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Constrained layer damping (CLD) structures, which are one of the composite structures with a softer viscoelastic material (VEM)
layer sandwiched between a elastic base layer and a relatively stiffer constraining layer, are widely used in engineering applications
for reducing vibration and noise radiation. To accurately predict and effectively control vibration and properly and quickly
determine the design parameters, optimal designs for the CLD structures are necessary. *e optimal designs depend on
thoroughly understanding the damping characteristics of the CLD structures. In addition, for some cases, CLD structures with
multi-constrained VEM layers are needed to suppress vibration more effectively. In this paper, an effective modeling method to
accurately describe the damping properties and a quick optimization design method using COMSOL were proposed for CLD
structures with multilayers in detail. *e effects of nondimensional thickness ratios of the VEM and constraining layer to the base
layer on the damping properties of CLD structures were analyzed. For CLD structures with different configurations, different
constraints were selected to obtain the maximized damping in the optimization design. *e conclusions from this research
provide an insight into the effects of thicknesses of VEM and constraining layers on the damping properties of CLD structures
regardless of its size. *e modeling and optimal methods using COMSOL in this paper are not limited to CLD structures and can
be used by other structures also.

1. Introduction

Vibration is undesirable because of the effects of wasting
energy, creating unpleasant motions and dynamic stresses,
and causing irritating rattles, which will possibly lead to
degraded performance, fatigue, and failure of structures or
machines. Controlling undesirable vibrations is important in
many applications. *e constrained layer damping (CLD)
structures where a softer viscoelastic material (VEM) layer is
constrained between an elastic base structure (base layer)
and a relatively stiffer elastic layer (constraining layer) have
been demonstrated to have reasonable efficiency in vibration
control [1–5]. For the CLD structures, the damping results
mainly from shearing in the VEM layer due to the difference
between the in-plane displacement of the elastic layers and
the low stiffness of the VEM layer [6].

Kerwin [7] was one of the first to analyze the damping
effectiveness of CLD using a complex modulus representing
the VEM and concluded that the loss factors would depend
on the frequency, temperature, and thickness of the con-
straining layer. Darrouj and Faulkner [8] experimentally
verified that the damping would be increased by reducing
the thickness of the VEM layer for the reason that the shear
energy would be concentrated into a small volume, into
which the material would be less able to dissipate compared
to larger volume geometries. Using the finite element
method, Kosmatka and Liguore [9] revealed that increasing
the thickness of the VEM core would generally reduce the
natural frequency of the added core mass more than off-
setting the increase in the bending stiffness. *e loss factor
would increase with the core thickness up to an optimal
value before decreasing, where the optimal core thickness
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would be dependent on the structure (material and geom-
etry) configuration. Bai and Sun [10] developed a new
sandwich theory of vibration damping, which eliminated
both perfect interface and constant transverse deformation
assumptions. *eir results demonstrated that there was an
optimal viscoelastic layer stiffness for which the maximum
sandwich structural damping would be achieved. *e effects
of material, temperature, frequency, and dimensions of the
base layer on the vibration damping characteristics were
discussed by Teng and Hu [2]. *eir results showed that the
elastic modulus would decrease at high temperature with a
decreasing frequency, and the loss factor would become
larger when the thickness of the VEM layer was increased.
Moreover, the base layer with higher damping properties
would have a more efficient laminate damping than the ones
with low damping. Reported studies [8] also showed that the
natural frequencies of all modes would decrease with in-
creased thickness of the VEM layer. However, the loss factor
would be increased when the thickness ratio of the VEM
layer with the base layer exceeded a certain value. *e ex-
perimental results [11] revealed that to increase the damping
capacity of the CLD structure, the VEM layer thickness
should be increased, but it should be kept in mind that the
mechanical durability of the thick VEM layer would turn out
to be insufficient. Another reported study [12] showed that
the VEM layer thickness had greater influences on the loss
factors than on the storage modulus, and the influences were
more pronounced at high frequencies. *e bending stiffness
of the CLD structure would increase with the VEM thickness
even if the storage modulus was reduced. *erefore, the
VEM thickness would determine the vibration response of
thin sandwich structures. Du et al. [13] pointed out that the
high damping of the VEM layer would have a benefit to
eliminate the lower order modal resonances for a small plate
in the low-frequency range. A theoretical model about fiber
metal laminated thin plate with partial CLD patch treatment
was established [14]. Based on the calculated results using
the model and experimental results, the conclusion was
drawn that the larger the patches areas, the closer the
treating positions were approaching to the clamped edge, the
greater the damping effect would be. From these reported
results, it could be concluded that the materials and geo-
metrical characteristics of both VEM and elastic layer have
significant effects on the properties of the CLD structures.
However, there are some deviations in those results due to
the dimensional differences of the base layer.

