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+e progress of construction and safe production in mining, water conservancy, tunnels, and other types of deep underground
engineering is seriously affected by rockburst disasters. +is makes it essential to accurately predict rockburst intensity. In this
paper, the ratio of maximum tangential stress of surrounding rock to rock uniaxial compressive strength (σθ/σc), the ratio of rock
uniaxial compressive strength to rock uniaxial tensile strength (σc/σt), and the elastic energy index of rock (Wet) were chosen as
input indices, and rockbursts were graded as level I (none rockburst), level II (light rockburst), level III (medium rockburst), and
level IV (strong rockburst). A total of 104 groups of rockburst engineering samples, collected widely from around the world, were
divided into a training set (84 groups of samples) and a test set (20 groups of samples). Based on the kernel principal component
analysis (KPCA), the adaptive particle swarm optimization (APSO) algorithm, and the support vector machine (SVM), the KPCA-
APSO-SVMmodel was established.+e proposedmodel showed satisfactory classification performance: the prediction accuracies
of the training set and test set were 98.81% and 95%, respectively. In addition, the trained prediction model was applied to five
rockburst engineering cases and compared with the BP neural network model, SVM model, and APSO-SVM model. +e
comparative results show that the KPCA-APSO-SVM model has a higher prediction accuracy; as such, it provides a new reliable
method for rockburst prediction.

1. Introduction

As the depth of mining and tunneling increases, more and
more underground projects are threatened by coal and gas
outburst [1], rockburst [2], water inrush [3], and so forth.
Rockburst is a kind of unexpected geological hazard caused
by rock failure during excavation, accompanied by violent
energy release [4, 5]. Along with the loosening, spalling,
ejection, or even throwing of rocks, it often induces heavy
casualties and great property loss [6–9]. In recent years, with
the increase in geotechnical engineering with high buried
depth, high in situ stress, and high geothermal temperature,
rockbursts occur frequently, which has become a serious
threat to engineering construction in many countries, such

as South Africa, Chile, China, Australia, Canada, Sweden,
Norway, and others [10–14].

+e accurate prediction of rockburst intensity is im-
portant for the prevention and control of rockbursts. To
date, researchers have considered many single indices of
rockburst prediction based on experimental or engineering
experience, such as strength theory, stiffness theory, catas-
trophe theory, and similar. With the expanding of research,
researchers have realized that single indices cannot effec-
tively predict rockbursts under complex geological condi-
tions. Owing to the numerous influencing factors involved
in a rockburst, multiple indices are thought to be required
simultaneously. At present, multi-index comprehensive
prediction methods and machine learning methods have

Hindawi
Shock and Vibration
Volume 2021, Article ID 7968730, 12 pages
https://doi.org/10.1155/2021/7968730

mailto:wangchao@kust.edu.cn
https://orcid.org/0000-0002-2760-7537
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2021/7968730


often been used in rockburst prediction, including the
support vector machine (SVM) method [15–17], random
tree method [18], K-nearest neighbor method [19], Bayesian
network method [20], extreme learning machine method
[21], logical regression method [22], decision tree method
[23], cloud model [24], artificial neural network [25], fuzzy
comprehensive method [26], and expert method of hazard
evaluation [27].

SVM is a classifier developed from the generalized
portrait algorithm in pattern recognition. It is well-adapted
for limited samples and widely used in classification and
recognition. In the process of classification, SVM first maps
low-dimensional data to high-dimensional space by kernel
function to make the data as linearly separable as possible.
+ere are numerous kernel functions, such as the linear
kernel function (LKF), radial basis function (RBF), poly-
nomial kernel function (PKF), and others. In the classi-
fication process of SVM, penalty factor c and kernel
function parameter g are important parameters that affect
classification performance. So far, researchers have de-
veloped many different SVM models to predict rockburst
intensity. Yin et al. [7] established SVM models by en-
semble learning layering technology and compared them
with the SVM-RNNmodel and the KNN-SVM-DNN-RNN
model. Zhou et al. [15] used the genetic algorithm (GA)
and particle swarm optimization (PSO) algorithm to de-
velop the GA-PSO-SVM model and compared it with the
traditional SVM model. Pu et al. [16] applied the SVM
model to predict the Kimberlite diamond mine’s rockburst
intensity and achieved strong results. Wu et al. [17]
exploited the PSO algorithm to optimize the least squares
support vector machine (LSSVM) and established a
rockburst prediction model. Zhou et al. [19] used the
supervised learning method to advance the SVM model
and compared it with other models. Zhang et al. [28]
introduced the beetle antennae search algorithm to opti-
mize SVM and other machine learning methods. Much
optimization work has been done on the SVM prediction
model, but data preprocessing and model parameter ad-
justment still warrant further study.

