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(e investigation aims to propose a refined model to analyze the parametric resonance under multicable systems such as cable-
stayed bridges. Considering the interaction between the adjacent beam portions, the shear difference is applied to modify the
vibration equations derived from themulti-degree-of-freedom stiffness method. Furthermore, the differencemethod is adopted to
make the equations more accessible for numerical analysis.(e comparison results indicate that the refinedmodel exhibits the key
character of parametric resonance and also further verified the simulation methods. (e consequences show that the cable will
resonate at the fundamental frequency under the support excitation. In particular, when resonance occurs, most of the energy in
the subsystem is transferred to the cable, resulting in the resonance amplitude of the beam portion being weakened to some certain
extent. Moreover, the global resonance will have a sufficient excitation on the local resonance only when the resonance condition
is satisfied.

1. Introduction

Cable-stayed bridges become popular especially in the
bridge design of crossing valleys and wide rivers. (ese
structures continually increase the span length in the last
decades. In the same manner, they become lighter and more
flexible, thus developing into more sensitive to parametric
excitation by wind, rain, or car traffic. On some occasions,
cables have been excited to severe oscillations even in the
small initial response of the bridge beam or tower [1]. So far,
it has been observed in numerous engineering practice cases
that the cable’s lateral maximum amplitude exceeds half a
meter, seriously affecting the safe operation of the bridges
[2–5].

A few researchers try to explain the causes of the severe
oscillations: during one cycle of transverse motion, a cou-
pling resonance occurs between the cable and the beam. (e
energy conversion between the vibration components leads
to the “beat” characteristic of the cable vibration [6, 7]. To

study the occurrence mechanism of parametric resonance,
an intensive investigation of the static and dynamic theories
of cable structures was conducted [8]. (e cable and beam
were simplified to lumped mass blocks to investigate the
parametric resonance by numerical analysis methods [9].
(rough the methods of the multiple scales or finite element,
more refined models of the cable-beam system considering
the λ value which affects the sag of the stay cable were
proposed in little research. (e sensitivity of parameters
including cable force, tensile stiffness, and the mass ratio of
the cable to other components has also been discussed
[10–15]. (e characteristic of parametric resonance was
investigated in terms of the data from actual observations
and experiments to provide a new perspective of damping
technique for stayed cables [16–19].

Ample research studies have concluded that cable is
excited to parametric resonance by main beam or tower. El
Ouni et al. observed the phenomenon of structural dynamic
instability when a local (cable) and a global (structure) mode
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were coupled through the analysis of finite element or ex-
periment, and the effect of amplitude of excitation as well as
the active damping of the bridge on the steady-state response
of the stay cable was studied numerically and experimentally
[20]. (e safety of the bridged traffic and pedestrians will be
gravely threatened once this severe oscillation occurs ob-
viously. Compared with the numerical results and the
measurements on Guadiana Bridge, the interaction mech-
anism of the cable-deck dynamic stimulated by two internal
resonant modes was regarded as the most critical excitation
source for the stay cables exhibiting severe oscillations [21].
To study the dynamic behaviors of the cable-supported
bridges, researchers proposed a linear multicable-stayed
beam model and applied a linear multicable-stayed beam
model of different impact factors [22, 23]. According to the
investigation of a refined finite element model, the leading
cause of the global-local resonance is further proved to be
that the equations and the plane motion boundary condition
of the simplified model are showing quadratic and cubic
nonlinearity [24]. It is remarkably difficult to carry out the
whole-process response time analysis of the whole structure
in most finite element software. To obtain more comparable
results, the finite element model is required to divide into a
large number of elements [25]. Many researchers presented
several deep investigations in the refined research of single
cable or cable-beam subsystem, focusing on the sensitivity of
parameters, vibration control, or different analysis ap-
proaches [26–32]. Others provided the research in checking
the frequency or modes of one single component instead of
simulating the real-time displacement response for global
resonance [33–38]. However, the interaction between beam
portions in the multicable structures, such as cable-stayed
bridges, cannot be reflected by analyzing a single cable
model. Additionally, the indirect coupling effect of cables
through the bridge deck cannot be ignored [39]. (ere is still
a lot of work waiting to be carried out in the theory and
research of nonlinear dynamics modeling of large-scale
cable-stayed bridge systems [40].

(is paper proposes a refined model to analyze the
mechanism of the parametric resonance occurring on cable-
stayed bridges. (e single beam of a cable-stayed bridge is
divided into a few independent portions according to the
anchorage position of each cable. (e vibration equations of
the global resonance system are derived from the stiffness
method. Moreover, the shear difference is applied to sim-
ulate the interaction between adjacent discrete beam por-
tions. (e vibration equations of the global resonance are
also modified by the difference method to make the equa-
tions more accessible to numerical analysis. Based on this,
the interaction between adjacent beam portions is deeply
discussed.

2. The Model and Vibration Equations of the
Multicable System

To highlight the research emphasis, the simplified model of a
floating cable-stayed bridge is established, as shown in
Figure 1.

