees, the stiffness value of the connection
spring is clearly given. +rough the parametric study, the
effects of geometric parameters, material parameters, ply
angle, and other important parameters on the vibration
behaviors of the plate structures are effectively revealed.
+ese research results can provide a theoretical basis for
future research.

2. Theoretical Formulations

2.1. Model Description of the Laminated Annular/Circular
Plate. +e theoretical analysis model can be established
because of the correlation between the geometry and elas-
ticity of the annular plate and the circular plate. According to
the relationships between geometry and elasticity of the
annular plate and circular plate, the theoretical analysis
model can be found in Figure 1. First of all, as shown in
Figure 1(a), it is not difficult to find that the cylindrical
coordinate system of the plate is built on the midplane. In
this coordinate system, r-axis represents the radius direction,
and the corresponding geometric parameters are internal
radius R0 and external radius R1, respectively. R represents
the difference between R1 and R0. In particular, the circular
plate is set when the inner radius is zero. θ-axis represents
the rotation direction of the laminated plate, which ranges
from 0 to 2π. Z-axis donates the thickness direction of the
plate, which ranges from 0 to h. +en, the overall dis-
placement functions U, V, andW of this kind of plate
correspond to r-axis, θ-axis, and z-axis, respectively.

In this paper, simulations of various complex elastic
boundary constraints are achieved by applying artificial
virtual spring technology. All in all, spring components are
placed evenly at the boundaries of the annular or circular
plate. Among them, the number and type of spring com-
ponents should be determined according to the
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displacement function on the middle plane. In this paper,
the spring components are shown in Figure 1(b). Taking
the outer radius of the laminated circular plate as an
example, three linear springs (ku

r1
, kv

r1
, and kw

r1
) and four

rotary springs (Kψr
r1 , K

ψθ
r1 , K

wr
r1 , and K

wr
r1 ) form a boundary

spring component. When the study model is changed from
the annular plate to the circular plate, not only the inner
radius is set to 0 but also the stiffness of these boundary
springs at this position is set to 0. +rough this series of
settings, the simulation of different boundaries can be
easily realized.

2.2. Kinematic Relations and Stress-Strain Relations. In the
displacement field, the displacements U and V can be
extended to the cubic functions of the z-axis. Besides,
transverse deflection W is assumed to be constant along
the thickness direction of the plate. +erefore, the re-
lationship between the global displacement function and
the midplane displacement function can be expressed as
follows [26, 27]:

U(r, θ, z, t) � u(r, θ, t) + zψr(r, θ, t) + z
2ϕr(r, θ, t) + z

3λr(r, θ, t),

V(r, θ, z, t) � v(r, θ, t) + zψθ(r, θ, t) + z
2ϕθ(r, θ, t) + z

3λθ(r, θ, t),

W(r, θ, z, t) � w(r, θ, t),

(1)

where u, v, andw are the displacements of the midplane.
+en, ψr and ψθ denote the rotation foundations of
normal to midplane about the r-axis and θ-axis, re-
spectively. Besides, ϕr, ϕθ, λr, and λθ can be solved by using
the vanish of transverse shear stresses at the top and
bottom of the plate [26, 27]. Next, a simple solution
process will be given.

According to the three-dimensional elasticity theory
of the annular/circular plate, the strain-displacement

relations in the cylindrical coordinate system can be
obtained:

εr �
zU

zr
,

εθ �
zV

r zθ
+

U

r
,

crz �
zW

zr
+

zU

zz
,

εrθ �
zV

zr
,

εθr �
zU

r zθ
−

V

r
,

cθz �
zW

r zθ
+

zV

zz
.

(2)

Based on the simple high-order theory put forward by
Reddy [26, 27], ϕr, ϕθ, λr, and λθ can be obtained by setting
crz(r, θ, ±(h/2)) � cθz(r, θ, ±(h/2)) � 0. So, their expres-
sions can be written as

ϕr � 0,

λr � −
4
3h

2
zw

zr
+ ψr􏼠 􏼡,

ϕθ � 0,

λθ � −
4
3h

2
zw

r zθ
+ ψθ􏼠 􏼡.

(3)

In this way, combining equations (1) and (3), the dis-
placement function can be rewritten as follows:
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Figure 1: +e unified formulation and boundary conditions for the composite laminated annular plate and circular plate. (a) Coordinate
system and unified formulation. (b) Setting of boundary conditions for the circular plate.
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U(r, θ, z, t) � u(r, θ, t) + g(z)ψr(r, θ, t) + f(z)
zw(r, θ, t)

zr
􏼢 􏼣,

V(r, θ, z, t) � v(r, θ, t) + g(z)ψθ(r, θ, t) + f(z)
zw(r, θ, t)

r zθ
􏼢 􏼣,

W(r, θ, z, t) � w(r, θ, t),

(4)

in which g(z) � z − (4z3/3h2) and f(z) � − (4z3/3h2). It is
not difficult to find from equation (4) that the unknown
number of displacement functions involved is the same as
that of the FSDT. But the present HSDT explains the par-
abolic distribution of transverse shear strains along the
thickness of the composite laminated annular or circular
plate.

Substituting equation (4) into (2), it can be rewritten as

εr � ε0r + zk
0
r + z

2
k
1
r + z

3
k
2
r ,

εθ � ε0θ + zk
0
θ + z

2
k
1
θ + z

3
k
2
θ,

εrθ � ε0rθ + zk
0
rθ + z

2
k
1
rθ + z

3
k
2
rθ,

εθr � ε0θr + zk
0
θr + z

2
k
1
θr + z

3
k
2
θr,

crz � c
0
rz + zk

0
rz + z

2
k
1
rz + z

3
k
2
rz,

cθz � c
0
θz + zk

0
θz + z

2
k
1
θz + z

3
k
2
θz,

(5)

where the strain-displacement relationships on the mid-
plane are given in Table 1.

