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*e nonlinear and nonstationary characteristics of vibration signal in mechanical equipment make fault identification difficult. To
tackle this problem, this paper proposes a novel fault identification method based on improved variational mode decomposition
(IVMD), multiscale permutation entropy (MPE), and adaptive GG clustering. Firstly, the original vibration signal is decomposed
into a set of mode components adaptively by IVMD, and the mode components that are highly correlated with the original signal
are selected to reconstruct the original signal. After that, the MPE values of the reconstructed signal are calculated as feature
vectors which can differentiate machinery conditions. Finally, low-dimensional sensitive features obtained by principal com-
ponent analysis (PCA) are fed into the adaptive GG clustering algorithm to perform fault identification. In this method, the
residual energy ratio is used to find the optimal parameter K of the VMD and the PBMFfunction is incorporated into the GG to
determine the number of clusters adaptively. Two bearing datasets are used to validate the performance of the proposed method.
*e results show that the proposed method can effectively identify different fault types.

1. Introduction

Rolling bearings are one of the most prevalent components
in rotor system of rotating machinery. Faults may occur in
bearings due to wear and tear. *ese faults may cause
malfunctions and failure and may even lead to catastrophic
failure of the rotating machinery. *us, this has prompted a
great deal of research on vibration-based fault identification
of rolling bearing over the last few decades [1]. Rolling
bearing fault identification mainly includes two steps: one is
fault feature extraction using signal processing techniques,
and the other is fault identification based on pattern rec-
ognition methods.

Vibration signals with abundant fault information are
often complex, nonlinear, and nonstationary. *ese char-
acteristics make it difficult for the traditional Fourier
transform-based methods to achieve good analysis results
[2]. Empirical mode decomposition (EMD) can adaptively
extract the intrinsic mode components of the signal

according to its local structural characteristics on the time
scale [3]. It is not limited by the uncertainty principle and is
particularly suitable to analysis nonlinear and nonstationary
signals. With in-depth research, however, it is found that
EMD has some obvious shortcomings, such as sensitivity to
noise and sampling, mode mixing, endpoint effect, lack of
mathematical theory, and being time consuming [4, 5],
Which significantly limit its further applications. To over-
come these deficiencies, variational mode decomposition
(VMD) method, which is essentially different from EMD
recursive mode decomposition, was proposed by Drag-
omiretskiy and Zosso [5].*eVMDuses nonrecursive mode
decomposition to suppress the mode mixing caused by the
accumulation of envelope estimation error. It solves the
problem that the components with similar frequency cannot
be decomposed effectively and dramatically avoids the
endpoint effect. Some successful applications of VMD have
been reported recently. Xing et al. [6] proposed a fault di-
agnosis method based on VMD, Tsallis entropy, and FCM
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clustering for rolling bearing. Firstly, they applied VMD to
decompose the vibration signals to obtain a series of intrinsic
mode functions (IMFs). *en, they calculated the Tsallis
entropy of each IMF and used it as fault features. Finally, the
features were put into FCM classifier to recognize different
fault types. In order to extract more abundant features to
distinguish bearing faults, Zhu et al. [7] utilized VMD to
decompose the vibration signals firstly. *en, they applied
the continuous wavelet transform to draw the time-fre-
quency images of the signals. Finally, those images were used
as the input features of the Mobile-Net network to perform
fault identification. Liu and Yan [8] decomposed the vi-
bration signal of rolling bearing into a set of mode com-
ponents using VMD and took the AR model parameters,
model variance, and singular value of modal matrix of each
mode component as the feature vectors. Finally, the Eu-
clidean distance discriminant function was established to
identify the fault types of the rolling bearing. Cui et al. [9]
combined generalized morphological filtering and VMD to
extract the features of bearing early fault signals collected
from bearing and used envelope spectrum analysis to rec-
ognize the bearing fault types. Unfortunately, the number of
mode components K needs to be set in advance when using
VMD algorithm for signal processing. If the preset value ofK
is less than the number of useful components in the original
signal, the decomposition will be insufficient and some
intrinsic mode components cannot be accurately separated.
On the contrary, if the preset value of K is greater than the
number of useful components in the original signal, it will
cause overdecomposition and produce some false compo-
nents. It is obvious that the selection of K directly affects the
result of signal processing and is the most important part of
VMD algorithm.