As can be referenced from the Virlogeux [41], two
lumped mass blocks simplified from one single beam and
the anchorage cable were presented to study the mech-
anism of the parametric vibration. Zhan and Zhong [9]
and Zhang et al. [42] also took this simplified approach to
study the related phenomena. Following this method, the
single beam of the simplified model shown in Figure 1 is
regarded as a multisupport beam with simple support
(unfixed in the longitudinal direction and fixed in the
transverse direction) at each end. It is divided into a few
portions according to the anchorage position area of each
stay cable. (en, a single subsystem of three degrees of
freedom has been comprised of three separated lumped
mass blocks which are simplified from the beam portion,
the stay cable, and the tower [9, 42]. In line with this, there
are N self-excited subsystems and 2N + 1 degree of free-
dom. After taking the left of the A-A cross section as an
example, the simplified model of the ith subsystem is
established, as shown in Figure 2.

In Figure 2, the tower is simplified as a lumped mass m1
vibrating in the transverse direction with the air damping c1
and bending stiffness k1. (e beam portion is simplified as a
lumped mass m2i+1 vibrating vertically with air damping
c2i+1 and bending stiffness k2i+1. (e cable is simplified as a
lumped mass m2i vibrating in the transverse direction with
air damping c2i. Two massless strings are connected at each
end of the cable with instantaneous length li and tensional
rigidity EAi. One end is connected to the tower with tension
T2i−1; the angle between the tower and cable is θ2i−1. Another
is connected to the beam portion with tension T2i; the angle
between the beam portion and the cable is θ2i. Additionally,
the displacements of the tower, cable, and beam portion
related to the equilibrium position are x1, x2i, and x2i+1,
respectively.

Although this subsystem model is relatively rough that
only considers the fundamental parameters such as length,
mass, and tension, it is advantageous to reveal the charac-
teristics of the parametric resonance of the subsystem. It is
assumed that the initial state of the system is an equilibrium
state. (e geometric relationship of the subsystem satisfies
the equations:

l
2
i + x2i − x2i− 1( 􏼁

2
� li + Δl2i− 1( 􏼁

2
� l

2
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Figure 1: (e simplified model for cable-stayed bridges.
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where l is the initial length of the massless string and Δl is the
increment of the length once resonance occurs. (e con-
ditional expression is

Ti � T0i + ΔTi � T0i +
EAi · Δli

li
, (2)

where T is the instantaneous tension and ΔT is the in-
crement of the tension. Based on D’Alembert principle,
with a few simple derivations, the vibration differential
equations of the subsystem in the dimensionless form are
derived as shown in the following equations:

€x1 +
c1
m1

_x1 +
k1

m1
+

T0i

m1li
􏼠 􏼡x1 −

T0i

m1li
x2i −

3EAi

2 · m1l
3
i

x
2
1x2i +

EAi

2 · m1l
3
i

x
3
1 +

3EAi

2 · m1l
3
i

x
2
2ix1 −

EAi

2 · m1l
3
i

x
3
2i � 0,

(3a)

€x2i +
c2i

m2i

_x2i +
2 · T0i

m2ili
x2i −

T0i

m2ili
x1 +

3 · EAi

2 · m2il
3
i

x
2
1x2i −

EAi

2 · m2il
3
i

x
3
1 +

3 · EAi

2 · m2il
3
i

x
2
2ix1 +

EAi

m2il
3
i

x
3
2i +

EAi

2 · m2il
3
i

x
2
2i+1x2i +

EAi

m2il
2
i

x2ix2i+1 � 0,

(3b)
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Apparently, the bending stiffness of the beam cross
section varies with the anchorage position of each cable.
(us, as for the beam with uniform distribution of the mass
and load, the plastic performance is not consistently re-
flected at the mass point. If only considering the single beam
constituted of the discrete lumped masses, the interaction
between adjacent beam portions cannot be reflected effec-
tively. Figure 3 takes the single beam constituted of two
portions as an example.

In Figure 3, two strings k11 and k22, respectively, represent
the bending stiffness of these two beam portions M1 and M2.
Additionally, another string k12 (�k21) represents the inter-
action suffered from the resonance betweenM1 andM2. More
specifically, it is the value of the force to be applied at M1 to
make M2 produce a unit displacement along the direction of
motion when the displacement ofM1 is kept at 0. (e specific
value of the spring stiffness can be obtained by the flexibility
matrix with the method of materials mechanics. Based on the

multi-degree-of-freedom stiffness method, the vibration
equations of this two-degree-of-freedom subsystem can be
derived as shown in the following equations:

M1€x1 + k11x1 + k12x2 � 0, (4a)

M2€x2 + k21x1 + k22x2 � 0. (4b)

In line with this, ignoring the longitudinal displacement
of beam portions once resonance occurs, a refined model of
multicable resonance comprised ofN subsystems is shown in
Figure 4.