*e desire to maximize the damping properties or to
minimize the weight of the CLD structures have led to the
studies of optimization by determining the optimal material
and geometric parameters of each layer. Lall et al. [15]
conducted an optimal design to maximize the modal loss
factors and minimize the displacement response with var-
ious constraints on the design variables and other re-
quirements such as mass, static stiffness ratio, etc. Lifshitz
and Leibowitz [16] summarized earlier optimal design
studies about CLD structures and performed an optimal
design for maximum damping with a large variety of in-
equality constraints using a sixth-order motion equation.
*e constraints were given by normalizing the appropriate

parameters with respect to those of an equivalent homo-
geneous beam, and included weight, rigidity, height of the
structure, the thickness of the elastic and VEM layer, and so
on. In Hao and Mohan’s study [17], maximizing the system
loss factor and minimizing the system weight were two main
objectives that were combined into the objective function
using the weighting method. Constraints were imposed to
make the system satisfy the configuration and natural fre-
quency requirements. Madira et al. [18] addressed an op-
timal design with the objectives of simultaneously
minimizing weight and material cost and maximizing the
modal damping. *e design variables were the number of
layers, the layer constituent materials, the orientation angles,
and the VEM layer thickness. *e topology optimization
method was also implemented to achieve the optimal
configuration of the damping material of CLD structures
[19]. A hierarchical optimization strategy was proposed to
optimally design the VEM layer for minimizing the sound
radiation power in the literature [20]. However, those op-
timal designs usually consume a large amount of compu-
tational time [21].

*e finite element software such as ANSYS, NASTRAN,
COMSOL, and LUSAS is a very efficient tool for solving
complex problems in the field of design engineering and has
been employed to analyze the dynamic and static charac-
teristics of CLD structures [1, 2, 5, 19, 22–24]. However, the
optimal designs of CLD structures using finite element
software are few.

For some cases, the damping characteristics of CLD
structures with one constrained VEM layer which is com-
posed of one VEM layer and one constraining layer on the
VEM layer are not substantially effective to suppress the
vibration. Alam and Asnani [25], Khatri and Assnani [26],
and Khatri [27] pointed out that there would be an increase
in the loss factor of CLD structures with the increased
number of constrained VEM layers. Considering both
material and geometric nonlinearities, an analytical model of
fiber metal laminated plates with multiple constrained CLD
layers was proposed, and the effects of material properties on
nonlinear vibration behaviors were evaluated [28, 29].
However, few reported studies focus on the characteristics of
those CLD structures with multiconstrained VEM layers.

From the literature review, it can be found that the
damping properties and optimization design for CLD
structures have been carried out. However, most research
results have deviations due to the different dimensions of
CLD structures, and optimization designs usually consume a
large amount of computational time. Besides, little work has
been conducted considering CLD structures with multi-
layers. *erefore, aiming at filling this knowledge gap, an
effective modeling method to accurately describe the
damping properties and quick optimization design method
to determine structural parameters using COMSOL were
proposed in the present work for CLD structures with
multilayers. First, a finite element model of the CLD
structure was formulated using COMSOL software, and the
modeling method validations were performed by comparing
the natural frequencies and loss factors with those obtained
by Soni [1]. *ereafter, using the COMSOL model, the
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nondimensional thickness ratios of the VEM and con-
straining layer to the base layer were considered herein as the
variable parameters, and the effects on the damping of CLD
structures were compared and analyzed among three CLD
structures with different configurations and dimensions.*e
nondimensional parameters could provide general design
guidelines that might be followed by designers, regardless of
the dimensions of base structures. Finally, optimization
methods were explored to quickly determine the thickness of
the VEM and constraining layer by maximizing damping
with different constraints for different CLD structures with
multiconstrained VEM layers using COMSOL. *e con-
clusions from this research provide an insight into the effects
of thicknesses of VEM and constraining layers on the
damping properties of CLD structures regardless of its size,
and the modeling and optimization design methods using
COMSOL proposed here could be easily extended and
applied to other types of composite beams.