Complexity is a nonlinear characteristic reflecting the
nature of the system, and the complexity of signal is different
under various operating conditions. Permutation entropy
(PE) [10] is a nonlinear statistical measure for the complexity
and regularity of signals, which has the properties of simple
calculation and strong antinoise ability. *ese properties
make it an ideal tool for analyzing vibration signals in fault
diagnosis of rotating machinery. Yan et al. [11] applied PE to
the feature extraction of vibration signals, the results of
which show that the PE can effectively detect and amplify the
dynamic changes of vibration signal and characterize the
working conditions of rotating machinery.

However, similar to the traditional single scale nonlinear
index, PE can only measure the complexity of signals (time
series) on a single scale. To compensate for this deficiency,
based on PE, multiscale permutation entropy (MPE) which
has better robustness than PE was developed by Aziz and
Arif [12] and was successfully applied to estimate the
complexity and randomness of time series at different scales.
For instance, Li et al. [13] used MPE to quantitatively an-
alyzes the vibration signals of rotating machinery at different
scales to construct the original feature set. *en, they
constructed a multichannel fusion convolutional neural
network to extract features from PE of multiple scales for
fault identification of rolling bearings. In railway trans-
portation industry, Ye et al. [14] proposed a data-driven

method which combines multiscale permutation entropy
and linear local tangent space alignment to diagnose the
faults of vehicle suspension systems.

Clustering analysis is one of the most important research
fields for pattern recognition. Fuzzy C-means Clustering
(FCM) and Gustafson Kessel (GK) clustering are two
fashionable approaches which have been used for fault
identification [15, 16]. Nevertheless, these two approaches
are based on the assumption that the analyzed data has a
spherical shape, which is rarely achieved in practice. Hence,
Gath Geva (GG) clustering analysis method was developed
by Gath and Geva [17]. GG clustering analysis is an im-
provement method of FCM clustering and GK clustering
algorithm, which introduces the fuzzy maximum likelihood
estimation distance norm to measure the distance between
data, so it can reflect data classes with different shapes and
directions. Recently, the applications of GG clustering in the
field of fault identification and health management have
achieved good results. For instance, Wang et al. [18] pro-
posed a method for rolling bearing degradation condition
clustering based on multidimensional degradation feature
and GG clustering. In their method, the GG clustering is
introduced to divide different conditions during the deg-
radation process. *e results show that the GG clustering is
able to cluster degradation condition of equipment such as
bearings accurately and is able to cluster data samples with
arbitrary shapes. In [19], a fault diagnosis method that
combines empirical mode decomposition, permutation
entropy, linear discriminant analysis, and GG clustering was
introduced and successfully applied to the fault identifica-
tion of rolling bearings.

It is true that the above methods have achieved good
cluster recognition results. However, it is worth noting that
the number of GG clusters must be given correctly be-
forehand when using GG clustering, which is very difficult in
practical applications.

In summary, although VMD holds the potential to
overcome the deficiencies of endpoint effect, mode mixing,
and other issues, the number of mode components K needs
to be set in advance when using it to process signal. Un-
fortunately, the actual signal is always complex and
changeable, and K is usually difficult to determine. GG
clustering can reflect data classes with different shapes and
directions, but it needs to determine the number of clusters
beforehand, which require extensive expert experience or
relevant background knowledge.

To solve the above problems, a novel fault identification
method is proposed. First, the energy criterion iteration stop
condition is introduced into VMD, and an improved var-
iable mode decomposition (IVMD) is developed in this
paper; when decomposing the vibration signal, the number
of K is automatically determined. Second, the evaluation
index PBMFfunction is integrated into GG clustering, and
an adaptive GG clustering algorithm is proposed to auto-
matically determine the number of clusters. Last, a new fault
identification method combining IVMD, multiscale per-
mutation entropy, and AGG clustering is proposed and
applied to analyze the vibration signals collected from
bearings.
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2. Theoretical Background

2.1. Improved Variational Mode Decomposition. *e VMD
algorithm redefines the intrinsic mode function (IMF) as an
AM-FM signal and decomposes the original signal into a
specified number of IMF components by constructing and
solving a constrained variational problem. Assuming that
the vibration signal is to be decomposed into K IMFs, the
corresponding variational problem is constructed as follows.

(1) For each IMF component uk(t), use Hilbert trans-
form to obtain its analytic signal.

δ(t) +
j

πt
 ∗ uk(t). (1)

(2) Estimate a center frequency ωk for each analytical
signal and transform the spectrum of each analytical
signal to the baseband using frequency shift.