(e parameters in the system are listed in Table 1.
Following the geometry of the model, along with the

similar simplified approach of the subsystem shown in
Figure 2, the vibration equations of the refined model are
normally derived based on the D’Alembert principle shown
in the following equations:

m1 €x1 � −k1x1 − c1 _x1 + 􏽘
N

i�1
T2i−1sinθ2i−1(i ∈ [1, N]), (5a)

m2i􏼂 􏼃 €x2i􏼈 􏼉 � − c2i􏼂 􏼃 _x2i􏼈 􏼉 − T2i−1􏼂 􏼃 sinθ2i−1􏼈 􏼉 − T2i􏼂 􏼃 sin θ2i􏼈 􏼉, (5b)
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Figure 2: (e ith simplified model in multidegrees of freedom.
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m2i+1􏼂 􏼃 €x2i+1􏼈 􏼉 � − K(2i+1)(2i+1)􏽨 􏽩 x2i+1􏼈 􏼉 − c2i+1􏼂 􏼃 _x2i+1􏼈 􏼉 − T2i􏼂 􏼃 cosθ2i􏼈 􏼉 + m2i+1g􏼂 􏼃, (5c)
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Figure 3: (e simplified model of interaction between beam portions. (a) Two adjacent lumped mass blocks simplified from a single beam.
(b) Interaction from two adjacent beam portions.
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Figure 4: (e simplified model for the parametric resonance of the multicable system in cable-stayed bridges.

Table 1: Parameters of the refined model (0≤ i≤N).

Parameters 1st subsystem . . . ith subsystem . . . Nth subsystem

Tower

Mass m1 m1 m1
Bending stiffness k1 k1 k1
Structure damping c1 c1 c1

Displacement of vibration x1 x1 x1

Cable

Mass m2

. . .

m2i

. . .

m2N
Tensional rigidity EA1 EAi EAN
(e initial length l1 li lN

(e instantaneous tension of tower-cable T1 T2i-1 T2N-1
(e instantaneous tension of cable-beam T2 T2i T2N

(e initial tension T01 T0i T0N
Displacement of vibration x2 x2i x2N

Beam portion
Mass m3 m2i+1 m2N+1

Bending stiffness k33 k(2i+1)(2i+1) k(2N+1)(2N+1)
Displacement of vibration x3 x2i+1 x2N+1
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where €x2i􏼈 􏼉 and _x2i􏼈 􏼉 represent acceleration vector and
velocity vector of the cable; €x2i+1􏼈 􏼉, _x2i+1􏼈 􏼉, and x2i+1􏼈 􏼉

represent acceleration vector, velocity vector, and dis-
placement vector of the beam portion; sinθ2i−1􏼈 􏼉 repre-
sents the sine vector of the angle between the cable and the
tower; sinθ2i􏼈 􏼉 represents the sine vector of the angle
between the cable and the beam portion during vibration;
cosθ2i􏼈 􏼉 represents the vector of the included angle be-
tween the cable and the beam section during vibration;
[m2i] and [m2i+1] represent the mass matrix of the cable
and beam portion; [T2i−1] represents the cable force
matrix of the cable connected to the tower during vi-
bration; [T2i] represents the cable force matrix of the cable
connected to the beam portion during vibration;
[K(2i+1)(2i+1)] represents the bending stiffness coefficient
and respectively represent the of the beam portions; g

represents the acceleration due to gravity. Additionally,
the mass matrix and the cable force matrix are diagonal
matrices. (e above symbols of calculation are shown in
the following equations:
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According to the geometric characteristics of the sim-
plified model and the single cable subsystem method, the
vibration equations of the whole coupling system are ob-
tained as shown in equations (7a)–(7c) after deducing and
arranging:
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where ω1, ωci, and ωbi represent the natural vibration fre-
quency of the bridge tower, the cable, and the beam portion
in the ith subsystem, respectively; the vectors including
x2
1x2 + x2

2i􏼈 􏼉, x2
2i+1x2i􏼈 􏼉, x2ix2i+1􏼈 􏼉, x2

2i+1 + x2
2i􏼈 􏼉 are column

vectors and the form of the vectors are the same as _x2i􏼈 􏼉

present in equation (6a); [Ai
1]∼[Ai

7] represent the coefficient
matrix of the vibration differential equations of the cable;
[Bi] represents the coefficient matrix of the vibration dif-
ferential equation of the beam; [ 􏽥Kij] represents the effect
coefficient matrix of the vibration beam portion on other
beam portions in themulti-degree-of-freedom system, and it
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is also an N × N matrix. (e above calculation symbols are
shown in the following equations:
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⋮ ⋮ ⋱ ⋮ ⋮
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k(2N+1)3 k(2N+1)5 k(2N+1)7 · · · 0
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3. The Mathematical Expression of the System

3.1. Simplification of the Vibration Equations considering
Stiffness Effect of the Beam. Generally, the length and the
tension of the cable are changed periodically, promoting that
the bending stiffness of the cross section of each beam
portion is a nonlinear equation varied with time. It is too
complex to solve or simulate the differential equations of the
nonlinear resonance. To address this issue, the shear dif-
ference obtained from the finite difference is applied to
simulate the interaction between adjacent beam portions.
Figure 5 takes the beam portion of the ith (i ∈ [2, N− 1])
subsystem under an undamped condition as an example.