2. Formulation and Validation of the Model of
the CLD Structure

2.1. Model Formulation. COMSOL is an advanced numer-
ical software based on the finite element method, which has a
friendly predesigned physics interface, and can solve
physical problems with numerical models. In the following,
the models are constructed and the damping properties are
studied for CLD structures using COMSOL.

Figure 1 depicts a typical CLD structure with one
constrained VEM layer, where the thicknesses of the base,
VEM, and constraining layer are hb, hv, and hc, respectively.

To formulate the finite element model of CLD structures
in COMSOL, the following assumptions are made: there is
no slip on the interfaces between layers; only the VEM layer
carries transverse shear; the elasticity material and VEM are
assumed to be nearly incompressible throughout the
thickness; and the material of each layer is considered
isotropic and homogeneous.

*ree solid mechanics blocks are employed to model the
CLD structure. One end of the model is fixed and the other
end is made to move freely, namely, clamped-free boundary
condition is considered.

In general, the VEMs are frequency- and temperature-
dependent. However, if the modulus of VEM does not
change too much in the whole frequency domain or changes
slightly in a special frequency band, the modulus can be
deemed as a constant to describe the VEM approximately or
in this special frequency band [30]. In the following studies,
the complex constant modulus of the VEM is used. Young’s
modulus Ev and shear modulus Gv of the VEM are expressed
as follows in the complex form:

Ev � E0 1 + iηv( ,

Gv �
Ev

2 1 + vv( ( 
,

(1)

where the storage modulus E0 is related to the delayed
elasticity; ηvand ]v are the loss factor and Poisson’s ratio of

the VEM, respectively. ηv is the measure of the capacity of
VEM to dissipate energy.

For the elastic modulus of the VEM being assumed to be
a complex form, the stiffness matrix for the CLD structure is
in a complex form as well. *is in turn would result in
complex eigenvalues. *e nonlinear complex eigenvalue
problem of equation takes the form

K − λ∗i M( Ui � 0, (2)

where M and K are the mass and complex stiffness matrices,
respectively; Ui and λ∗i are the complex eigenvector and
associated complex eigenvalue, respectively; the natural
frequency fi and the corresponding loss factor ηi of the ith
mode can be calculated as follows [30]:

fi �

������
Re λ∗i( 



2π
,

ηi �
Im λ∗i( 

Re λ∗i( 
,

(3)

where ηi is used to assess the damping property of CLD
structures at mode i. fi and ηi can easily be obtained using
COMSOL.

2.2. Model Validation. To evaluate the accuracy of the
formulated COMSOL model of the CLD structure, the
natural frequencies and the associated loss factors for the
first six modes of an example are calculated using COMSOL.
*ematerial and geometrical properties of the example CLD
structure are used as the same as those in the literature [1, 30]
(as shown in Table 1). *e CLD structure with the pa-
rameters in Table 1 is named the original structure. For the
original structure, the constraining layer is assumed to be
made from the same material and has the same thickness as
that of the base layer. *erefore, the original structure has a
better damping efficiency [2].

User-controlled mesh is chosen, and the mapped and
swept are applied. For the CLD structure, the damping
mostly comes from the shear in the VEM layer, the meshes
inside the VEM should be made to be finer to ensure a good
representation of the shear behavior. However, for the CLD
structure, the thickness of the VEM layer is thinner, the
further finer mesh inside the VEM has no effect on the
calculated result, and only one layer mesh is applied. Figure 2
represents the meshed image of the designed model in
COMSOL.

*e calculated results are provided in Table 2 to compare
with those results obtained by Soni [1] with the VEM’s loss
factor of 0.6. *e relative errors are also given in Table 2.

*e results obtained using COMSOL are closer to those
obtained by Soni [1], and the maximum errors of the natural
frequency of 7.48% and loss factor of −6.85% are all ac-
ceptable for engineering applications. *ese results provide
validation of the present modeling method using COMSOL.