δ(t) +
j

πt
 ∗ uk(t) e

− jωkt
. (2)

(3) Utilize the Gaussian smoothness index H1 of the
frequency shift signal to estimate the bandwidth of
each IMF, and the final constraint variational
problem can be expressed as

min
uk{ }, ωk{ }


k

zt δ(t) +
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 ∗ uk(t) e
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where uk  � u1, . . . , uk  are K IMFs decomposed
by VMD and ωk  � ω1, . . . ,ωk  are the frequency
centers of each component.

To obtain the optimal solution of equation (3), a penalty
factor α and a Lagrange operator λt are introduced. *en,
the extended Lagrange operator can be expressed as

L uk,ωk, λ(  � α
k

zt δ(t) +
j

πt
 ∗ uk(t) e

−jωkt
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(4)

Applying alternating direction method of multipliers to
constantly update each mode component uk and its center
frequency ωk. Finally, the saddle point of equation (4) is the
optimal solution of equation (3). All of uk can be obtained
from the frequency domain based on the following equation:

u
n+1
k (ω) �

f(ω) − i≠kui(ω) + λ(ω)/2
1 + 2α ω − ωk( 

2 , (5)

where un+1
k can be regarded as the result of the current residual

quantity f(ω) − i≠ku(ω) through Wiener filtering and ωn+1
k

represents the gravity center of kth IMF power spectrum,
which can be updated through the following formula:

ωn+1
k �


∞
0 ω uk(ω)



2dω


∞
0 uk(ω)



2dω

. (6)

According to the principle of VMD [5], the number of K
is required to be predefined when using VMD to process
signal. However, the practical signal is always complex and
changeable, and K is usually difficult to determine. Inspired
by literature [20], a new method to determine K based on
residual energy ratio is developed in this work.*e energy of
the original signal or mode component is calculated as

E � 
L

i�1
x
2
(i), (7)

where E is the energy value of the signal, x(i) represents the
signal series (original signal or mode component), and L is
the number of sampling points. When the value of K is
different, the energy of the decomposed signal is different. In
this study, the residual energy ratio perc is defined as

perc �


K
k�1 Ek − Ex




Ex

. (8)

According to research results in the literature [20], the
residual energy ratio perc value becomes progressively
smaller as K value increases when VMD decomposes the
vibration signal. *e perc value is minimum when the signal
is completely decomposed, and if the K value continues to
increase, the signal is overdecomposed to producing a fic-
titious component resulting in anperc increase. Based on
this, a VMD parameter K selection method from the energy
perspective named IVMD is proposed. *e specific de-
composition procedure of IVMD is shown in Figure 1.

2.2.Multiscale Permutation Entropy and Parameter Selection.
MPE is defined as the permutation entropy of time series
after multiscale coarsening. First, the original series is
coarse-grained to construct the multiscale time series; then,
calculate the permutation entropy at each scale. For a given
one-dimensional time series X � x(i), i � 1, 2, . . . , N{ } with
length N, the main calculation procedures of MPE can be
summarized as follows:

(1) Perform coarse-graining on the time series
X � x(i), i � 1, 2, . . . , N{ } to obtain its coarse-
grained series:

y
s
(j) �

1
s



js

i�(j−1)s+1
x(i), j � 1, 2, . . . ,

N

s
 , (9)

where s is the scale factor, s � 1, 2, . . ., and [·] rep-
resents the rounding operation. When s � 1, the
series after coarse-graining is still the original series.

(2) Perform time reconstruction to the coarse-grained
series:

Y
s
t � y

s
t, y

s
t+τ , . . . , y

s
t+(m−1)τ , (10)
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where τ is the time delay and m is the embedded
dimension.