+e grid search method is carried out by conducting
parameter optimization by traversing when the search range
of the two parameters is determined. It depends on the
setting of the search range and step. +is is time-consuming
and not conducive to building an efficient and accurate
prediction model. Swarm intelligence algorithms can reduce
the optimal time of parameters effectively and obtain the
optimal parameters through information exchange in the
group. PSO is an evolutionary computing method based on
swarm intelligence that uses cooperation and information
sharing among individuals in the group to find the best
optimal solution. However, it has weaknesses in its appli-
cation, such as precocity convergence and poor ability for
local optimization. +us, an adaptive particle swarm opti-
mization (APSO) algorithm is proposed to optimize the two
important parameters c and g in the paper. Further, the
kernel principal component analysis (KPCA) method and
the improved SVM are used to process the rockburst pre-
diction indices and train the samples, respectively, and the

novel KPCA-APSO-SVM model is established to predict
rockburst risk.

2. Principle of the Method

2.1. 4e KPCA Method. KPCA is a nonlinear principal
component analysis method based on the kernel method.
+e kernel method is a learning algorithm based on kernel
function that mainly solves nonlinear pattern analysis
problems. Figure 1 shows the core idea of the kernel method;
that is, to define a nonlinear function V, map the original
space to a higher-dimensional space and then carry out the
linear operation in the higher-dimensional space to com-
plete the nonlinear operation of the original space.

+e kernel method can avoid the explicit expression of
nonlinear mapping and reduce computational complexity.
+e principle of the kernel function can be described by the
following equation:

xi, xj􏼐 􏼑⟹K xi, xj􏼐 􏼑 �〈V xi( 􏼁•V xj􏼐 􏼑〉, (1)

where (xi, xj) is the inner product of the original space, V is
the nonlinear function mapped to the high-dimensional
space, and the kernel function transforms the inner product
of the high-dimensional space into the function calculation
of the original space x and does not need to explicitly give the
expression of V. +e commonly used five types of kernel
functions are presented in Table 1.

2.2. SVM

2.2.1. 4e Principle of SVM. SVM, a supervised learning
algorithm, is used for data analysis and classification deci-
sions based on statistical learning theory and the principle of
structural risk minimization. It uses limited sample infor-
mation to establish the classification hyperplane in the
feature space and gains the abilities of classification and
recognition with the advantages of fewer sample require-
ments, nonlinear and high dimensional space. In the clas-
sification process, SVMmaps low-dimensional data to high-
dimensional space with the help of kernel function. Due to
the RBF kernel function can achieve good classification
performance in large or small samples and high-dimensional
or low-dimensional data [29], we choose RBF kernel
function to map low-dimensional data to high-dimensional
space.

2.2.2. 4e Calculation Process of SVM. +e data set D �

[(x1, y1), . . . , (xl, yl)] is sampled and set in the n-dimen-
sional space, and the decision function is
f(x) � ω · k(x) + b, where ω, b, and k(x) are the weight
vector, domain value, and nonlinear mapping function,
respectively [30].+e optimization of the classification plane
constraint should meet the following condition:

yi ωT
· k xi( 􏼁 + b􏼐 􏼑≥ 1. (2)

Nonnegative relaxation variables ξis are introduced to
convert the optimization problem into the following equation:
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where c is a penalty parameter (c> 0) that represents a
punishment for misclassification, used to reconcile the

coefficient with the maximum interval and the minimum
number of misclassification points. +e penalty value for
misclassification increases with the addition of c. Here, the
Lagrange multiplier algorithm is introduced to obtain the
following equation:

L ω, b, ai( 􏼁 �
1
2
‖ω‖

2
+ 􏽘

n

i�1
ai 1 − yi ωT

· k xi( 􏼁 + b􏼐 􏼑􏼐 􏼑, ai � a1, a2, . . . , an( 􏼁. (4)

+e partial derivatives of ω and b in Lagrange function
L(ω, b, ai) are obtained as per the following equation:

ω � 􏽘
m

i�1
aiyixi,

b � 􏽘
m

i�1
aiyi.
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(5)