*e reason that the first natural frequency deviation is
too large may lie in the following aspects: ignorance of the
adhesive interface, interfacial friction and relative slip
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between each layer, and without consideration of material
nonlinearity in modeling using COMSOL, which have more
significant impact on the first resonant response.

2.3. Parametric Studies. To understand the role of the
thickness of the VEM and constraining layer in the damping
properties, three CLD structures are constructed using the

validated modeling method. Structure 1 (as shown in Fig-
ure 1) has one constrained VEM layer. Structure 2 has two
constrained VEM layers, which are symmetrically arranged
on both sides of the base layer (as shown in Figure 3), and all
constraining layers have the same dimensions, and similarly
for all VEM layers. Structure 3 also has one constrained
VEM layer, but the thicknesses of the VEM and constraining
layer, respectively, are equal to the sum of those of the

Table 1: Material and geometrical properties of the CLD structure.

Base and constraining layer

Young’s modulus Eb � Ec � 6.9 × 1010(N · m− 2)

Poisson’s ratio ]b � ]c � 0.3
Density ρb � ρc � 2766(kg · m− 3)

*ickness hb � hc � 1.524 mm

VEM layer

Young’s modulus E0 � 1.794 × 106(N · m− 2)

Poisson’s ratio ]v � 0.3
Loss factor ηv � 0.6
Density ρv � 968.1(kg · m− 3)

*ickness hv � 0.127mm

Structure size Length L � 177.8mm
Width b � 12.7mm

(a) (b)

Figure 2: *e meshed image of the CLD structure model in COMSOL. (a) *e meshed image. (b) *e cross-sectional view.

Table 2: *e comparison of the natural frequencies and associated loss factors of the first six modes.

Modes
fi ηi

Analytical method [1] (Hz) Present (Hz) Error (%) Analytical method [1] (-) Present (-) Error (%)

1 65.5 70.4 7.48 0.1476 0.1468 −0.54
2 298.9 308.7 3.28 0.1392 0.1440 3.45
3 745.5 764.0 2.48 0.0912 0.0929 1.86
4 1394.9 1437.9 3.08 0.0528 0.0514 −2.65
5 2261.7 2340.6 3.49 0.0342 0.0325 −4.97
6 3344.0 3467.1 3.68 0.0234 0.0218 −6.84

hc
hv

hb

the VEM layerthe base layer

the constraining layer

Figure 1: CLD structure with one constrained VEM layer.
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corresponding layers of structure 2.*us, structure 2 and the
corresponding structure 3 have the same weight to study the
effect of the arrangements on the damping properties of
CLD structures at the same weight. *e material properties
and geometrical dimensions of these three structures are the
same as those in Table 1.

For the nondimensional parameters being more suitable
for engineering applications and providing a design
guideline regardless of the dimension of the base layer, the
nondimensional thickness ratios of VEM and constraining
layer to the base layer hv/hb, hc/hb are used.

Considering those technically achievable thickness limits
and that the total weight of the CLD structure should not be
too large, the thickness ratios are selected to vary from 0.03
to 1.03.

*e studies about the effects of the nondimensional
parametric on the damping properties of the CLD structure
are achieved using the parametric sweep study in COMSOL.

3. Results and Analysis of the
Eigenfrequency Study

Figure 4 shows the results of the first six modal loss factors
versus hc/hb and hv/hb of structure 1. It is displayed that the
higher the modes, the smaller the impacts of the hc/hb and
hv/hb on the loss factors are. It is also concluded that the first
six modal loss factors are directly proportional to hc/hb,
when hc/hb is below about 0.7. *ereafter, the modal loss
factors start to drop. *e loss factor of the first mode is
directly proportional to hv/hb, and the others are inversely
proportional to hv/hb. When hc/hb is below 0.4, or hv/hb is
below 0.3, the first three modal loss factors sharply change,
and then steadily change.

Figure 5 shows the results of the first six modal fre-
quencies versus hc/hb and hv/hb of structure 1. It is shown
that the first six loss factors are inversely proportional to
hc/hb, when hc/hb is below about 0.5. *ereafter, the modal
loss factors start to rise. *e first six loss factors are inversely
proportional to hv/hb. It is also displayed that the first three
modal frequencies are below 1000Hz.