(3) Calculate the permutation entropy of the time series
under the scale factor s:

H
s
P(m) � − 

m!

j�1
P

s
j ln P

s
j. (11)

(4) Normalize the permutation entropies of different
scales:

H
s
p �

H
s
p(m)

ln(m!)
. (12)

2.3. Adaptive GG Clustering. Given a cluster sample set
X � xi|i � 1, 2, . . . , N , each sample has D features, that is,
xi � (xi1, xi2, . . . , xid). Suppose we want to cluster the
samples in set X into c clusters (c � 2, 3, . . . , N). Let the
clustering center vector V � (v1, v2, . . . , vc), and the mem-
bership matrix U � [μki]c×N, where μki ∈ [0, 1] represents
the membership degree of the ith sample to the kth class
k � 1, 2, . . . , c; then GG clustering is realized by adjusting
(U, V) iteratively to minimize the objective function Jm,
which is given as

Jm(U, V) � 
c

k�1


N

i�1
μki( 

m
D

2
ki, (13)

k=2

Y

Y

N

N

Calculate perc(k) according to Eq.(8)

Output the results {u1, u2,..., uk}

n = 1

Initialize {ul
k}, {ωl

k}, λl

Update ωk according to ωk
n+1 = arg min L ({ui

n+1},{ωn+1

k
Σ||uk

n+1 – uk
n||22/||uk

n||22 <η

perc(k) ≥ perc(k – 1)

k = k – 1

k 
= 

k 
+ 

1

n 
= 

n 
+ 

1 Update uk according to λn+1 = λn + τ (f – Σ uk
n+1) 

k

Update uk according to uk
n+1 = arg min L ({ui<k

n+1}, {un
i≥k}, {ωi

n}, λn) 

i<k}, {ωn
i≥k}, λn) 

Figure 1: Flowchart of IVMD algorithm.
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where m is the weighted index; the larger the value is, the
more overlap there is between clusters. Generally,m� 2.*e
adjustment process of U, V can be described as follows:

(1) Calculate the cluster center:

v
(l)
k �


N
i�1 μ(l− 1)

ki 
m

xi


N
i�1 μ(l−1)

ki 
m , k � 1, 2, . . . c. (14)

(2) Calculate the fuzzy maximum likelihood estimation
distance:

Dki xi, vk(  � exp
1
2

xi − v
(l)
k 

T
A

−1
i xi − v

(l)
k  . (15)

(3) Update the classification matrix:

μ(l)
ki �

1


c
j�1 Dki xi − vk( /Dji xi − vj  

2/m− 1, i � 1, 2, . . . , N; k � 1, 2, . . . , c. (16)

If the condition ‖U(l) − U(l− 1)‖< ε is satisfied, terminate
the iteration; otherwise, let l⟵ l + 1 and repeat the above
steps until the condition is satisfied.

When using GG clustering, the number of cluster centers
c is an important parameter that needs to be given in ad-
vance. However, it is usually very difficult or even impossible
to achieve. In practical application, the number of cis usually
determined by expert experience or relevant background
knowledge. For the cluster centers c, it is suggested that

c ∈ [2,
��
N

√
] [21]; however, this requires several human-

computer interactions and it is difficult to determine the
optimal number of clusters. *is inconvenience is also
considered to be a major drawback of GG algorithm. Aiming
at this problem, this paper proposes a method of adaptively
determining clustering parameters and integrates it into the
GG clustering algorithm. Pakhira et al. [22] proposed a
clustering evaluation index function PBMF with clustering
number c as independent variable, so as to solve the problem

Start

Set the clustering parameters
c = 2,cmax = √N, m = 2

c = cmax 

Initialize the matrix of membership
function U(0),l =1 

Calculate the cluster center vk
(l)

Update membership matrix U(l)

Calculate the Fuzzy maximum
likelihood estimation distance Dki

Calculate cluster evaluation
index PBMF

Obtain the cluster evaluation index
set {PBMF (2),...,PBMF(cmax)}

Find C corresponding to the
maximum value in PBMF set

Save the optimal clustering
number and the corresponding

clustering results 

end||U(l) – U(l-1)|| < ε)

c = c + 1

l =
 l 

+ 
1

(l) 

Figure 2: Flowchart of the AGG algorithm.
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of GG clustering requiring pregiven clustering number,
which can be defined as

PBMF(c) �
E1

cJa

Kc 

2

, (17)

Kc � maxc
i,j�1 vi − vj

�����

�����, (18)

where Ja is the compressibility measure within the class and
is also the objective function of the clustering algorithm, Kc

is the measure of separation between classes, and E1 is the
value of Ja when c � 1.

Analyzing (17) and (18), it is not hard to find that the
larger the PBMF value is, the closer the clustering number is
to the real cluster number, and consequently, the more
accurate the clustering result will be. *e flowchart of the
adaptive GG clustering algorithm proposed in this paper is
shown in Figure 2.

*e clustering effect of the AGG clustering algorithm can
be tested by clustering accuracy, classification coefficient,
and average fuzzy entropy.