+e unidirectional fiber reinforced layers are the basic
components of composite laminated structures. +erefore,
the stress-strain relationship of the fiber reinforced layer of
the laminated plate is focused. It assumes that the proposed
plate has N layers. +en, the relationship of stress-strain for
the kth layer can be expressed as

σk
r

σk
θ

τk
rθ

τk
θr

τk
rz

τk
θz
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r
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εk
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εk
θr

c
k
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c
k
θz
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (6)

in which σk
i (i� r and θ) and τk

j (j� rθ, θr, rz, and θz) denote
normal stresses and shear stresses, respectively. Besides, the
stiffness coefficients Qk

pl (p and l� 1, 2, 4, 5, and 6) are
expressed as

Q
k
11 � Q

k
11cos

4
c

k
+ 2 Q

k
12 + 2Q

k
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+ Q
k
22sin
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k
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k
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k
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k
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k
11sin

4
c

k
+ 2 Q

k
12 + 2Q

k
66􏼐 􏼑cos2cksin2ck

+ Q
k
22cos

4
c

k
,

Q
k
16 � Q

k
11 − Q

k
12 − 2Q

k
66􏼐 􏼑cos3ck sin c

k
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k
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,

Q
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k
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k
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k
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+ cos4ck
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k
+ Q

k
55sin
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k sin c
k
,

Q
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k
55cos

2
c

k
+ Q

k
44sin

2
c

k
,

(7)

in which the angle between the fiber direction and the radius
direction is defined as ck.Qk

pl is thematerial coefficient and is
given as
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Q
k
11 �

E
k
1

1 − μk
12μ

k
21

,

Q
k
12 � μk

21Q
k
11,

Q
k
22 �

E
k
2

1 − μk
12μ

k
21

,

Q
k
44 � G

k
23,

Q
k
55 � G

k
13,

Q
k
66 � G

k
12,

(8)

where μk
12 and μk

21 are Poisson’s ratios. Young’s modulus is
expressed as Ek

1 and Ek
2. +e relationship between Poisson’s

ratio and Young’s modulus is μ12Ek
2 � μ21Ek

1. Besides, the
shear modulus is denoted as Gk

12, Gk
13, and Gk

23. When Ek
2 �

Ek
1 and Gk

12 � Gk
13 � Gk

23 � (Ek
1/2(1 + μk

12)), the isotropic
plate can be simulated.

So far, the relations between generalized force and strain
can be written as the matrix form:

N
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B11 B12 B16 B16

B12 B22 B26 B26

B16 B26 B66 B66

B16 B26 B66 B66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

C �

C11 C12 C16 C16

C12 C22 C26 C26

C16 C26 C66 C66

C16 C26 C66 C66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Table 1: +e strain-displacement relationships on the mid-plane.

i ε0i (c0i ) k0
i k1i k2i

r (zu/zr) (zψr/zr) 0 − (4/3h2)((zψr/zr) + (z2w/zr2))

θ (zv/r zθ) + (u/r) (zψθ/r zθ) + (ψr/r) 0 − (4/3h2)((zψθ/r zθ) + (ψr/r) + (z2w/r2zθ2) + (zw/r zr))

rθ (zv/zr) (zψθ/zr) 0 − (4/3h2)((zψθ/zr) + (z2w/r zr zθ))

θr (zu/r zθ) − (v/r) (zψr/r zθ) − (ψθ/r) 0 − (4/3h2)((zψr/r zθ) + (z2w/r zr zθ) − (ψθ/r) − (zw/r2zθ))

rz (zw/r) + ψr 0 − (4/h2)(ψr + (zw/zr)) 0
θz (zw/r zθ) + ψθ 0 − (4/h2)(ψθ + (zw/r zθ)) 0
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D �

D11 D12 D16 D16

D12 D22 D26 D26

D16 D26 D66 D66

D16 D26 D66 D66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

E �

E11 E12 E16 E16

E12 E22 E26 E26

E16 E26 E66 E66

E16 E26 E66 E66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

F �

F11 F12 F16 F16

F12 F22 F26 F26

F16 F26 F66 F66

F16 F26 F66 F66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G �

G11 G12 G16 G16

G12 G22 G26 G26

G16 G26 G66 G66

G16 G26 G66 G66

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Aκ �
A55 A45

A45 A44

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Bκ �
B55 B45

B45 B44

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Cκ �
C55 C45

C45 C44

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Dκ �
D55 D45

D45 D44

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Eκ �
E55 E45

E45 E44

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Fκ �
F55 F45

F45 F44

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Gκ �
G55 G45

G45 G44

⎡⎢⎢⎣ ⎤⎥⎥⎦,

Apl Bpl Cpl Dpl Epl Fpl Gpl􏽮 􏽯

� 􏽘

N

k�1
Q

k
pl 􏽚

Zk+1

Zk

1 z z
2

z
3

z
4

z
5

z
6􏽮 􏽯dz,

(9)

in which Apl, Bpl, Cpl, Dpl, Epl, Fpl, and Gpl are marked as
the stiffness coefficients. Besides, Zk is the thickness
coordinate value of the under surface of the kth layer
plate. Zk+1 is the thickness coordinate value of the upper
surface of the kth layer plate. So, the thickness of this layer
plate is zk �Zk+1 − Zk.

2.3. Energy Equation of Laminated Annular/Circular Plate.
In order to decrease the requirement of displacement
function selection, a kind of multisegment segmentation
technique is extended which can effectively relax the
boundary constraints of the laminated annular or circular
plate. Specifically, the laminate structure is subdivided
into Nr segments along the r-axis direction. +en,
a penalty parameter is introduced to ensure the conti-
nuity and boundary constraints between segments.
Firstly, the general expression of the Lagrange energy
equation L for composite laminated annular or circular
plates is given, which fully considers the effect of
boundary constraints:

L � 􏽘

Nr

q

Tq − Uq􏼐 􏼑 − 􏽘

Nr− 1

q

V
q
cp − VBC, (10)

where the kinetic energy and potential energy of the qth
segment plate are expressed by the symbols Tq and Uq.
When the plate is segmented, the coupling potential
energy is introduced, which is represented by symbol V

q
cp.

For the whole plate, the total kinetic energy and total
potential energy should be the superposition of Nr seg-
ments Tq and Uq, while the total coupling potential en-
ergy should be the superposition of (Nr − 1) segment V

q
cp.

According to the boundary spring simulation technique,
the spring potential stored at the plate boundary can be
represented by symbol VBC. Next, according to Reddy’s
HSDT, their specific expressions are given.