For the fact that the low-frequency domain is of more
interest in practice, and the effects of hc/hb and hv/hb on the
higher loss factors are small, only the first three modal loss
factors and natural frequencies are considered in the fol-
lowing studies.

Figure 6 shows the variation in the first three modal loss
factors with the ratios hc/hb and hv/hb.

It can be seen in Figure 6 that ηi increases initially,
reaches its maximum, and then decreases with the increasing
hc/hb at a constant hv/hb. After hc/hb > 1 and hv/hb > 1, with a
further increase of hc/hb, η3 increases again after obtaining
its minimum value (as shown in Figure 6(i)).

For CLD structures, the damping comes from two parts
mainly. One is the damping of the VEM layer, and the other
is the constrained damping, which comes from the con-
straint of the constraining layer on the motion of the VEM
layer [3].

It can be concluded from the above results that the
increase in the thickness of the constraining layer would
increase the constrained damping of CLD structures with
the increased ability to restrain the motion of the VEM layer.
However, when the thickness of the constraining layer ex-
ceeds a certain value, the stiffness of the CLD structure
would increase more than damping, which makes the CLD
structure quite stiff and the shear deformation in the VEM
layer reduced, and the VEM would no longer have sufficient
flexibility to dissipate as much energy, and the loss factors of
CLD structure would decrease.

It is also interesting to note in Figure 6 that η1 always
increases with increasing hv/hb. *is behavior is less ob-
served at higher modes. For the second mode and the third
mode, the loss factors sharply decrease at the beginning, then
marginally increase with increasing hv/hb. *ese results il-
lustrate that the damping coming from the VEM is more
effective for the first mode. However, for the other modes,
the increase in hv/hb contributes more to the added VEM’s
ability to resist the constraint of the constraining layer than
to the added damping of the structure when the thickness of
the VEM layer is too small. When hv/hb > 1, the further
increase of hv/hb contributes more to the added damping
than to the added VEM’s ability to resist the constraint of the
constraining layer, and η2 and η3 increase again.

In Figure 6, it is also shown that the loss factors of
structure 2 are always higher than those of structure 1.When
hv/hb > 1 and hc/hb<1, at the same weight, the first two loss
factors of structure 3 are higher than those of structure 2.

In short, the above results illustrate that different thick-
nesses and arrangements of the VEM and constraining layer
have varying effects on the damping properties of the CLD
structures. Better damping properties can be obtained by
symmetrically arranging the constrained VEM layers on both
sides of the base layer. After obtaining the maximum value
with the increase in the constraining layer thickness, the
damping properties of the CLD structure will decline sharply

hc
hv

hb

hc
hv

the VEM layerthe constraining layer

the constraining layer

the base layer

Figure 3: CLD structure with two constrained VEM layers.
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when the thickness of the constraining layer exceeds the
thickness of the base layer except for the thickness of the VEM
layer being thicker and exceeding that of the base layer’s. *e
first modal loss factor always increases with the increase in the
VEM layer thickness, but the other modal loss factors would
increase only when the VEM layer thickness exceeds a certain
value. For the same weight, when the thickness of the VEM
exceeds that of the base layer, and the thickness of the
constraining layer is very small, the damping property of the
CLD structure with one constrained layer is better than that
with two constrained layers of symmetrical layout.

Figure 7 shows the variation in the first three modal
frequencies with the ratios of hc/hb and hv/hb.

It can be observed in Figure 7 that fi decreases with the
increasing hv/hb that contributes to the added mass and
reduced stiffness of the CLD structures. However, the

influence of the increase of hc/hb on the stiffness is more
obvious than that on the mass of the CLD structures, and fi

increases with the increase in hc/hb mostly.
From Figure 7, it also can be seen that the natural

frequencies of structure 2 are lower than those of structure 3
at the same weight of the CLD structures and are slightly
higher than those of structure 1.

4. Optimization

As indicated in the above results, the change in the thickness
of the VEM and constraining layer will lead to the change in
the damping properties and natural frequencies of CLD
structures. To effectively control the vibration, it is required
to seek an appropriate thickness of the VEM and con-
straining layer, which would yield the maximum shear
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Figure 5: *e parameter effects on the first six modal frequencies of structure 1. (a) hc/hb. (b) hv/hb.
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Figure 4: *e parameter effects on the first six modal loss factors of structure 1. (a) hc/hb. (b) hv/hb.
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energy distribution, and thus resulting in the maximum
modal loss factor. Here, the optimization problem is for-
mulated for CLD structures with different configurations
using COMSOL to achieve maximum damping properties.
In the optimization module of COMSOL, the Nelder–Mead
method is used, which is a gradient free method. On the
optimization interface of COMSOL, the objective function,
control variables, and parameters and constrains for the
optimization problem can be set easily.