*e clustering accuracy Acc is defined as

Acc �
1
N



c

k�1
θk, (19)

where θk represents the number of samples correctly divided
into class K.

*e classification coefficient PC is defined as

PC �
1
N



c

k�1


N

i�1
μ2ik. (20)

*e average fuzzy entropy CE is defined as

CE � −
1
N



c

k�1


N

i�1
μik ln μik. (21)

*e closer the clustering accuracy and classification
coefficient are to 1, and the closer the average fuzzy entropy
is to 0, the better the clustering effect will be.

2.4. Principle Component Analysis. Principle component
analysis (PCA) is a widely used technique in applications
such as dimension reduction, feature selection, lossy data
compression, and data visualization. By transforming the
data into a lower dimension, PCA simplifies the complexity
of high-dimensional data while retaining trends and pat-
terns. It is an unsupervised feature transformation method,
which requires no label data, and is completely nonpara-
metric [23].

In general, the objective of the PCA transform is to
maximize the variance of the projected data.

yi � W
T

xi, i � 1, 2, . . . N, (22)

whereW is the PCA transform matrix which contains of the
principal components, xi is the original data (d × 1), yi

(k × 1) is the low-dimensional data projected onto the
k(k≪d) principal components.

3. The Proposed Method

*e proposed method based on IVMD and AGG firstly uses
IVMD to decompose the original vibration signal for
denoising. *is process makes full use of the mature theory
of VMD and automatically determines the number of the
mode components and then selects the most correlated
mode components to reconstruct the original signal.
*rough decomposition and reconstruction, the main in-
formation of the signal is preserved and the large amount of
noise contained in it is eliminated. *en it adopts MPE as
feature vectors to reveal the different conditions of equip-
ment. As mentioned above, MPE can effectively describe the
granularity characteristics of the signal, which is more
conducive to the feature quantization and extraction of the
reconstructed signal. In addition, PCA is applied for di-
mension reduction to obtain some better feature vectors
with low dimensionality, high sensitivity, and small classi-
fication error rate. Finally, the obtained feature vectors are
fed into the AGG clustering algorithm to perform fault
identification. *e flowchart explaining the complete
methodology is given in Figure 3. *e exact procedures of
the proposed algorithm can be expressed as follows:

(1) Apply IVMD to decompose the original vibration
signals of the equipment in various states, and obtain
K mode components.

(2) Calculate the cross-correlation between each mode
component and the original signal, and select those
mode components whose correlation coefficients are
greater than the preset threshold to reconstruct the
original signal.

(3) Calculate the MPE of the reconstructed signal, and
construct the original feature vectors.

(4) Use PCA to reduce the dimension of the entropy
feature vectors.

(5) Take the low-dimensional sensitive feature vectors
after dimension reduction as the input of adaptive
GG clustering. Analyze the clustering effect by
evaluation index.

4. Experiment and Analysis

4.1. Case Western Reserve University Bearing Dataset. To
verify the effectiveness of the proposed fault diagnosis
method (Figure 3), the bearing dataset provided by Bearing
Data Center of Case Western Reserve University is analyzed
with the proposed method [24]. *is dataset contains 4
bearing states: normal condition (NR), inner race fault (IF),
outer race fault (OF), and rolling element fault (BF). *e
6205-2RS JEM SKF deep groove ball bearing is utilized in
this experiment which is at the drive end. *e damage of
inner race, outer race, and rolling element was manufactured
using electrodischarge machining (EDM), with a diameter of
0.1778mm and a depth of 0.2974mm, respectively. *e
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motor speed is set to be 1797 rpm with motor load about
1 hp. Under the sampling frequency of 12 kHz, 50 groups of
vibration signals for each of the 4 states were collected with
the length N� 2048.

Due to the layout, the outer race fault signals are ran-
domly selected for analysis. On the basis of the IVMD
(Figure 1) method proposed in Section 2.1, the acquired
outer ring fault signal is adaptively decomposed, and the
relationship between perc and K is shown in Figure 4. *e
perc value is minimum when K is 5, so it is appropriate to
choose K to be 5. *e original signals are adaptively
decomposed into 5 IMF components, as shown in Figure 5.
*e correlation coefficient between each component and the
original signal is calculated, which is displayed in Figure 6.