For the qth segment plate, the kinetic energy Tq is
expressed as
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Tq �
1
2

􏽚
rq+1

rq

􏽚
2π

0
I0 ( _u)

2
+( _v)

2
+( _w)

2
􏽨 􏽩 + 2I1 _u _ψr + _v _ψθ􏼂 􏼃 + I2 _ψr( 􏼁

2
+ _ψθ( 􏼁

2
􏽨 􏽩􏽮

−
8
3h

2I3 _u
z _w

zr
+ _u _ψr + _v

z _w

r zθ
+ _v _ψθ􏼢 􏼣 −

8
3h

2I4 _ψr( 􏼁
2

+ _ψθ( 􏼁
2

+ _ψr

z _w

zr
+ _ψθ

z _w

r zθ
􏼢 􏼣 +

16
9h

4I6
z _w

zr
+ _ψr􏼠 􏼡

2

+
z _w

r zθ
+ _ψθ􏼠 􏼡

2
⎡⎣ ⎤⎦

⎫⎬

⎭rdrdθ,

(11)

in which

I0, I1, I2, I3, I4, I5, I6􏼈 􏼉 � 􏽚
Zk+1

Zk

ρ(z) 1, z, z
2
, z

3
, z

4
, z

5
, z

6
􏽮 􏽯dz.

(12)

+e specific expression of Uq stored in the qth segment
laminated plate is

Uq �
1
2

􏽚
rq+1

rq

􏽚
2π

0
εT Aε + Bk + Ck1 + Dk2􏼐 􏼑 + γT

z Aκγz + Bκkz + Cκk
1
z + Dκk

2
z􏼐 􏼑 + kT Bε + Ck + Dk1 + Ek2􏼐 􏼑􏽮

+ kT
z Bκγz + Cκkz + Dκk

1
z + Eκk

2
z􏼐 􏼑 + k1􏼐 􏼑

T
Cε + Dk + Ek1 + Fk2􏼐 􏼑 + k1z􏼐 􏼑

T
Cκγz + Dκkz + Eκk

1
z + Fκk

2
z􏼐 􏼑

+ k2􏼐 􏼑
T
Dε + Ek + Fk1 + Gk2􏼐 􏼑 + k2z􏼐 􏼑

T
Dκγz + Eκkz + Fκk

1
z + Gκk

2
z􏼐 􏼑􏼛rdrdθ.

(13)

As mentioned above, when the plate structure is seg-
mented along the radius direction, the coupling potential
energy between adjacent segments is needed to ensure the
continuity of displacements. Similarly, the coupling
boundary is simulated by virtual spring technology. In short,
the coupling springs (ku

c , kv
c , kw

c , K
ψr
c , K

ψθ
c , K

wr
c , and K

wθ
c ) are

added between adjacent segments. +en, the reasonable
spring stiffness is set, which will be further discussed in the
following numerical analysis. For the qth segment and
(q+ 1)th segment plate, the coupling potential energy V

q
cp

can be written as

V
q
cp �

1
2

􏽚
2π

0
k

u
c uq − uq+1􏼐 􏼑

2
+ k

v
c vq − vq+1􏼐 􏼑

2
+ k

w
c wq − wq+1􏼐 􏼑

2
+ K

ψr

c ψr,q − ψr,q+1􏼐 􏼑
2

+ K
ψθ
c ψθ,q − ψθ,q+1􏼐 􏼑

2
􏼚

+ K
wr

c

zwq

zr
−

zwq+1

zr
􏼠 􏼡

2

+ K
wθ
c

zwq

r zθ
−

zwq+1

r zθ
􏼠 􏼡

2⎫⎬

⎭rdθ.

(14)

+ere are a lot of research results on the elastic boundary
conditions of plates and shells by using artificial virtual
spring technology [28–31]. In Figure 1(b), the setting and

types of elastic boundary springs have been given. +e ex-
pressions of coupling potential energy VBC of the boundary
springs are given directly below:

VBC �
1
2

􏽚
2π

0
R0 k

u
r0

u
2

+ k
v
r0

v
2

+ k
w
r0

w
2

+ K
ψr

r0
ψ2

r + K
ψθ
r0
ψ2
θ + K

wr

r0

zw

zr
􏼠 􏼡

2

+ K
wθ
r0

zw

r zθ
􏼠 􏼡

2
⎛⎝ ⎞⎠

r�R0

⎧⎪⎨

⎪⎩

+ R1 k
u
r1

u
2

+ k
v
r1

v
2

+ k
w
r1

w
2

+ K
ψr

r1
ψ2

r + K
ψθ
r1
ψ2
θ + K

wr

r1

zw

zr
􏼠 􏼡

2

+ K
wθ
r1

zw

r zθ
􏼠 􏼡

2
⎛⎝ ⎞⎠

r�R1

⎫⎪⎬

⎪⎭
dθ.

(15)
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So far, the energy equation of the elastic laminate
structure has been clearly expressed. Next, we will focus on
the setting of the displacement function on the reference
midsurface and the specific solving process of the natural
frequencies and mode shapes.

2.4. Solution Process of Laminated Annular/Circular Plate.
In the previous section, the global energy equation of the
laminated annular or circular plate has been established, so
this section will solve it by using the Hamilton differential
principle. Firstly, it is necessary to determine the concrete
displacement function expression of the middle plane. +is
paper applies the multisegment segmentation technique
to investigate the free vibration behaviors of composite
annular or circular plates, which can reduce the re-
quirements of choosing displacement functions. Because
compared with directly building the displacement func-
tion of the whole structure, the displacement function
only needs the low order polynomials for the segment
structure. Here, the Jacobi orthogonal polynomials are
applied to construct displacement functions [32–36],
which can be expressed as

u � 􏽘
M

m�0
􏽘

N

n�0
Umn,qP

(α,β)
m (r)[cos(nθ) + sin(nθ)]e

jωt
, (16)

v � 􏽘

M

m�0
􏽘

N

n�0
Vmn,qP

(α,β)
m (r)[cos(nθ) + sin(nθ)]e

jωt
, (17)

w � 􏽘
M

m�0
􏽘

N

n�0
Wmn,qP

(α,β)
m (r)[cos(nθ) + sin(nθ)]e

jωt
, (18)

ψr � 􏽘
M

m�0
􏽘

N

n�0
ψr

mn,qP
(α,β)
m (r)[cos(nθ) + sin(nθ)]e

jωt
, (19)

ψθ � 􏽘
M

m�0
􏽘

N

n�0
ψθ

mn,qP
(α,β)
m (r)[cos(nθ) + sin(nθ)]e

jωt
, (20)

where the Jacobi coefficients are expressed as Umn,q, Vmn,q,
Wmn,q, ψr

mn,q, and ψθ
mn,q for the qth segment plate. +e Jacobi

polynomial of the mth in the radius direction is set to
P

(α,β)
m , and α and β denote the type of polynomials. Jacobi

polynomials are orthogonal polynomials, so we can get
Legendre polynomials, Chebyshev polynomials, and so on
by setting the values of α and β. For example, if the values
of α and β are 0, the Legendre polynomial will be obtained.
When α� β� − 0.5, it is the first kind of Chebyshev
polynomial. When α� β� 0.5, it is the second kind of
Chebyshev polynomial. +is also shows the universality of
the Jacobi polynomials. In addition, n represents the
number of half wave in the rotation direction. +en, j, ω,
and t are pure imaginary number, circular frequency, and
time variable.