In Figure 5, the spring k2i+1 represents the effect of the
bending stiffness for ith beam portion; V2i−1,2i+1 and
V2i+1,2i+3 represent the shear force value on each side of this
beam portion in this subsystem. (e curvature of this beam
portion can be approximately represented by the two-order
central difference value of this beam portion:

1
ρ2i+1

�
z2y

zx2􏼠 􏼡
2i+1
≈

1
Δd2i+1( 􏼁

2 x2i−1 − 2 · x2i+1 + x2i+3( 􏼁.

(9)
(e moment M2i+1 and shear force value have been

represented in the following equations:

M2i+1 � −EI ·
1

ρ2i+1
� −EI ·

z2y

zx2􏼠 􏼡
2i+1

≈ − EI ·
1
Δd2i+1( 􏼁

2 x2i−1 − 2 · x2i+1 + x2i+3( 􏼁,

(10a)

V2i−1,2i+1 �
M2i+1 − M2i−1

Δd2i+1
, (10b)
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V2i+1,2i+3 �
M2i+3 − M2i+1

Δd2i+3
, (10c)

where EI represents the flexural rigidity; d2i+1 represents
the distance from (i − 1)th to ith cable anchorage position;
and V2i+1 represents the shear difference between the left
and right sides of the beam portion of the ith subsystem.
Assuming that the length of each beam portion is ob-
tained the same (Δd2i+1 � Δd2i+3 � Δd), the interaction
between adjacent beam portions in a multicable system is
appropriately represented by the shear difference (see
Figure 6).

In Figure 6, it is essential to notice that the shear is
applied to represent the effect of the interaction between
adjacent beam portions, and the relationship satisfies the
equation shown in the following equation:

k(2i+1)3 · · · k(2i+1)(2N+1)􏽨 􏽩

x3

⋮

x2N+1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ ≈ ΔV2i+1 � V2i+1,2i+3

− V2i+1,2i−1.

(11)

Substitute equation (9) into equations (10a)–(10c) to
obtain

ΔV2i+1 �
−EI

(Δd)
3 x2i−3 − 4 · x2i−1 + 6 · x2i+1 − 4 · x2i+3 + x2i+5( 􏼁.

(12)

In Figure 1, the beam portion of the C1 subsystem is near
the simply supported end on the left, while the beam portion
of the CN subsystem is near the simply supported end on the
right, promoting that their displacement and bending
moment are both zero:

1
ρ3−

�
z2y

zx2􏼠 􏼡
3
≈

1
(Δd)

2 −2x3 + x5( 􏼁, (13a)

1
ρ(2N+1)+

�
z2y

zx2􏼠 􏼡
(2N+1)

≈
1

(Δd)
2 −2x2N+1 + x2N−1( 􏼁,

(13b)

where ρ3− and ρ(2N+1)+ represent the curvature of the beam left
of theC1 subsystem and right of theCN subsystem, respectively.
Moreover, the bending moment and shear difference between
these two subsystems are calculated as follows:

m2i-1 m2i+1 m2i+3 m2N+1m3

(a)

m2i-1

k2i-1

m2i+1

k2i+1

m2i+3

k2i+3
x2i-1 x2i+1 x2i+3

(b)

M2i-1

M2i+1

M2i+3

m2i+1

x2i+1

M2i+1V2i-3,2i-1

Ti

V2i-1,2i+1

V2i+3,2i+5

k(2i+1)(2i+1)

V2i-1,2i+1 V2i+1,2i+3

V2i+1,2i+3

(c)

Figure 5: (e beam portion model of ith subsystem and its adjacent beam portions. (a) Different simplified beam portions in a single beam.
(b) (e ith simplified subsystem and its adjacent beam portions. (c) (e mechanical system of the beam portion in ith subsystem.

x2i+1

m2i+1

Ti

V2i+1,2i+3

V2i-1,2i+1

k(2i+1)(2i+1)

Figure 6: (e equivalent balance between the shear force with the
stiffness spring.
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M3 ≈ − EI ·
1

(Δd)
2 −2 · x3 + x5( 􏼁, (14a)

M2N+1 ≈ − EI ·
1

(Δd)
2 −2 · x2N+1 + x2N−1( 􏼁, (14b)

ΔV3 �
M5 − M3

Δd
−

M3 − 0
Δd

�
−2 · M3 + M5

Δd

�
−EI

(Δd)
3 · 5 · x3 − 4 · x5 + x7( 􏼁,

(15a)

ΔV2N+1 �
0 − M(2N+1)

0.5 Δd
−

M(2N+1) − M(2N−1)

Δd

�
−EI

(Δd)
3 · 5 · x2N+1 − 4 · x2N−1 + x2N−3( 􏼁.