+e Lagrange multiplier algorithm is introduced to
obtain the following equation:

L ω, b, ai( 􏼁 � 􏽘
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i�1
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􏽘
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namely, min
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n
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yiyjxixj. +en, the optimization problem is transformed
into a duality problem:
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where the RBF kernel function K(xi, xj) � (k(xi) · k(xj))

adopted in this paper is as follows:

K xi, xj􏼐 􏼑 � exp − g xi − xj

�����

�����􏼒 􏼓
2
, (8)

where g is the kernel function parameter; the above opti-
mization problem can be converted to
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(9)

2.2.3. Process Derivation of the PSO Algorithm. According to
equation (9), c and g affect the classification performance of
SVM. +en, the PSO algorithm is introduced for parameter
optimization with the classical iterative formulas as follows:

v(t + 1) � ωt + c1r1 qbest(t) − q(t)( 􏼁 + c2r2 pbest(t) − q(t)( 􏼁,

q(t + 1) � q(t) + v(t + 1),
􏼨

(10)

where v(t) is the velocity of particles at time t; ω is the inertia
weight; qbest(t), q(t), and pbest(t) represent the optimal so-
lution, solution, and global optimal solution of particles at
time t, respectively; r1 and r2 are random numbers belonging
to the range [0,1]; and c1 and c2 are learning factors.

In the classical PSO algorithm, ω describes the influence
of the previous generation of particles on the current gen-
eration. +e larger the search ranges of particles, the stronger
the global optimization ability and the ability to avoid falling

Input space Feature space

Φ

Figure 1: +e core idea of the kernel method.

Table 1: Commonly used kernel functions.

Kernel function type Kernel function expression
Linear kernel function
(LKF) K(xi, xj) � xT

i •xj + c

Polynomial kernel function
(PKF) K(xi, xj) � (axT

i xj + c)q

Radial basis function (RBF) K(xi, xj) � exp(− g‖xi − xj‖
2)

Sigmoid kernel function
(SKF) K(xi, xj) � tanh(v(xi•xj) + c)

Gaussian kernel function
(GKF) K(xi, xj) � exp(− (‖xi − xj‖

2/2σ2))

Note. c, a, v, and g are manually set parameters, q is the degree of a
polynomial, and σ is the gauss kernel bandwidth.
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into the local optimal solution.+e PSO algorithm adjusts the
balance between global search and local optimal capabilities.
+e calculation equation of ω is described as follows:

ω � ωmax −
ωmax − ωmin

Nmax
· N, (11)

whereωmax � 0.9 is themaximum inertia weight,ωmin � 0.3 is
the minimum inertia weight, Nmax is the maximum iteration
algebra, and N is the current iteration algebra.

Equation (11) shows that value ω is at the maximum at
the beginning of the iteration, and the particle has a wide range
when conducting a global search.With the increase in iteration
times, the particle gradually approaches the global optimal
solution. Meanwhile, the value of ω decreases, and the particle
can search locally in a small range and ultimately obtain the
global optimal solution.+e ω value varies with the number of
iterations, and so it is called the adaptive inertia weight.

c1 and c2 reflect the information exchange between single
particles and the information exchange between the total
number of particles and the historical optimal trajectory,
respectively. Asynchronous learning can effectively ex-
change information between particles [31]. +is paper

adjusts the two parameters through an asynchronous
learning formula, and the adjusted equation is as follows:

c1 � 2 −
1

Nmax
· N,

c2 � 1 +
1

Nmax
· N.

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(12)

To effectively control the flying speed of particles and
allow the algorithm to achieve an effective balance between
global detection and local excavating, the compression co-
efficient β is introduced as follows:

β �
2

2 − c −
������
c
2

− 4c
􏽰􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

, (13)

where c� c1 + c2.
Finally, we propose an APSO algorithm with a com-

pression factor and an asynchronous learning factor, as
shown in the following equation:

v(t + 1) � β ωt + c1r1 qbest(t) − q(t)( 􏼁 + c2r2 pbest(t) − q(t)( 􏼁( 􏼁,

q(t + 1) � q(t) + v(t + 1).
􏼨 (14)

3. Dataset Preparations

To date, many indices have been used in rockburst pre-
diction. Comprehensively considering internal factors (such
as the physical and mechanical properties of rock), external
factors (e.g., stress concentration caused by excavation) for
rockburst, and index selection requirements (e.g., scienti-
ficity, practicability, and quantifiable), σθ/σc, σc/σt, and Wet
were selected as input indices. +e rockbursts were graded
into four levels: level I (none), level II (light), level III
(medium), and level IV (strong).