According to the Hamilton differential principle, the
partial derivative of L to the unknown Jacobi coefficient
matrix E is zero, which can be written as

zL

zE
� 􏽘

Nr

q

zTq

zE
−

zUq

zE
􏼠 􏼡 − 􏽘

Nr− 1

q

zV
q
cp

zE
−

zVBC

zE
� 0, (21)

E � Umn,q Vmn,q Wmn,q ψr
mn,q ψθ

mn,q􏽨 􏽩
T
. (22)

By introducing equations (11)–(15) into (21), a vibration
characteristic solution equation can be obtained:

K + Kcp + KBC − ω2M􏼐 􏼑E � 0, (23)

in which K, Kcp, and KBC are stiffness matrix, coupling
matrix between segments, and boundary spring matrix,
separately.M denotes themass matrix. From this equation, it
is easy to find that the circular frequencies can be obtained
by finding the generalized eigenvector. In addition, the
corresponding generalized eigenvectors are introduced in
equations (19)–(23), and the modal shapes of the laminated
plate could be easily gained.

3. Numerical Analysis and Discussion

By effectively combining Reddy’s HSDT and Jacobi poly-
nomials, the equations for solving vibration behaviors of
laminated annular or circular plates are established. Next,
some numerical examples are applied to study the free vi-
bration characteristics of the laminated plate structures. +is
section mainly studies the convergence and accuracy, new
results, and experimental tests. In addition, it should be
pointed out that different boundary constraints are repre-
sented by a combination of corresponding first characters.
Specifically, since there is only one boundary in the direction
of the outer radius for a circular plate, there is only one
character to represent it. Among them, the character sign
corresponding to the fixed support is C, the sign corre-
sponding to the simple support is S, the sign corresponding
to the free boundary is F, and the sign corresponding to the
elastic support is E. For annular plates with fixed support in
the inner radius direction and simply supported in the outer
radius direction, the boundary constraint can be expressed
as C-S.

3.1. Model Validation. Convergence and accuracy analysis
are important indexes for evaluating an algorithm. +ere-
fore, this section focuses on the convergence of this method
and the accuracy of the analysis model in the study of vi-
bration characteristics. By parameterizing the stiffness of the
boundary spring, different boundary constraints are defined.
In addition, the parameterization of the stiffness of the
coupling spring between segments is examined. From the
expression of the displacement function, it is not difficult to
find that the truncated value M of Jacobi polynomial and
segment number Nr directly represent the convergence of
the proposed method. In Figure 2, the convergence of
frequency parameters for the laminated annular or circular
plate with fixed boundary constraints is investigated. For the
laminated plate, the material parameters are set to E1 � 20E2,
E2 �10GPa, G12 �G13 � 0.6E2, G23 � 0.5E2, μ12 � 0.25, and
ρ� 1600 kg/m3. +e lamination scheme is [0°/90°], and the
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geometric parameters are R1 � 1m and h� 0.1m. In addi-
tion, the internal radius R0 is 0.3m. Figure 2 shows the
curves of the frequency parameters Ω � (ωR2/

������
ρ/h2E2

􏽰
) of

the annular plate and the circular plate with the increase of
M or Nr. It shows intuitively that the frequency parameters
of the two types of plate structures converge whenM is 8 or
Nr is 2. +e proposed method shows good and consistent
convergence in solving the natural frequency of this
structure. In order to ensure the accuracy of the numerical
example, the truncated value in the following examples is
defined as M� 10 and Nr � 2.

As previously described, different types of polynomials
could be obtained by setting the values of Jacobi parameters
α and β. Table 2 shows error analysis of frequency parameter
Ω � ωR1

������
ρh/A11

􏽰
for the clamped composite laminated

annular plate with various Jacobi parameters α and β. +e
material parameters are as follows: E1 � 15E2, E2 �10GPa,
G12 �G13 � 0.6E2, G23 � 0.5E2, μ12 � 0.25, and ρ� 1500 kg/
m3. +e lamination scheme is [0°/90°0°/90°], and the geo-
metric parameters are R0 �1m, R1 � 3m, and hp � 0.1m. It is
not difficult to find out from Table 2 that the Jacobi pa-
rameters α and β have little effect on the calculation results of
the frequency parameter Ω under the accuracy of five ef-
fective digits. In addition, the results obtained in this paper
are in excellent agreement with those in [37]. If there is no
special description, the Jacobi parameters are chosen as
α� β� 0 in other calculation examples in this paper.

As mentioned above, the complex boundary conditions
are simulated by artificial virtual spring technology. Next,
Figure 3 displays the influence of boundary spring values on
natural frequency of the laminated annular plate and a cir-
cular plate. +rough numerical analysis, the variation range
of spring stiffness for the elastic boundary can be de-
termined. Except for the boundary constraints, the structural
and material parameters of Figure 3 are exactly the same as
those used in Table 2. +e range of values of the linear
boundary spring (defined as k) and rotary boundary spring
(defined as K) is both 10− 4 to 1016. It can be seen from
Figure 3 that the waterfall plots of the frequencies to the
change of boundary spring stiffness values have the same
trends. In brief, when the linear boundary spring stiffness
value (k) and the rotary boundary spring stiffness value (K)
are less than 104, the frequency value is 0 corresponding to
the free boundary condition. When k and K are higher than
1010, the frequency reaches the peak corresponding to the
clamped boundary condition. Besides, the elastic boundary
conditions can be determined when k and K appear in the
following four combinations: 104<k< 1010, K< 104;
104< k< 1010, K> 1010; 104<K< 1010, k< 104; 104<K< 1010,
k> 1010. In light of the conclusions above, the values k and K
corresponding to different boundary conditions are given in
Table 3.