4.1. Optimal Design Formulations. *e objectives of the
optimal design of the CLD structures usually are to maxi-
mize their structural damping, which is given by the modal
loss factors, to control the natural frequencies of the modes
of interest, or to minimize the total weight and so on.

Consideration of all possible situations is important for
an effective CLD structure design. However, multiobjective
optimization is overcomplicated and it will lead to too many
solutions. *us, single-objective optimization is employed
herein, namely, the only objective function is maximizing
the damping of CLD structures.

In addition, the vibration in the low-frequency domain is
of most concern in practice, and the sum of the first three
modal loss factors is selected as the single-objective function.

*e results of the effects of hc/hb and hv/hb on the sum of
the first three loss factors of CLD η are shown in Figure 8.
For structure 1, the maximum loss factor η is about 0.449
when hv/hb and hc/hb are about 1.03 and 0.63, respectively,
which is higher than 0.384 of the original structure.*e total
weight is only 97.93% of the original structure weight. *e
corresponding first three natural frequencies are 48.71Hz,
221.83Hz, and 581.61Hz, respectively, which are lower than
those of the original structure (as shown in Table 2). Lower
the natural frequency of the structure, the easier it will be
excited; this result is not deemed to be desirable, and the first
modal frequency should be controlled for structure 1.

For structure 2, the maximum value of loss factor η is
about 0.617 when hv/hb and hc/hb are about 0.03 and 0.93,
respectively, which is significantly higher than 0.449 of
structure 1.*e corresponding first three natural frequencies
are 99.39Hz, 389.43Hz, and 869.27Hz, respectively, which
are higher than those of the original structure (as shown in
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Figure 6: *e parameter effects on the first three modal loss factors. (a) Mode 1 for structure 1. (b) Mode 2 for structure 1. (c) Mode 3 for
structure 1. (d) Mode 1 for structure 2. (e) Mode 2 for structure 2. (f ) Mode 3 for structure 2. (g) Mode 1 for structure 3. (h) Mode 2 for
structure 3. (i) Mode 3 for structure 3.
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Table 2). However, the weight increases by 41.97% than that
of the original structure. From the lightweight point of view,
this result is not deemed to be desirable, and the weight of
structure 2 should be controlled.

For the above reasons, the natural frequencies of a
particular set of modes of interest and the total weight of the

CLD structure are selected as constraint conditions and the
nondimensional thickness ratios hc/hb and hv/hb are selected
as design variables, which are allowed to vary from 0.03 to
1.03.

A general optimization problem for the CLD structure
can be stated as

find h �
hc/hb

hv/hb
,

max η � 
3

i�1
ηi,

subject to Q
l

k
≤Qk ≤Q

u

k
k � 1, . . . , n,

where
εl
c ≤ hc

hb ≤ ε
u
c
,
εl
v ≤ hv

hb ≤ ε
u
v
,

(4)
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Figure 7: *e parameter effects on the first three modal frequencies. (a) Mode 1 for structure 1. (b) Mode 2 for structure 1. (c) Mode 3 for
structure 1. (d) Mode 1 for structure 2. (e) Mode 2 for structure 2. (f ) Mode 3 for structure 2. (g) Mode 1 for structure 3. (h) Mode 2 for
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8 Shock and Vibration



where the loss factor η is the objective function, which is the
sum of the first three modal loss factors; h is the vector of
design variables; εl

c, ε
u
c , ε

l
v, and εu

v , respectively, are the lower
and upper limits of the design variables hc/hb and hv/hb; Qk

is the kth inequality constraint, and its lower and upper
limits are Ql

k
and Qu

k
, respectively.

For structure 1, f1 ≥ 65Hz is selected as the constraint
condition. For structure 2, f1 ≥ 65Hz and the total weight
W≤ 0.0193 kg are selected as constraints, where 0.0193 kg is
the weight of the original structure.