In this paper, correlation coefficient is used to select the
intrinsic mode components. *e larger the correlation co-
efficient, the higher the linear correlation degree between
two variables. When the correlation coefficient is between
0.5 and 0.8, it is considered to be significantly correlated
[25]. In this paper, components with correlation values
greater than 0.5 are selected for reconstruction. More spe-
cifically, for the normal signals, IMF1 and IMF2 are selected;
for the rolling element fault signals, IMF4 and IMF5 are
selected; for the inner race fault signals, IMF4 and IMF5 are
selected; for the outer race fault signals, IMF3 and IMF4 are
selected.

*e calculation ofMPE is related to the selection of series
length N , embedding dimension M, scale factor s, and time
delay τ. It is noticeable that the series length N should satisfy
the condition N≥ 5M! [26] to obtain reliable statistics.
Bandt and Pompe [10] proposed the permutation entropy
method and indicated that the method works with em-
bedding dimension 4≤M≤ 7. In addition, Yan et al. [11]
have discussed the validity of permutation entropy under
different conditions of embedding dimension M. Obviously,
when the value of M is too small, there will be too few states
in the reconstruction of the original signal. It will bring
about the algorithm to lose its physical meaning and ef-
fectiveness. On the contrary, if the value of M is too large, it

will lead to be time consuming and the greater M will also
cause considerable inconvenience for the followed multi-
scale research because of the condition N≥ 5M! [26]. For
detecting the dynamic variation, embedding dimension M is
usually selected by trade-off between information loss and
computational complexity; in this paper, M is set as 5. Time
delay τ has relatively small influence on the calculation of
permutation entropy; we set τ � 1.*ere is no clear criterion
for the selection of the maximum sm of scale factors.
Generally, sm ≥ 10, and we set s � 12. When the parameters
are determined, the permutation entropy of 12 coarse-
grained vectors corresponding to the reconstructed signals
in four states are calculated. *e MPE of the reconstructed
signals are shown in Figure 7.

Figure 7 illustrates that the MPE values of rolling
bearings in different states are different. *is is because the
randomness of vibration signals is different when different
fault emerges. *is is a good indication that MPE can ef-
fectively characterize the fault characteristics of vibration
signals in different scales. When s � 1, although the entropy
values of normal state and inner race fault are obviously
separated, the entropy values of rolling element and outer
race fault are very close, which is difficult to distinguish. In
order to get better experimental results, it is necessary to do
multiscale analysis on the reconstructed signal. Because the
first several entropy values represent the main information
of vibration signal, we select the permutation entropy of the
first nine scales as the feature vectors in this paper.

Vibration signals

IVMD
decomposition

Select the modal component whose correlation
coefficient is greater than the threshold

Reconstructed
original signal

MPE

PCA

AGG
Clustering, evaluation

The
correlation

Mode u1 Mode u2 Mode uk...

Figure 3: Flowchart explaining the complete methodology.

0.2

0.3

0.4

0.5

0.6

2 3 4 5 6

pe
rc

K

Figure 4: Relationship between the residual energy ratio perc and
K.
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*e vibration signals of 4 different states are decomposed
adaptively using IVMD, and high correlation IMFs are se-
lected to reconstruct the original signals. *e MPE of the
reconstructed signal in each state are calculated.*e first nine
entropy values are selected as feature vectors to construct
4∗ 50∗ 9 fault feature set. In order to visualize the data, PCA
is used to reduce the dimensions of the feature vector from 9
to 2. Finally, input these low dimension vectors into the AGG
algorithm to identify the optimal clustering number c and
perform clustering analysis. Setting c ∈ [2, 14] (cmax �

���
200

√
),

then the recognition result of c is obtained as in Figure 8.

As shown in Figure 8, the value of clustering evaluation
indicator function PBMFfirst increases and then decreases
with the increase of cluster number c. When c � 4, the value
of PBMF gets the maximum, indicating that the optimal
clustering number of fault dataset is 4. *is result is con-
sistent with the actual situation, verifying the feasibility of
AGG algorithm to automatically determine the optimal
clustering number. Set c � 4, the fault feature sets are input
into the AGG algorithm, and the clustering result is shown
in Figure 9.