Now, let us focus on the connective spring. Figure 4
displays the influence of the connective spring stiffness value
on the natural frequency of laminated annular and circular
plates. In Figure 4, the annular plate is simply supported and
the circular plate is clamped. Other parameters are exactly
the same with Figure 3. Stiffness values of the connective
spring vary from 10− 2 to 1016.+e results show that the effect

of connective spring stiffness on the natural frequencies is
the same whether it is an annular plate under the SS
boundary constraint or a circular plate under the C
boundary constraint. +e frequencies are almost unaffected
when the value of the connective spring stiffness is less than
104. +ereafter, the frequencies increase with the increase of
the connective spring stiffness until the value of connective
spring stiffness is greater than 1010. To ensure continuity, the
value of connective spring stiffness is chosen as 1010.

So far, a numerical analysis model for free vibration
behaviors of the composite laminated annular or circular
plate has been established. To further validate the correctness
of the proposed method, Table 4 gives the comparisons of
the frequency parameterΩ � ωR1

������
ρh/A11

􏽰
for the laminated

annular plate between the results obtained by HSDT and
existing research [37]. Obviously, these two methods have
a great agreement, which proves the correctness of the
present vibration analysis model. In addition, it is not dif-
ficult to see from this table that the stronger the boundary
constraint, the greater the natural frequency of the plate.

+en, Table 5 shows the comparison of the frequency
parameter Ω � (ωR2

1/
������
ρ/h2E2

􏽰
) for the isotropic circular

plate with different thickness ratio h/R1. +e parameters of
the clamped circular plate are E1 � E2 �185GPa,
G12 �G13 �G23 � 7.12GPa, μ12 � 0.3, ρ� 1600 kg/m3, and
R1 � 1m. +e results of FEM in the table are obtained by
ABAQUS software. It is not difficult to find that the results
obtained by the present method are in good agreement with
those obtained by FEM when h/R1 is 0.2. In addition, the
material used throughout this numerical example is actually
an isotropic material. +erefore, the accuracy and univer-
sality of the present method in solving isotropic plate
structures are also verified by this example. From this table,
it can be found that the natural frequency of the plate de-
creases with the increase of the ratio of h/R1.

3.2. Study on Free Vibration Characteristics. In Section 3.1,
the vibration analysis model for the composite annular and
circular plate based on Reddy’s HSDT and Jacobi poly-
nomials method has been established. +e correctness and
universality of the present method have been validated, too.
In this part, we will give some new results and conclusions.

Firstly, Table 6 shows the frequency parameter
Ω � ωR1

������
ρh/A11

􏽰
for the composite annular plate with

various radius ratios and boundary constraints. +e material
parameters are E1 � 30E2, E2 �10GPa, G12 �G13 � 0.6E2,
G23 � 0.5E2, μ12 � 0.27, and ρ� 1600 kg/m3. And, the lami-
nation scheme is [60°/− 30°/60°]. +e invariant geometric
parameters are R1 � 1m and h� 0.15m. It can be found from
Table 6 that radius ratios and boundary constraints have
a profound impact on the frequency parameter. On the one
hand, the frequency parameter increases when the boundary
spring stiffness value increases. On the other hand, the
influence of the radius ratio on the frequency parameter is
more complex and does not show monotonicity. +en,
Table 7 gives the frequency parameter Ω � ωR1

������
ρh/A11

􏽰
for

the laminated annular plate with various boundary con-
straints and thicknesses.+ematerial parameters involved in

Shock and Vibration 9



Table 7 are E1 � 15E2, E2 �10GPa, G12 �G13 � 0.5E2,
G23 � 0.2E2, μ12 � 0.25, and ρ� 1500 kg/m3. +e lamination
scheme is [30°/− 30°], and R1 � 1m. It is noticeable that the
frequency parameter increases when the boundary spring
stiffness and plate thickness increase.

Next, Table 8 gives the frequency parameter
Ω � (ωR2

1/
������
ρ/h2E2

􏽰
) for the laminated annular plate and

a circular plate with diverse anisotropy degrees and
lamination schemes. +e material parameters implicated
in Table 8 are E2 �10 GPa, G12 �G13 � 0.5E2, G23 � 0.6E2,
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Figure 2: Frequency parameter Ω � (ωR2/
������
ρ/h2E2

􏽰
) of the composite laminated annular plate and circular plate under fixed boundary

constraints with differentM andNr. (a) Annular plate under fixed boundary constraints. (b) Circular plate under fixed boundary constraints.

Table 2: Error analysis of frequency parameter Ω � ωR1
������
ρh/A11

􏽰
for Jacobi parameters α and β for the annular plate with clamped

supported boundary.

Method (α, β)
Mode number

1 2 3 4 5

Present

(0, 0) 0.41618 0.41657 0.42719 0.46641 0.54884
(0, − 0.5) 0.41618 0.41657 0.42719 0.46641 0.54884
(0, 0.5) 0.41618 0.41657 0.42719 0.46641 0.54884
(− 0.5, 0) 0.41618 0.41657 0.42719 0.46641 0.54884

(− 0.5, − 0.5) 0.41618 0.41657 0.42719 0.46641 0.54884
(− 0.5, 0.5) 0.41618 0.41657 0.42719 0.46641 0.54884
(0.5, 0) 0.41618 0.41657 0.42719 0.46641 0.54884

(0.5, − 0.5) 0.41618 0.41657 0.42719 0.46641 0.54884
(0.5, 0.5) 0.41618 0.41657 0.42719 0.46641 0.54884
(1, 1) 0.41618 0.41657 0.42719 0.46641 0.54884

Reference [37] — 0.41622 0.41669 0.42751 0.46703 0.54960
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μ12 � 0.25, and ρ� 1500 kg/m3. +e geometrical parame-
ters are R1 � 1m, h� 0.08m, and R0 � 0.3m (for the annular
plate). +e boundary constraints of the annular plate and
circular plate are E2-E2 and E2, respectively. It is not difficult
to find that the frequency parameter increases with the
increase of anisotropy degrees. It is noteworthy that the
lamination scheme has an important influence on the fre-
quency parameters. However, due to data limitations, it is
difficult to draw general conclusions.