4.2.OptimalResults. *eoptimal results are listed in Table 3,
which are compared with those of the original structure.

For structure 1, the optimal damping of the sum of the
first three mode loss factors and the natural frequency of the
first mode, respectively, are 0.4068 and 75.52Hz when
hc/hb � 0.97 and hv/hb � 0.03, which are higher than those
of the original structure by 6.02% and 7.26%, respectively,
and the weight is reduced by 51.81%.

For structure 2, the optimal damping is 0.5324 when
hc/hb � 0.49 and hv/hb � 0.03, which is higher than that of
the optimized structure 1 by 30.88%, and that of the original
structure by 38.75%. *e natural frequency of the first mode
is 75.65Hz, which is higher than that of the original
structure by 7.44%, and the weight is reduced by 1.5% than
that of the original structure.

5. Summary and Conclusions

In this paper, a modeling method for CLD structures was
proposed using COMSOL. Using the dynamic models,
the damping properties of CLD structures with multi-
constrained VEM layers were studied accurately. More-
over, using COMSOL, a quick optimization design
method was provided by maximizing damping with
different constraints for different CLD structures with
multiconstrained VEM layers.

*e following conclusions are drawn:

(1) For a prespecified base structure, when higher
damping is desired to control vibration, and at the
same time the natural frequencies are not desired
to change too much, the method to use two
constrained VEM layers which are symmetrically
arranged on both sides of the base layer are the best
choice.

(2) For the firstmode, increasing theVEM thicknessmeans
increasing the energy absorption, and increasing the
constraining layer thickness increases the constrained
shear force inVEM, which increases the damping of the
CLD structure. Nevertheless, when the constraining
layer reached a certain thickness, the further increase in
the constraining layer thickness could cause the de-
crease in damping. For other modes, increasing the
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Figure 8: *e parameter effects on the sum of the first three modal loss factors. (a) Structure 1. (b) Structure 2.

Table 3: *e optimal results.

Variables and results Original structure
Optimal results

Structure 1 Structure 2
Values Change rate (-) Values Change rate (-)

hc/hb (-) 1 0.97 −3% 0.49 −51%
hv/hb (-) 0.08 0.03 −62.5% 0.03 −62.5

fi (Hz)
f1 70.41 75.52 7.26% 75.65 7.44%
f2 308.73 350.41 13.50% 329.78 6.82%
f3 763.99 836.16 9.45% 751.34 −1.66%

ηi (-)

η1 0.1468 0.0830 −43.46% 0.0995 −32.22%
η2 0.1440 0.1711 18.82% 0.2188 51.94%
η3 0.0929 0.1527 64.37% 0.2141 130.46%


3
i�1 ηi 0.3837 0.4068 6.02% 0.5324 38.75%

m/kg 0.0193 0.0093 −51.81% 0.0190 −1.5%
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VEM thickness means decreasing the energy absorp-
tion, and increasing the constraining layer thickness
increases the constrained shear force in VEM, which
increases the damping of the CLD structure. Never-
theless, when the constraining layer reached a certain
thickness, the increase in the constraining layer thick-
ness could cause the decrease of damping.

(3) For the same weight, when the VEM thickness ex-
ceeds that of the base layer, and the constraining
layer thickness is thinner, the damping property of
CLD structures with one constrained VEM layer is
better than those with two constrained VEM layers
of the symmetrical layout.

(4) Using COMSOL, different objective functions,
control variables and parameters, constrains, and so
on for the optimization problem are very convenient
to set for different CLD structure configurations. In
this paper, maximizing the sum of the first three
modal loss factors is the objective function, and the
thicknesses of the VEM and constraining layer are
control parameters. For the CLD structure with one
constrained VEM layer, the first modal natural
frequency is selected as the constraint. For the CLD
structure with symmetrical layout’s two constrained
VEM layers, the first modal natural frequency and
the total weight are selected as constraints.

From the present study, it is revealed that COMSOL
software is a very effective tool to study the damping
characteristics and perform the optimization design for CLD
structures. *e present model constructed using COMSOL
can predict the damping characteristics accurately and
obtain the optimization design quickly. *e modeling and
optimal methods using COMSOL in this paper are not
limited to CLD structures and can be used by other
structures also.
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