(15b)

3.2. ;e Vibration Equations of the Multicable System.
Substituting equations (14a), (14b), (15a) and (15b) into
equations (7a)–(7c), the vibrations equations of the

parametric resonance model shown in Figure 4 are obtained
as shown in equations (16a)–(16c):

€x1 +
c1

m1
_x1 +

k1

m1
x1 + 􏽘

N

i�1

x2i − x1

li
􏼠 􏼡 T0i +

EAi x2i − x1( 􏼁
2

2 · l
2
i

􏼢 􏼣 � 0,

(16a)

m2i􏼂 􏼃 €x2i􏼈 􏼉 + c2i􏼂 􏼃 _x2i􏼈 􏼉 + m2iω
2
ci􏽨 􏽩 x2i􏼈 􏼉 + A

i
1x1􏽨 􏽩

+ A
i
2x

2
1􏽨 􏽩 x

2
1x2 + x

2
2i􏽮 􏽯 + A

i
3x

3
1􏽨 􏽩 + A

i
4􏽨 􏽩 x

3
2i􏽮 􏽯

+ A
i
5􏽨 􏽩 x

2
2i+1x2i􏽮 􏽯 + A

i
6􏽨 􏽩 x2ix2i+1􏼈 􏼉 � 0,

(16b)

m2i+1􏼂 􏼃 €x2i+1􏼈 􏼉 + c2i+1􏼂 􏼃 _x2i+1􏼈 􏼉 + m2i+1􏽢ω2
bi􏽨 􏽩 x2i+1􏼈 􏼉

+ B
i

􏽨 􏽩 x
2
2i+1 + x

2
2i􏽮 􏽯 +

−EI

(Δd)
3 DN×N􏼂 􏼃 x2i+1􏼈 􏼉 � 0,

(16c)

where [􏽢ω2
bi] represents the natural vibration frequency

matrix of the beam portion of the ith subsystem simplified
by the difference method and [DN×N] represents the
coefficient matrix of the difference method and is also an
N order matrix. (e equations of these two calculation
symbols are as follows:

􏽢ω2
bi􏽨 􏽩 �

EA1

m3l1
− 5

EI

m3(Δd)
3

EA2

m5l2
− 6

EI

m5(Δd)
3

⋱

EA(N−1)

m(2N−1)l(N−1)

− 6
EI

m(2N−1)(Δd)
3

EAN

m(2N+1)lN
− 5

EI

m(2N+1)(Δd)
3
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, (17a)

DN×N􏼂 􏼃 �

0 4 −1
4 0 4 −1

−1 4 0 4 −1
−1 4 0 4 −1
⋱ ⋱ ⋱ ⋱ ⋱

−1 4 0 4 −1
−1 4 0 4 −1

−1 4 0 4
−1 4 0
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⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (17b)

3.3. Verification by Degenerating into a Single Cable System.
Reference [42] presented the research of one single cable system
with the same simplification method. To verify the expressions,
the multicables system degenerates to one single cable system.
More specifically,Δd from equations (16a), (16b) and (16c) is set
large enough to ensure the value of EI/(Δd)3 close to zero,
making the beam portion independent.(e detailed parameters

are adopted from [42]. Moreover, a simplified model of one
single cable system is establishedwith the finite elementmethod
through ABAQUS/Explicit. (e displacements of the cable
vibration with the present method (simulation analytical so-
lution, SAS), the finite element method (finite element solution,
FES), and [42] (reference analytical results, RAR) are presented
in Figure 7. Otherwise, the results obtained from the present
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method are comprised of two conditions. One of them, sym-
bolled as SAS-1 in Figure 7, considers the effect from other
subsystems and analyzes under the multicable condition by
making N ∈ [1, 10] in equation (16a). It should be noticed that
the cable parameters of other subsystems do not meet the
parametric resonance condition. Another one, which is sym-
bolled as SAS-2 in Figure 7, is ignoring the influence of the
multicable system on the vibration motion of the tower by
making N� i� 5 in equation (16a).

From Figure 7(a), the resonance phenomena of the
cable are significantly observed. Particularly, in
Figure 7(b), the variation trend is a little bit different from
SAS-1 to SAS-2. When SAS-1 occurs, the cable amplitude
still gradually increases while the increasing period is
delayed. It indicates that the total energy of the system is
transformed between the pylon and all cables when the
condition of SAS-1 is considered, resulting in the ex-
tension of the vibration period of the whole bridge. Under
this condition, after taking the interaction between beam
portions into account, the resonance of the subsystem is

disturbed to a different extent, and the maximum am-
plitude is also lower than that of other working condi-
tions. In addition, the characteristics of vibration
displacement through SAS-2, FES, and RAR stay the same.
It indicates that the model in this paper can simulate the
essential character of parametric resonance well.