For the sake of fully revealing the effect of material
parameters on vibration behaviors of the laminated annular
plate and circular plate, the parametric research is

conducted. Figure 5 studies the effect of the layer number on
natural frequencies of the laminated annular plate and
circular plate with fixed boundary constraints. +e material
parameters are E1 � 5E2, E2 �10GPa, G12 �G13 � 0.5E2,
G23 � 0.6E2, μ12 � 0.25, and ρ� 1500 kg/m3. +e geometrical
parameters of the clamped plates are R1 � 1m, h� 0.08m,
and R0 � 0.3m (for an annular plate). It should be noted that
p represents the layer number. And, [0/− 30°]1 represents [0/
− 30°], while [0/− 30°]2 represents [0/− 30°/0/− 30°], and so on.
As can be seen from Figure 5, the frequencies increase when
the layer number increases and tend to be stable after the
layer number exceeds 4. Moreover, the frequency changes
most significantly when the layer number changes from 1
to 2.

In addition, for the annular plate, its frequency de-
creases monotonously with the increase of the ply angle,
but not for the circular plate. In order to reveal the effect of
the ply angle on the vibration behaviors of the laminated
annular and circular plate with fixed boundary con-
straints, Figure 6 shows the variation of frequency with
various ply angles. +e lamination scheme used in Fig-
ure 6 is chosen as [0/c°], and α ranges from 10° to 170°.
From Figure 6, it is easy to find that the frequency
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Figure 3: Effect of the boundary spring value on frequency (Hz) of the composite laminated annular plate and circular plate. (a) Annual
plate. (b) Circular plate.

Table 3: Stiffness values of the boundary spring corresponding to
different boundary conditions.

BC
Stiffness values

ku
r0

kv
r0

kw
r0

K
ψr
r0 K

ψθ
r0 K

wr
r0 K

wθ
r0

F 0 0 0 0 0 0 0
C 1014 1014 1014 1014 1014 1014 1014

S 1014 1014 1014 0 0 0 0
E1 108 108 108 1014 1014 1014 1014

E2 108 108 108 108 108 108 108
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variation is symmetrical with respect to [0/90°]. On the
contrary, when α is less than 90°, the frequency of the
annular plate decreases monotonously with the increase

of c. For the circular plate, the frequency is not signifi-
cantly affected by the change of the ply angle and does not
have monotonicity.
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Figure 4: Effect of the connective spring value on frequency (Hz) of the composite laminated annular plate and circular plate. (a) Annular
plate under the S-S boundary condition. (b) Circular plate under the C boundary condition.

Table 5: Comparison of the frequency parameter Ω � (ωR2
1/

������
ρ/h2E2

􏽰
) for the composite laminated circular plate with different plate

thicknesses.

h/R1 Method
Mode number

1 3 5 6 7 9 11

0.01 FEM 3.090 6.446 10.575 12.078 15.477 18.559 21.138
Present 3.093 6.351 10.504 12.025 15.366 18.258 20.984

0.02 FEM 3.087 6.435 10.548 12.043 15.420 18.481 21.034
Present 3.091 6.338 10.476 12.001 15.309 18.176 20.882

0.05 FEM 3.069 6.362 10.362 11.812 15.039 17.962 20.355
Present 3.074 6.258 10.294 11.775 14.938 17.660 20.221

0.08 FEM 3.037 6.234 10.044 11.418 14.412 17.118 19.275
Present 3.042 6.120 9.983 11.391 14.327 16.822 19.171

0.1 FEM 3.008 6.123 9.778 11.092 13.906 16.445 18.435
Present 3.013 6.001 9.724 11.073 13.835 16.155 18.355

0.15 FEM 2.915 5.782 9.009 10.156 12.522 13.677 14.644
Present 2.921 5.624 8.981 10.164 12.492 14.339 14.707

0.2 FEM 2.798 5.393 8.202 9.190 10.258 11.175 11.905
Present 2.806 5.091 8.196 9.230 11.029 11.185 11.880

Table 4: Comparison of the frequency parameter Ω � ωR1
������
ρh/A11

􏽰
for the composite laminated annular plate with different boundary

conditions.

BC Method
Mode number

1 2 3 4 5

F-S Present 0.04245 0.08302 0.17203 0.28055 0.37333
Reference [37] 0.04255 0.08408 0.17302 0.28132 0.37312

F-C Present 0.11687 0.14604 0.24021 0.36739 0.49685
Reference [37] 0.11671 0.14685 0.24153 0.36835 0.49659

S-S Present 0.21671 0.21840 0.23869 0.30135 0.40908
Reference [37] 0.21669 0.21849 0.23909 0.30212 0.40990

S-C Present 0.32832 0.32981 0.34740 0.40547 0.51367
Reference [37] 0.32825 0.32986 0.34775 0.40619 0.51446

C-C Present 0.41618 0.41657 0.42719 0.46641 0.54884
Reference [37] 0.41622 0.41669 0.42751 0.46703 0.54960
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Table 6: +e frequency parameter Ω � ωR1
������
ρh/A11

􏽰
for the composite laminated annular plate with different radius ratios and boundary

conditions.

R0/R1 BC
Mode number

1 2 3 4 5 6 7 8

0.1

C-E1 0.2406 0.3027 0.6400 0.6400 0.7337 0.7337 0.7560 0.8754
E1-E1 0.1581 0.1847 0.5236 0.6400 0.6400 0.7013 0.7013 0.8754
E1-E2 0.1577 0.1847 0.2920 0.2920 0.5134 0.5190 0.5190 0.7013
E2-E2 0.1575 0.1847 0.2748 0.2748 0.5121 0.5185 0.5185 0.7013

0.3

C-E1 0.3222 0.8324 0.8480 0.8480 0.9890 0.9890 1.0692 1.1834
E1-E1 0.1725 0.1903 0.6501 0.7515 0.7515 0.8480 0.8480 0.9890
E1-E2 0.1722 0.1903 0.3762 0.3762 0.5594 0.5594 0.6332 0.7515
E2-E2 0.1720 0.1903 0.2940 0.2940 0.5254 0.5254 0.6183 0.7515

0.5

C-E1 0.4915 1.2811 1.2811 1.3576 1.3576 1.4790 1.4790 1.6372
E1-E1 0.1973 0.2074 0.7385 0.7385 0.9624 1.2161 1.2161 1.2811
E1-E2 0.1972 0.2074 0.5410 0.5410 0.6993 0.6993 0.7385 0.7385
E2-E2 0.1970 0.2074 0.3233 0.3233 0.5601 0.5601 0.7385 0.7385

0.8

C-E1 0.4915 1.2811 1.2811 1.3576 1.3576 1.4790 1.4790 1.6372
E1-E1 0.2990 0.3013 0.6889 0.6889 1.0358 1.0358 1.1316 1.3101
E1-E2 0.2990 0.3013 0.6889 0.6889 1.0358 1.0358 1.1316 1.3101
E2-E2 0.2989 0.3013 0.4561 0.4561 0.6889 0.6889 0.7547 0.7547

Table 8:+e frequency parameterΩ � (ωR2
1/

������
ρ/h2E2

􏽰
) for the composite laminated annular/circular plate with different anisotropy degrees

and lamination schemes.