104 groups of well-documented rockburst samples, in-
cluding 20 groups of level I samples, 28 groups of level II
samples, 37 groups of level III samples, and 19 groups of level
IV samples, were collected by consulting the literature. Part of
the rockburst samples is presented in Table 2. Figure 2 is a box
chart of three input indices that shows the median line, mean
value, maximum value, minimum value, and 25∼75% of the
index range and outliers, where Figures 2(a)–2(c) are a boxplot
of σθ/σc, σc/σt, and Wet, respectively; and Figure 2(d) is the
overall boxplot of three input indices. As seen in Figure 2, there
are a small number of outliers in each group of data, and the
data distribution is asymmetric, especially in Figure 2(c). In
order to ensure the objectivity of the sample data, this paper
does not replace the outliers.

4. Methods

104 groups of rockburst samples were divided into a training
set and a test set.+e training set was composed of 15 groups

of level I samples, 23 groups of level II samples, 32 groups of
level III samples, and 14 groups of level IV samples selected
randomly in this paper, and the test set was made up of the
remaining 20 groups of samples. Fivefold cross-validation
was performed on the training set, as shown in Figure 3. Its
basic idea is to divide all samples into five parts, take one part
as the test set each time without repetition, take the other
four parts as the training set to train the model, then to
calculate the error rate Ei (i� 1, 2, 3, 4, 5) of the model used
in the test set, and finally to calculate the average value of Ei
to get the comprehensive error rate E. And classification
accuracy, F1-score value, and Kappa coefficient were used to
evaluate the performance of the prediction model. +e
construction process of the KPCA-APSO-SVM model is
presented in Figure 4.

5. Experiment and Analysis

5.1. Data Process and Analysis in KPCA. Data processing
directly affects classification performance. +is necessi-
tates the preprocessing of the characteristic data that affect
the rockburst prediction result. In order to ensure that the
information of each variable does not interfere with others
and to mine the rich data association between features
from high-dimensional space, this paper uses KPCA to
process the data, selects the best KPCA dimension re-
duction effect through the comparison of different kernel
parameters, and uses the principal component analysis
(PCA) method to process the data. It compares the results
to KPCA.
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PCA is an unsupervised data processing method that
renders the feature-transformed principal parts inde-
pendent of each other through linear transformation.

Figure 5 is the dimension reduction map obtained by the
traditional PCA dimensionality reduction method. +e
clustering effect of each rockburst grade sample point in
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Figure 2: Box chart of input indices: (a) σθ/σc; (b) σc/σt.; (c) Wet; (d) three indices.

Table 2: Part of the rockburst samples.

No.
Prediction indices

Actual level
σθ/σc σc/σt Wet

1 0.11 31.2 7.4 I
2 0.10 23.0 5.7 I
3 0.20 36.0 2.3 I
4 0.44 13.1 2.1 II
5 0.37 24.0 5.1 II
. . . . . . . . . . . . . . .

100 0.66 22.3 3.2 III
101 0.72 27.5 4.3 III
102 0.62 19.4 4.5 III
103 0.64 17.5 7.2 IV
104 0.65 12.4 5.4 IV
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the two-dimensional dimension reduction map obtained
by the first and second dimensionality reduction principal
components PC1 and PC2 is not evident. +ere are too

many overlapping samples, and the information differ-
ence between the various samples is very inconspicuous,
which indicates that the relationship between the original

E2
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E5

E1

E = 1/5 Ei
i = 1

5

Figure 3: Fivefold cross-validation.

Start

Sample collection

Data division

Training set Test set

Initialization
parameters

Kernel function
selection

Given a group of particles
with radom position and

velocities

Optimization
parameters

Update gbest and
pbest

Update particle
velocity and position

Reach the
criterion?

Fivefold validation

Reach the
criterion?

Get the optimal
parameters

KPCA-APSO-
SVM model

establishment

Output test results

End

APSO
optimization

No Yes

Yes

No

Test

Figure 4: Construction flow of the KPCA-APSO-SVM model.
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feature data cannot make the PCA processed data have a
clearer clustering effect.