4. Extension of the Analysis to the Multicable
Coupling System

4.1. Parameters of the Case Study. To further investigate the
interactions of the multicable coupling system, a simplified
model of the multicable system (see Figure 8) is proposed to
carry on a theoretical numerical simulation analysis. (e
parameters are consulted in [9, 42].

In Figure 8, there are 10 cables anchored to the single
beam comprised of 10 beam portions, corresponding to the
C1–C10 subsystem, respectively. (e investigation aims to
propose a refined model for the mechanism analysis of the
parametric resonance. (us, it is assumed that the distance
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Figure 7: (e comparison of calculation results under different conditions. (a) (e comparison of different analytical solutions. (b) (e
comparison of calculation results under different conditions of SAS.
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d between the anchorage position of each stay cable, the
mass m2i+1 of each portion, and the elastic modulus EI are
all the same. (e basic parameters are shown in Table 2.

Based on the geometric relationship of the simplified
model, the cable parameters are shown in Table 3.

From the parameters shown in Table 3, there are no oc-
currences of parametric resonance in the system. Subsequently,
the C5 subsystem is selected as a comparative subsystem.

4.2. ;e Vibration Analysis of the Single Beam Comprised of
Discrete Beam Portions. In previous studies, the cable is
anchored on the single beam, supporting that the natural
frequency of the beam portion is the natural frequency of the
single beam. (e cables suffer from more or less relevant
resonance under the excitation from the beam portion vi-
bration response in the same subsystem. Specifically, if the
parametric resonance conditions are satisfied in this sub-
system, severe oscillations will occur on the subsystem. (is
paper proposes a refinedmodel comprised of several discrete
subsystems, promoting that the single beam is comprised of
several beam portions. (us, the effect of the excitation from
the beam portion is composed of two parts: one is the effect
provided by the bending stiffness of the beam portion and
another is the restoring force provided by the cable. Ad-
ditionally, the cable anchors at the portion of the beam,
leading to these two components (the cable and the beam
portion) have the common boundary and displacement
when resonance occurs. With the response excitation from
the beam portion, the length and the tension of the cable are
changed periodically, promoting that the influence for the
cable also changes periodicity. Figure 9 demonstrates the
relationship between these two factors.

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

d

C1 C2 C3 C4 C5

C6 C7 C8 C9
C10

Figure 8: (e simplified model of parametric resonance for the multicable system.

Table 2: (e basic parameters of the components in the Ci subsystem.

(e parameter of the component (symbol) (e values

Mass
Tower (m1) 2000 kg

(e same for all beam portions (m2i+1) m3 � m5 � m7 � m9 m3 � m5 � m7 � m9m3 � m5 � m7 � m9 1000 kg
(e same for all the unit mass of the cable (μm2i) 1 kg/m

Stiffness
(e bending stiffness of the tower (k1) 104 kN/m

(e bending stiffness of the beam portion (EI) 5∗104 kN·m2

(e tensional rigidity of the cable (EAi) 5∗104 kN
Distance (e distance between the cable acting points on the beam (Δd) 10m
Air damping All of the component 0

Table 3: (e parameters of each subsystem cable.

Abbreviation Length (m) Tension (kN)
C1 50 1200
C2 40 900
C3 32 500
C4 25 350
C5 20 200
C6 20 200
C7 25 350
C8 32 500
C9 40 900
C10 50 1200

x(2i+1)

m2i+1

Ti

k(2i+1)(2i+1) k(2i+1)t

Figure 9: Excitation action decomposition of beam portion in one
single subsystem.
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In Figure 9, two springs are adopted to represent these two
factors: one symbolled as k(2i+1)t represents the effect from the
cable and another symbolled as k(2i+1) (2i+1) represents the effect
from the beam portion. In addition, it is noticeable that there
also exist the indirect influences of cable tension from adjacent
cables, k(2i+1) (2j+1)t, while they are not exhibited in Figure 9.(e
parallel effect of these springs is accurately the excitation ap-
plied to the cable. Apparently, if the ratio of the natural fre-
quency of this parallel effect to the natural frequency of the
cable satisfies the parametric resonance conditions, the cable
exhibits severe oscillations. In line with this, the equations of
the beam portion vibration frequency shown in equations (8c)
and (17a) take on another meaning.

(e vibration equation is obtained based on the multi-
degree-of-freedom stiffness method as follows:

ω2
bi �

EAi

m(2i+1)li
+

k(2i+1)(2i+1)

m(2i+1)

, (18a)

where k(2i+1)t � EAi/li. (e vibration equation is obtained
according to the finite difference method as follows:

􏽢ω2
bi �

EAi

m(2i+1)li
+ −α ·

EI

m2i+1 · (Δd)
3􏼢 􏼣, α �

5, i � 1 or i � N,

6, 1< i<N,

⎧⎪⎨

⎪⎩

(18b)
where 􏽢ωbi represents the resonance frequency of the exci-
tation from the beam portion. Following this idea, the single
beam in Figure 9 can be transformed into an integrated
system comprised of several discrete beam portions that
connected strings, as shown in Figure 10.