Plate type E1/E2
[0/90°] [0/90°/0] [0/90°/0/90°]

1 3 5 1 3 5 1 3 5

Annular

5 3.7759 4.0629 5.0452 3.9101 4.0682 5.4108 3.8286 4.0643 5.1982
10 3.8536 4.0754 5.2271 3.9698 4.0798 5.5790 3.9102 4.0775 5.4256
20 3.9219 4.0847 5.4082 4.0040 4.0881 5.6828 3.9638 4.0876 5.6096
30 3.9549 4.0894 5.5108 4.0174 4.0922 5.7285 3.9852 4.0925 5.7084
40 3.9749 4.0924 5.5813 4.0251 4.0949 5.7568 3.9973 4.0957 5.7798
50 3.9883 4.0947 5.6349 4.0304 4.0970 5.7779 4.0052 4.0981 5.8379
60 3.9981 4.0965 5.6782 4.0345 4.0986 5.7951 4.0110 4.0999 5.8884

Circular

5 3.7423 6.2217 6.8697 4.2955 6.2044 8.0643 4.0328 6.2224 7.4192
10 4.2170 6.2083 7.4886 4.9093 6.1970 8.9443 4.6722 6.2121 8.3725
20 4.7202 6.2051 8.2009 5.3431 6.1987 9.6122 5.1949 6.2105 9.2159
30 5.0007 6.2069 8.6403 5.5136 6.2021 9.9506 5.4174 6.2122 9.6415
40 5.1819 6.2094 8.9480 5.6051 6.2050 10.1838 5.5401 6.2142 9.9247
50 5.3087 6.2116 9.1804 5.6627 6.2075 10.3653 5.6182 6.2160 10.1405
60 5.4024 6.2137 9.3646 5.7026 6.2096 10.5153 5.6724 6.2175 10.3174

Table 7: +e frequency parameter Ω � ωR1
������
ρh/A11

􏽰
for the composite laminated annular plate with different boundary conditions and

thicknesses.

BC Mode number
H

0.01m 0.02m 0.04m 0.08m 0.10m 0.14m 0.18m 0.20m

S
1 0.0064 0.0127 0.0253 0.0504 0.0628 0.0871 0.1107 0.1221
3 0.0286 0.0566 0.1093 0.2271 0.2681 0.3424 0.4010 0.4251
5 0.0464 0.0919 0.1799 0.3368 0.4030 0.5109 0.5904 0.6216

E1
1 0.0175 0.0347 0.0675 0.1122 0.1187 0.1147 0.1057 0.1014
3 0.0411 0.0805 0.1536 0.1837 0.1646 0.1394 0.1231 0.1168
5 0.0615 0.1212 0.2350 0.2669 0.2834 0.3376 0.3967 0.4245

E2
1 0.0176 0.0347 0.0673 0.1106 0.1166 0.1124 0.1037 0.0995
3 0.0409 0.0801 0.1476 0.1834 0.1642 0.1389 0.1226 0.1163
5 0.0617 0.1208 0.2287 0.2335 0.2320 0.2223 0.2141 0.2108

C
1 0.0175 0.0348 0.0690 0.1343 0.1645 0.2195 0.2666 0.2873
3 0.0415 0.0823 0.1577 0.3194 0.3709 0.4589 0.5234 0.5488
5 0.0614 0.1209 0.2345 0.4259 0.5009 0.6159 0.6958 0.7262
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3.3.Model Experimental Study. In Section 3.2, free vibration
behaviors of the laminated annular plate and circular plate
are explored in depth based on the high-order shear de-
formation theory proposed by Reddy and Jacobi poly-
nomials method. However, the previous studies only
consider numerical validation. +ere is a lack of experi-
mental test data to support the qualitative conclusion of the

correctness of the above analysis model. In order to more
fully verify the correctness of this study, this part applies the
model experimental method. At present, equipment and
principle of the structural model test can give reliable and
more accurate experimental data. In addition, the fixed or
free boundary conditions are insensitive to the external
environment and easy to get realized. So, the model
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Figure 5: Effect of the layer number on frequency (Hz) of the fixed supported laminated annular plate and circular plate. (a) Annual plate.
(b) Circular plate.
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Figure 6: Effect of the ply angle on frequency (Hz) of the fixed supported laminated annular plate and circular plate. (a) Annular plate.
(b) Circular plate.
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experiments of annular and circular plates are completed
under the fixed boundary condition or the combination of
free and fixed boundary conditions, which can provide
more accurate experimental results. +e experimental
details on circular and annular plates can be found in
[38, 39].

In this paper, the force measurement method is used for
the model experiment.+emeasurement method is a single-
point vibration pickup method, that is, the position of the
acceleration sensor remains unchanged all the time, and the
hammer strikes all measuring points in turn. +is test
method requires that the vibration pick-up point avoid the
joint position of the test piece and tries to select the position
with large deformation. During the experiment, the 32-
channel DH5922N dynamic signal test and analysis system

and the corresponding modal analysis software are used,
which were produced by Jiangsu Donghua Testing Tech-
nology Co., Ltd. In addition, the general piezoelectric ac-
celeration sensor (1A116E) and the charge amplifier
(DH5857-1) are also needed. Table 9 shows the experimental
instruments and their related information used in the model
experiment.