KPCA is a supervised data processing method. Its pri-
mary task is to determine the kernel function, but there is no
clear guiding principle at present.+e RBF kernel function is
often the first choice for the KPCA kernel function because it
has a small deviation in the case of less-relevant conditions.
+erefore, the RBF kernel function is selected in this paper.
First, KPCA is used to map the low-dimensional data to the
high-dimensional space so that the features between the data
are linearized, and then the linear transformation of PCA is
used to achieve the purpose of data dimension reduction.
Differing from traditional KPCA, the main method of data
processing based on dimension reduction, the KPCAmethod
adopted in this paper mainly mines the association between
features in high-dimensional space through dimension ele-
vation, which makes the processed data easier to classify.

Figure 6 is the two-dimensional dimensionality reduc-
tion graph after data processing of the original features with
different values of kernel function parameter C. +e value of
C affects the data processing effect of KPCA. Different values
of C (C� 10, 20, 50, 100) were selected to undertake a
comparative study. When the C value is greater than 100, the
data processing effect remains unchanged. It can be seen
from Figure 6 that when C� 10, the processing effect is
evidently better than the PCA clustering effect, and the effect
becomes gradually obvious with the increase in kernel
function parameters. When C� 100, compared with the
traditional PCA dimensionality reduction and other kernel
function parameters, the processing effect is the most ob-
vious. After calculation, this paper selects 8 kernel principal
components, KPC1∼KPC8, whose cumulative contribution
rate is greater than 90%, for data analysis. +e kernel
principal components of some samples are shown in Table 3,
and the cumulative contribution rate is presented in Table 4.

5.2. Processing andAnalysis of SVM. +e penalty parameter c
and kernel function parameter g are important parameters
that affect SVM classification performance. In this paper, an
APSO algorithm is proposed to optimize c and g. +e PSO’s
fitness function is the maximum accuracy of the fivefold
cross-validation of the training set.+e optimal parameters c
and g are obtained when reaching the maximum accuracy
value. During the initialization process of APSO, the
numbers of particles with the same speed and iterations are
30 and 50, respectively.

+e optimization process of SVM parameters both
without and after KPCA processing is presented in Figure 7.
In the parameter optimization curve without KPCA pro-
cessing, when the fivefold cross-validation accuracy of the
training set reaches 91.67%, the optimal value of c is 100 and
that of g is 0.01. In the parameter optimization curve after
KPCA processing, when the fivefold cross-validation ac-
curacy of the training set reaches 98.81%, the optimal value
of c is 78.4885 and that of g is 0.62947.

After obtaining the optimal parameters, the APSO-SVM
classification model was established. Figure 8 shows the
classification results without as well as after KPCA

processing. +e Arabic numerals 1, 2, 3, and 4 on the or-
dinate of the figure indicate rockburst risk level I, level II,
level III, and level IV, respectively. It can be seen that the
former contains four misjudgments, while the latter contains
only one misjudgment. +e classification accuracy is higher
after KPCA processing.

5.3. Performance Evaluation. +ree parameters, namely,
classification accuracy, the F1-score value, and the Kappa
coefficient were used to evaluate the model classification
performance. When the F1-score value was close to 1, this
indicated that the classifier has strong comprehensive
classification ability.When the Kappa coefficient was close to
1, this indicated that the actual output is consistent with the
predicted output. Table 5 shows the evaluation results of the
APSO-SVM model and the KPCA-APSO-SVM model, in
which the optimal classification accuracies of the training
set, test set, F1-score, and Kappa coefficient were 98.81%,
95%, 0.9495, and 0.9333 respectively, all from the KPCA-
APSO-SVM model. We can see that the classification per-
formance of the model treated by KPCA is significantly
better than that of the model not treated by KPCA and that
the classification accuracy of the model is greatly improved
after KPCA processing for rockburst samples.

6. Engineering Verification

We applied the KPCA-APSO-SVM model to predict the
rockburst intensity of five engineering cases, which included
the Jinping II hydropower station diversion tunnel (case 1),
the copper mine of Huaxi Group Co. Ltd. (case 2), the
Jinchuan No. 2 mine (case 3), the Daxiangling tunnel (case
4), and the Dongguashan copper mine (case 5). +en, based
on the same training sample set, we established the BP neural
network (BPNN)model and the SVMmodel, respectively, to
carry out a comparative study of the prediction results.
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Figure 5: PCA dimension reduction data.
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Figure 6: KPCA dimension reduction results: (a) C� 10; (b) C� 20; (c) C� 50; (d) C� 100.

Table 3: Kernel principal components of some samples.