In Figure 9, v1, v2, v3, and v4 are the clustering centers of
rolling element fault, normal state, outer race fault, and
inner race fault, respectively, and their coordinate values are
listed in Table 1. As can be seen, the samples belonging to
four different states of bearings are obviously separated and
gathered near their clustering centers without aliasing; in
addition, the distance of between-classes is large and the
distance within-class is small. *e average membership
degree of each group is listed in Table 2. As can be seen, the
average membership degree of the samples in normal state
group is 1 to clustering center v2, and 0 to other three
clustering centers, which means these samples belong to v2
class completely and are far away from other classes. *e
average membership degree of the samples in inner race
group is 1 to cluster center v4, and 0 to other three cluster
centers, which means these samples belong to v4 class
completely and are far away from other classes. Similarly, for
the samples in rolling element group, the average mem-
bership degree is 0.9725 to cluster center v1, and 0.0275 to
cluster centerv3, which are significantly higher than that to
the other two cluster centers. It shows that v1 and v3 are close
to each other, and this group of samples belong to v1. For the
samples in outer race group, the average membership degree
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Figure 6: Correlation coefficients in different states.
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Figure 5: IVMD decomposition of outer race fault signals.
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is 0.9972 to cluster center v3, and 0.0028 to cluster center v1.
Obviously, this group of samples belong to v3. It is evident
that AGG algorithm has excellent identification effect for
fault features set.

In order to illustrate the superiority of the proposed
method in this paper, three other fault identification
methods including IVMD single scale permutation entropy
and AGG clustering, IVMDmultiscale permutation entropy
and FCM clustering, IVMD multiscale permutation entropy
and GK clustering are used for comparative study under the
same datasets and identification task. *e experimental
results are shown in Figure 9. *rough the comparative
analysis of Figures 9 and 10, the following can be seen:

(1) Compared with Figure 10(a), the overlap degree
between different class samples in Figure 9 is lower,
and this shows that the adaptive decomposition of
the signal by IVMD eliminates most of the noise
contained in the signal and preserves the main in-
formation of the signal.

(2) *e compactness of the within-class samples, by
comparison, is better in Figure 9 than that in
Figure 10(b). *is shows that the multiscale per-
mutation entropy can better represent the fault in-
formation of the signal, and taking it as the feature
vector is more conducive to clustering identification.

(3) Compared with Figures 10(c) and 10(d), the clus-
tering effect in Figure 9 is better. Specifically
speaking, clustering profiles of FCM and GK are
more spherical and approximately elliptical, while
AGG is arbitrary.

Clustering accuracy Acc, classification coefficient PC,
and fuzzy entropy CE are used to quantitatively evaluate the
performance of different identification methods in Figures 8
and 9. *e results are listed in Table 3.

As can be seen from Table 3, under the precondition
that the clustering methods are the same, the values of Acc
and PC are 96.5% and 0.97 when MPE is used to directly
extract fault features from vibration signals, and the values
of Acc and PC are 98% and 0.9812 when IVMD+ PE is
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Figure 7: Multiscale permutation entropy of reconstructed signals.
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Figure 9: *e contour map of AGG clustering.

Table 1: Clustering centers of 4 different state signals.

*e clustering center
Coordinate values

x y

V1 0.9307 0.8735
V2 0.0549 0.8052
V3 0.9135 0.7031
V4 0.6188 0.0638

Table 2: Membership degree of 4 different state signals.

Sample group no.
Membership

V1 V2 V3 V4

NR 0 1 0 0
BF 0.9725 0 0.0275 0
IF 0 0 0 1
OF 0.0028 0 0.9972 0

Shock and Vibration 9



used for fault features extraction; however, the corre-
sponding values of the proposed method are 100% and
0.9905. Our method has obvious advantages. Under the
premise of the same feature extraction method, the values

of PC and CE are 0.9102 and 0.1774 separately when FCM
clustering is used, and the values of PC and CE are 0.9188
and 0.1675, respectively, when GK clustering is applied;
nevertheless, the values of PC and CE using the proposed
method are 0.9905 and infinitesimal. It also has certain
identification advantages. *erefore, the proposed
method based on IVMD, MPE, and AGG clustering is
effective.

4.2. Laboratory Measured Datasets. To further verify the
performance of the proposed method, experiments are
carried out on the measured dataset of Houde instrument
laboratory.
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Figure 10: Clustering results of different combination modes. (a) Multiscale permutation entropy and AGG clustering. (b) IVMD
permutation entropy and AGG clustering. (c) IVMD multiscale permutation entropy and FCM clustering. (d) IVMD multiscale per-
mutation entropy and GK clustering.

Table 3: Fault diagnosis results.