In this experiment, according to the experimental
schematic diagram in Figure 7(a), the above experimental
equipment and workpiece are installed and arranged.
Figures 7(b) and 7(c) show the connection diagram of ex-
perimental equipment and test object of the annular plate
and circular plate. In this experiment, the 30 cm thick
foundation frame, 10 cm thick batten, and annular plate or
circular plate are connected by 60 bolts with the same

Dynamic signal test
and analysis system

Acceleration
sensor Annular plate

Charge
amplifier Hammer

PC

(a) (b)

(c)

Figure 7: Schematic diagram of the model experiment and object of annular and circular plates. (a) Schematic diagram of the model
experiment. (b) Annular plate with the F-C boundary condition. (c) Circular plate with the C boundary condition.

Table 9: Experimental instruments for the modal test of rotating plate structures.

Name Model
number Parameter Use

Hammer LC-01A Hammer head: aluminum hammer head; sensitivity: 4 pC/N;
output signal: electric charge type

Provide incentives for plate
structures

Charge amplifier DH5857-1 Input resistance: >1011Ω; input electric charge: <105 pC;
sensitivity: 0.1, 10mv/pC

Amplify the excitation force
and acceleration signal

Acceleration sensor 1A116E Weight: 5.5 g; sensitivity: 10mv/m·s− 2; measuring range:
500m·s− 2; frequency range: 1∼10000Hz

Picking up acceleration
signal of plate vibration

Dynamic signal test and
analysis system DH5922N

Frequency range channel number: 32 channels; maximum power:
100W; communication interface: USB3.0; power supply:

220VAC, 12VDC

Collect force signal and
acceleration signal
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diameter 8mm to simulate the fixed boundary conditions.
Table 10 gives specifications of test plates and arrangement.
It should be noted that the geometric dimensions given in
this table are all effective dimensions. +e first test step is to
select a point on the plate as the vibration pick-up point and
place the acceleration sensor on it. In the second step, the
hammer is used to excite each grid intersection on the plate,
and the excitation force signal is measured by the force
sensor on the hammer. +en, the acceleration sensor at the
pick-up point of the plate collects the vibration acceleration
signal and amplifies the signal through the charge adapter.
Finally, using the force measurement methodmodal analysis
software in the computer, modal parameters identification
and frequency response function analysis are carried out on
the experimental data. +rough frequency response curve

fitting, steady-state diagram calculation, and mode calcu-
lation, the vibration mode and natural frequency of the plate
are finally obtained.

Figures 8 and 9 show the difference of experimental
test results, FEM results, and present results. Among
them, the maximum deviation of the experimental test
results and present results is 7.57% for the natural fre-
quency of the annular plate and 2.57% for the natural
frequency of the circular plate. Besides, the maximum
deviation of the experimental test results and FEM results
is 9.83% for the natural frequency of the annular plate and
1.90% for the natural frequency of the circular plate. For
the prediction results of the model shape, the two methods
are highly consistent. +e deviation of the above exper-
imental results is within the acceptable range, which fully

f1 = 210.36 f3 = 414.98 f5 = 667.99 f7 = 993.31

(a)

f1 = 227.589 f3 = 413.120 f5 = 661.44 f7 = 1007.223

(b)

f1 = 205.22 f3 = 403.37 f5 = 663.7 f7 = 991.99

(c)

Figure 8: Comparison of experimental results for the annular plate with the F-C boundary condition. (a) Present results. (b) Experimental
results. (c) FEM results.

Table 10: Specifications of test plates and arrangement.

Name Annular plate Circular plate
Internal radius of plate, R0 (m) 0.05 —
External radius of plate, R1 (m) 0.25 0.25
Plate thickness, h (mm) 5 5.2
Mass density, ρ (kg/m3) 7850 7850
Modulus of elasticity, E (GPa) 205.8 205.8
Poisson’s ratio, μ 0.3 0.3
Total number of measurement points 88 97
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proves the correctness of the analysis model for the vi-
bration behaviors of annular and circular plates. +e
experimental error is caused by many reasons. First of all,
the fixed boundary conditions of the plate cannot be fully
simulated by the way of clamping the foundation frame
and the battens. +en, the material parameters used in the
numerical calculation of the plate deviate from the actual
material parameters of the work piece, and the work piece
cannot be completely ideal isotropic material. In addition,
the accuracy deviation of the force sensor and acceleration
sensor and the human error of the experimenter in the
process of hammering will cause the error of experimental
data.

4. Conclusions

+is paper applies the Jacobi polynomial method to establish
a unified analytical model for the vibration characteristics of
laminated annular and circular plates under complex elastic
boundary constraints based on Reddy’s HSDT. Due to the
adoption of multisegment segmentation technique, coupling
springs are applied between adjacent segments to ensure
continuity. In addition, various elastic boundary constraints
are simulated by setting boundary springs at the edges of the
plate. +e Lagrangian energy equation of composite lami-
nated annular or circular plates under elastic boundary

constraints is established. +e solution equation of free
vibration behavior for the laminated plate is easily obtained
by the Hamilton differential principle. On the basis of
verifying the fast convergence and great accuracy of this
method, further parametric study is carried out. Some
important conclusions are revealed:

(1) +rough the analysis of the stiffness value of the
boundary springs, the value range of the elastic
boundary condition is determined which are
104< k< 1010 andK< 104, 104< k< 1010 andK> 1010,
104<K< 1010 and k< 104, and 104<K< 1010 and
k> 1010. When θ � 2π, the value of connective spring
stiffness should be chosen as 1010 to ensure
continuity.

(2) Material parameters, geometric parameters, and
lamination schemes have an important effect on the
vibration characteristics of the annular and circular
plates. Specifically, the natural frequency will in-
crease with the increase of plate thickness and an-
isotropy degrees.

(3) +e frequency increases with the increase of the layer
number and tends to be stable after the layer number
exceeds 4. Moreover, the frequency changes most
significantly when the layer number changes from 1
to 2.

f2 = 430.38 f4 = 709.62 f7 = 1018.24 f9 = 1231.71

(a)

f2 = 431.14 f4 = 696.55 f7 = 1027.05 f9 = 1200.83

(b)

f2 = 429.04 f4 = 702.96 f7 = 1027.10 f9 = 1223.60

(c)

Figure 9: Comparison of experimental results for the circular plate with the fixed boundary condition. (a) Present results. (b) Experimental
results. (c) FEM results.
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(4) +e deviation of the model experimental results is
within the acceptable range, which fully proves the
correctness of the unified analysis model for the
vibration behaviors of annular and circular plates.
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