No. KPC1 KPC2 KPC3 KPC4 KPC5 KPC6 KPC7 KPC8
1 0.10692 0.42853 1.97035 − 0.17271 0.65215 − 0.22392 0.10120 0.24332
2 − 0.25321 − 0.38902 1.85827 0.20085 0.53811 − 0.26607 0.06083 − 0.03937
3 − 1.95496 0.79475 0.77955 0.01823 − 0.29556 − 0.32993 − 0.04782 − 0.16777
4 − 1.84689 1.49646 0.87969 − 0.60029 − 0.48013 − 0.27125 0.19077 − 0.16795
5 − 1.30235 − 1.72574 0.42354 − 0.82812 0.05384 0.41649 − 0.31473 − 0.12872
. . . . . . . . . . . . . . . . . . . . . . . . . . .

100 1.77102 0.05669 − 0.30371 − 0.06907 − 0.23411 0.00553 0.03396 − 0.16156
101 1.52412 1.06352 0.41351 − 0.01057 0.01023 0.30916 − 0.25692 − 0.01365
102 1.68988 0.20107 1.51051 − 0.26358 − 0.02316 − 0.12874 − 0.15304 0.29054
103 2.08223 0.23528 0.58012 − 0.27131 − 0.32644 − 0.00912 − 0.14021 − 0.01348
104 1.61922 − 0.41878 − 0.28636 − 0.11999 − 0.29266 − 0.03638 0.19072 − 0.13508
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Table 4: Cumulative contribution rate of KPC.

Core principal component Cumulative contribution rate (%)
KPC1 23.91
KPC2 45.99
KPC3 65.92
KPC4 75.99
KPC5 81.08
KPC6 85.86
KPC7 89.12
KPC8 92.01

Best c = 100 g = 0.01 CVAccuracy = 91.6667%
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Figure 7: Optimization process of SVM model parameters: (a) without KPCA processing; (b) after KPCA processing.
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Figure 8: Classification results: (a) without KPCA processing; (b) after KPCA processing.
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+eprediction results of the four models are presented in
Table 6. As we can see from the table, the BPNN model
misjudged the rockburst grade of case 4 from level IV to III
and of case 5 from level III to II. +e SVMmodel misjudged
the rockburst grade of case 3 from level II to I and of case 4
from level IV to III.+e prediction results of the APSO-SVM
model and the KPCA-APSO-SVM model were all accurate
and completely consistent with the situation in the field.
+us, compared with the traditional SVM model and the
BPNN model, the prediction effect of the SVM model op-
timized by APSO is better. +is shows that APSO has a good
optimization effect. Although the APSO-SVM model and
the KPCA-APSO-SVM model have the same prediction
results, Table 5 shows that the classification accuracy, F1-
score, and Kappa coefficient of the KPCA-APSO-SVM
model are all greater than those of the APSO-SVM model.
+erefore, the KPCA-APSO-SVM model has higher appli-
cation value under the same conditions.

Compared with the traditional SVM model and other
models, the KPCA-APSO-SVM model can better optimize
the parameters c and g, which affect the classification
performance of SVM and thus obtain a higher prediction
accuracy for rockbursts.

7. Conclusion

(1) In this paper, σθ/σc, σc/σt, and Wet were selected as
input indices of SVM, and 104 groups of rockburst
engineering samples were divided into a training set
(84 groups of samples) and a test set (20 groups of
samples). +e APSO algorithm was proposed to
optimize the penalty parameter c and kernel function
parameter g of SVM, which improved the classifi-
cation performance of SVM.

(2) KPCA, under different kernel parameters C (C� 10,
20, 50, 100), was used to process the rockburst
sample data. +e results show that the processing
effect of KPCA was best when C � 100. Eight
principal components with cumulative variance
contribution rates over 90% were extracted, and
the APSO-SVM model and KPCA-APSO-SVM
model were established combined with the APSO
algorithm. +e comparison results show that the

KPCA-APSO-SVM model has a higher prediction
accuracy, F1-score, and Kappa coefficient, and so
the prediction effect of the model built by using the
sample data processed by KPCA is better.

(3) +e novel KPCA-APSO-SVM model was validated
by five engineering cases, and the prediction results
were completely consistent with the practical rock-
burst situations. +ey were better than the BPNN
model and the traditional SVM model, indicating
that the proposed model was an efficient and
practical rockburst intensity classification prediction
model.
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