In Figure 10①, the single beam anchored with 10 cables is
simplified to an integrated system comprised of several discrete
beamportionswith shears by the presentmethod of this paper as
shown in Figure 10④. It is noticeable that the reduction objects
of the shear difference include the bending stiffness of the single
beam at Ci# cable anchored position section, k(2i+1) (2i+1), the
indirect influence of the bending stiffness from adjacent beam
portions, k(2i+1) (2j+1) (i≠ j) and the indirect influence of the cable
tension from adjacent cables, k(2i+1) (2j+1)t (i≠ j). To accurately
analyze the vibration mode of the single beam, the FES and SAS
are adopted to simulate, respectively. (e vibration frequency
and the vertical mode shapes of the integrated system are
presented in Table 4 and Figure 11, respectively.

In Table 4, the frequency of the system with different
calculationmethods is almost the same.(ere is little difference
between the first two modes or the third and fourth modes. It
illustrates that the fundamental vibration shapes and fre-
quencies of the components occupying these two groups of
lower-order modes are not much different. Particularly in
Figure 11, the vertical mode shapes obtained by two methods
variated with almost the same trend. It is evident from the
mode analysis of the integrated system that the numerical
simulation method based on the shear difference proposed in
this paper can accurately simulate the effect on the vibration
caused by the bending stiffness of the single beam.

4.3. ;e Effect of Adjacent Beam Portions on the Resonance.
For more accurate investigation on the effect of adjacent
beam portions on the resonance, in the following research,

the bending stiffness of the beam portion or tower in the C5
subsystem is modified to satisfy the working conditions from
S1 to S4. (e condition instructions are shown in Table 5.

Based on SIMULINK/MATLAB, the resonance response
of each component under the working condition from S1 to
S4 is obtained by using the algorithm of Runge–Kutta with
an average step of 0.02 s, as shown in Figure 12.

In Figure 12, the variable resonance behavior in the
multicable system is easily observed when the coupling
resonance of the tower-cable occurred. Obviously, the main
reason is that the parameters of the cables in adjacent
subsystems have little change, which leads to the natural
frequency ratio of the cable-tower being also relatively
similar in several subsystems. (ere exists mutual inter-
ference between different resonant subsystems. However,
the coupling characteristic of the C5 subsystem shown in
Figure 12 is approximately the same as that of parametric
resonance without considering the interaction of the beam
portions. (e resonance response of each component in
adjacent subsystems is selected in Figure 13.

In Figures 13(a) and 13(c), when the cable-beam para-
metric resonance is occurring, the resonance response of the
beam portion in two adjacent subsystems has been influenced.
In contrast, the resonance response of the cable in adjacent
subsystems has little change. It indicates that the vibration
response of the cable in the adjacent beam portions may in-
crease due to the excitation of resonance beam portions.
However, if the condition of coupling resonance is not satisfied
in the subsystem, the cable in two adjacent subsystems cannot
be excited to exhibit severe oscillations. In short, when the
subsystem satisfies the resonance conditions, the global reso-
nance will cause severe local resonance.

For further investigation, the parameters of the sub-
systems which are symmetric with the tower are selected the
same. (e maximum resonance response values of different
beam portions under various working conditions are shown
in Table 6.

To minimize the influence on the parametric resonance
of the cable caused by the symmetry of cable-stayed bridge
properties, selecting that the subsystems of S1–S4 and S2–S3
are two comparison conditions, the amplitude difference of
the corresponding beam portion between the two working
conditions is shown in Figure 14.

In Figure 14, there are five pairs of comparison condi-
tions in the global bridge system. When the resonance
occurs, most of the energy of the systemwill be transferred to
the cable, which excites the cable to vibrate violently. At this
time, the maximum amplitude of the beam portion in the
resonance subsystem decreases sharply. Moreover, it indi-
cates that the beam portions where coupling resonance
occurs have a certain effect on the resonance response of the
beam portions in adjacent subsystems. Generally speaking,
this effect is more obvious within the two adjacent sub-
systems. To study the effect of the matching between the
natural frequencies of each degree of freedom on the vi-
bration characteristics of the parametric resonance system
and adjust the initial tension of the cable, the curve of the
maximum vibration amplitude of C5 varies with the fre-
quency ratio as presented in Figure 15.
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As seen in Figure 15, after taking the stiffness of the
tower or the beam portion into accounting, the sensitivity of
the cable-beam resonance becomes lower. (e resonance
interval has changed abruptly around 0.5. (erefore, the
cable-beam resonance probability caused by material
properties will be further reduced in practical engineering.
In addition, the frequency ratio curve of the tow-cable shows
a slow downward trend, and its resonance period is between
1.0 and 1.1. If the vibration frequency between adjacent
cables does not change much in practical engineering, the
coupling resonance between tower and multistay cables will
be generated due to high probability. (erefore, to avoid the
occurrence of tow-cable parameter resonance, it is not

node elastic support

beam element

FES

①

②

③

SAS
④

T5T1 T4 T6 T10

k11tk3t

k35

k33 k3t k99 k9t k1111 k11t k1313 k13t k2121 k21t

M3 M9 M11 M13 M21

M3 M9 M11 M13 M21

k79 k911 k1113 k1315

V0,3 V7,9 V9,11 V13,15 V19,21

V3,5 V9,11 V11,13 V15,17 V21,0

k1921

k9t k13t k21t

k11tk3t k9t k13t k21t

Figure 10: (e simplified model of the single beam.