Methodology
*e evaluation index

Acc (%) PC CE
MPE+AGG 96.5 0.9709 NaN
IVMD+PE+AGG 98 0.9812 NaN
IVMD+MPE+FCM 98.5 0.9102 0.1774
IVMD+MPE+GK 100 0.9188 0.1675
Proposed method 100 0.9905 NaN
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*e bearing test bench used in the experiment includes
three-phase inverter motor, rolling bearing mounting frame,
rolling bearing, and loading device, as shown in Figure 11.
*e diagnosed object is NSK6308 deep groove ball bearing
under 5 conditions, which are normal (NR), outer race
peeling (OF), inner race peeling (IF), rolling element peeling
(BF), and cage failure (FF). *e test bearing speed is
3200 rpm, the type of the acceleration sensor is HD-YD232,
and the style of the data acquisition card is HD9200. Under
the sampling frequency of 8 kHz, 50 samples for each state
were collected, with the sample length N� 2048 (Figure 11).

*e rolling element fault vibration signals are randomly
selected and adaptively decomposed by the proposed IVMD
(Figure 1). *e relationship between perc and K is shown in
Figure 12. *e perc is minimum when K is 6, so it is ap-
propriate to choose K to be 6. When K is set to 6, the rolling
element fault vibration signal is decomposed as in Figure 13.
*e correlation coefficients between each component and
the original signal are calculated (Figure 14).

Similarly, when the correlation coefficient is between 0.5
and 0.8, it is considered to be significantly correlated [25].
Following this principle, those mode components with
correlation coefficients greater than 0.5 are selected to re-
construct the original signal. More specifically, for the
normal condition (NR), IMF1 and IMF2 are selected; for the
rolling element fault condition (BF), IMF4 and IMF5 are
selected; for the cage fault condition (FF), IMF1 is selected;
for the inner race fault condition (IF), IMF5 and IMF6 are
selected; for the outer race fault condition (OF), IMF5 is
selected.

*e same parameters are set as those in Section 4.1. *e
MPE values of reconstructed signal in 5 states are calculated,
and the results are shown in Figure 15. Similarly, the first
nine entropy values are selected as feature vectors to con-
struct 5∗ 50∗ 9 fault feature set.

Dimensions of entropy vectors are reduced from 9 to 2
by PCA, and these low dimension vectors are input into the
AGG algorithm to identify the optimal clustering number c
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Figure 11: Rolling bearing test bench.
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Figure 13: IVMD decomposition of rolling element fault signal.
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and perform clustering analysis. Set
c ∈ [2, 15](cmax �

���
250

√
); the recognition result of c is shown

in Figure 16. It can be seen that when the evaluation index
function PBMF reaches the maximum value, the clustering
number c is 5, which is consistent with the actual situation.
*is again proves the feasibility of the AGG algorithm to
determine the optimal clustering number c adaptively.
When c � 5, the result of cluster analysis is shown in
Figure 17.

As can be seen from Figure 17, the samples of the same
fault type are distributed around the same cluster center, and
different types of faults are clearly separated. In addition, the
between-classes distance is large and the within-class dis-
tance is small. Among them, one rolling element fault
sample and two inner race fault samples are incorrectly
clustered as outer race fault and rolling element fault sep-
arately. *erefore, the fault clustering identification rate is
98.8%. Furthermore, PC is 0.9945, and CE is infinitesimal.
*e experiment results on laboratory measured dataset once
again demonstrated the effectiveness of the proposed
method.

5. Conclusion

A new method based on improved variational mode de-
composition, multiscale permutation entropy, and adaptive
GG clustering algorithm is proposed for rolling bearing fault
diagnosis. By introducing the energy criterion iteration stop
condition, the improved variational mode decomposition
effectively solves the problem that the number of mode
components needs to be set in advance. By integrating the
PBMF function, the AGG clustering algorithm can adap-
tively determine the optimal number of clusters. Firstly,
IVMD is applied to adaptively decompose the vibration
signal into several mode components, and the mode com-
ponents with high correlation are selected to reconstruct the
original signal. *en, the multiscale permutation entropy
which can fully describe the irregularity and complexity of
the signal is extracted from the reconstructed signals as the
feature vectors. Finally, the extracted feature vectors are fed
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AGG clustering algorithm for fault identification. *e ex-
perimental results show that the proposed method can
successfully distinguish the different operating states of the
equipment, and there is no overlap between classes. Con-
sequently, it is an effective method for fault information
mining and identification.
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