Table 4: (e model properties of the integrated system.

Mode number Abbreviation
f (Hz)

Error (%)
FEA SAS

1 V1 0.852 0.854 0.2
2 V2 0.853 0.855 0.3
3 V3 1.004 1.006 0.2
4 V4 1.005 1.007 0.2
5 V5 1.143 1.148 0.4

FES mode shape
SAS mode shape

V5

V4

V3

V2

V1

10 20 30 40 50 60 70 80 90 100 1100
Span (m)

Figure 11: Vertical mode shapes.

Table 5: Instruction of each working condition setting.

Abbreviation Instruction of small operating conditions
S1 Coupling resonance occurs only in tower-cable
S2 Coupling resonance occurs only in cable-beam
S3 Coupling resonance occurs in tower-cable-beam
S4 (e system has no coupling resonance
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Figure 12: Continued.
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Figure 12:(e spectrograms of each component under different working conditions. (a) Under S1 condition, the spectrograms of the tower,
cable, and beam in the C5 subsystem. (b) Under S2 condition, the spectrograms of the tower, cable, and beam in the C5 subsystem. (c) Under
S3 condition, the spectrograms of the tower, cable, and beam in the C5 subsystem. (d) Under S4 condition, the spectrograms of the tower,
cable, and beam in the C5 subsystem.
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Figure 13: Continued.
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Figure 13: (e response of the cable and beam in the C4∼C6 subsystem under S1∼S4 working conditions. (a) Under S1 condition, the
resonance response of the cable and beam in the C4∼C6 subsystem. (b) Under S2 condition, the resonance response of the cable and beam in
theC4∼C6 subsystem. (c) Under S3 condition, the resonance response of the cable and beam in theC4∼C6 subsystem. (d) Under S4 condition,
the resonance response of the cable and beam in the C4∼C6 subsystem.

Table 6: (e maximum displacement values of the beam portion under various working conditions.

Abbreviation
(e maximum displacement response values of the beam portion (mm)

S1 S2 S3 S4
B1 10.23 10.00 10.15 10.16
B2 14.26 14.24 14.15 14.35
B3 18.39 17.99 18.31 18.22
B4 17.44 17.53 17.24 17.75
B5 11.21 14.15 10.73 14.41
B6 11.21 14.15 10.73 14.41
B7 17.45 17.53 17.23 17.76
B8 18.38 17.99 18.31 18.22
B9 14.25 14.24 14.14 14.37
B10 10.23 10.00 10.14 10.16
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Figure 14: (e difference of resonance response under comparison working conditions.
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efficient to change the vibration frequency value of a single
cable, and more consideration should be given to the tower
parameter frequency value being far away from the reso-
nance interval in the design. However, the tower is directly
connected to the cables of each subsystem, resulting in that
the system energy is converted between the various sub-
systems when parametric occurs. (erefore, the maximum
amplitude of the cable-tower resonancemay not increase too
large.

5. Conclusion

(is paper proposes a refined model to analyze the para-
metric resonance phenomena in multicable systems, such as
cable-stayed bridges, accounting for the interaction between
adjacent beam portions.(e comparison results between the
finite method, the reference results, and this paper indicate
the refined model exhibits the key character of parametric
resonance and also further verified the simulation methods.

(e consequences of the numerical simulation show that
the cable has a severe resonance when the vibration fre-
quency ratio of cable to the end horizontal excitation in the
tower is 1 :1, or that of cable and end orthogonal excitation
in the beam is 1 : 2. Additionally, the beam portions within
the two adjacent subsystems are stimulated by the global
resonance, causing a gradual increase in the vibration re-
sponse of the beam portion and the connected cable.
However, if the coupling resonance conditions in the two
adjacent subsystems are not satisfied, the beam excitation
from the adjacent subsystems could not, therefore, be re-
sponsible for the severe cable resonance. Concisely, the local
resonance will not lead to the global resonance when
parametric resonance occurs in this subsystem, while the
global resonance will have an effective excitation on the local
resonance of this target subsystem which satisfies the res-
onance condition. Moreover, the probability of cable-beam
coupling resonance occurrence is smaller than that of tower-

cable coupling resonance. (erefore, more attention should
be paid to avoid cable-tower resonance in the design of
bridges engineering.

In the present study, the analysis of parameter sensitivity
and resonance quantization precision (such as the sag and
the gravity of the cable) is not comprehensive. Further
studies involving amore detailed analysis of these aspects are
expected to carry on at the next stage of the investigation to
guide engineering practice.
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