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To solve the problemofmicro-electro-mechanical system (MEMS) gyroscope noise, this paper presents a variationalmode decomposition
(VMD)method based on crow search algorithm. First, the signal was decomposed by variationalmode decomposition for optimization of
crow search algorithm (CSA-VMD) method. (e parameters required by the VMD method (penalty parameter α and decomposition
numberK) are given by the crow search algorithm, and then the signal is decomposed into the superposition ofmultiple subsignals, called
intrinsicmode functions (IMFs).(e sample entropy (SE) corresponding to each IMF is then obtained. By calculating the sample entropy,
the noise signal can be divided into pure noise part, mixing part, and temperature drift part. Second, Savitzky–Golay smoothing denoising
(SG) is used to filter the mixed noise signal to eliminate the influence of noise. (ird, for the filtering of the drift part, the least square
support vectormachine optimized by the crow search algorithm (CSA-LSSVM)was used to filter, so as to reduce the effect of temperature
drift. Finally, the processed signal is reconstructed to achieve the goal of denoising.(rough the results, it can be found that the optimized
VMD and LSSVMusing CSA algorithm can achievemore effective denoising. After using themethod proposed in this paper, the angular
random walk value is 1.1175 ∗ 10−4°/h/√Hz, and the bias stability is 0.0017°/h. Compared with the original signal, the two signals are
optimized by 98.1% and 98.2%, respectively. It can be seen from the experimental results that the proposed CSA-VMD method, SG
method, and CSA-LSSVM method can effectively eliminate noise effects.

1. Introduction

In recent years, the research of micro-electro-mechanical
system (MEMS) gyroscope is endless, and it has been widely
used in aviation, spaceflight, navigation, and civil electronic
equipment. (e reason for this is that micro-electro-me-
chanical system (MEMS) gyroscope has high efficiency, low
price, low energy consumption, and other cost-effective
characteristics [1]. However, some inevitable defects of the
MEMS gyroscope (e.g., noise and temperature drift) limit its
application in many aspects [2]. (erefore, it is crucial to
eliminate the influence of errors. (ere are two kinds of
temperature error processing methods: hardware compen-
sation and software compensation [3].

By controlling the circuit and improving the structure of
the gyroscope, the temperature performance of the

gyroscope is improved and the hardware compensation is
realized [4]. For instance, in [5], an innovative temperature
compensation method is presented, which is based on
variable temperature resistance-driven mode vibration
characteristic compensation. In [6], it reduces the damping
coefficient effect and designs an effective resonant frequency
of the circuit.

(e appearance of software compensation makes up the
disadvantage of high cost and complicated steps in the
hardware compensation of MEMS gyroscope. By setting up
the specific mathematical model, it achieves the goal of
simple operation and high performance-price ratio. Similar
to signal filtering, temperature compensation is also the
most commonly used software compensation method for
various gyroscopes and MEMS gyroscopes when dealing
with temperature error. In [7], improved empirical mode
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decomposition (EMD) and integrated extreme learning
machine (ELM) model are used for temperature
compensation.

In order to get the compensated signal and eliminate the
drift and noise, we deal with the software temperature error
of MEMS gyroscope. (rough serial processing and parallel
processing and according to the low frequency character-
istics of the drift part and the high frequency characteristics
of the noise part, they are processed, respectively [8]. Em-
pirical mode decomposition (EMD) [9] and wavelet de-
composition [10] are commonly used in multiscale analysis.
However, mode mixing is often mixed with empirical mode
decomposition (EMD), so ensemble empirical mode de-
composition (EEMD) is proposed. In order to improve the
shortcomings of EEMD, such as false mode, extra post-
processing, and large computation burden, and to avoid the
problem of predecomposition and overdecomposition, this
paper proposes a method to stratify the decomposed sub-
signals by using sample entropy.

Variational mode decomposition (VMD) can achieve
noise signal processing to a certain extent, and it is necessary
to determine the values of two parameters α and K when
using this method. Different values have different influences
on the final denoising results. (erefore, when these two
parameters are artificially set, incomplete decomposition or
excessive decomposition will usually be caused. Similarly,
when the least square support vector machine (LSSVM)
realizes temperature compensation, it also involves the
choice of two parameters. (e advantage of crow search
algorithm (CSA) is that it can determine the optimal value of
parameters, so as to achieve the most efficient signal
processing.

(e variational mode decomposition (VMD) method
[11] optimized by CSA in this paper is used to decompose
the noise signal, and the Savitzky–Golay smoothing
denoising (SG) method is used to denoise the decomposed
signal. (e framework is as follows. We give a brief

introduction to MEMS gyroscopes in Section 2. In Section 3,
VMD and CSA-VMD are introduced, and the CSA algo-
rithm is described in detail, and then the SG method is
analyzed. In Section 4, the optimized VMD method is
compared with the traditional VMD method to prove that
the former is due to the latter. Section 5 draws the
conclusion.

2. Dual-Mass MEMS Gyroscope

2.1. *e Introduction of MEMS Gyroscope Structure. (e
gyroscope shown in Figure 1 has a tuning fork structure. As
can be seen from Figure 1, the operating mode of the ro-
tating fork gyroscope can be divided into the drive mode and
sense mode. Drive frame, drive combs, and drive springs
constitute the drive mode [12, 13], sense frame, sense combs,
and sense springs constitute the sense mode, and the mass is
included in them. Under the control of the monitoring
circuit, the two masses of the drive mode vibrate opposite
each other along the x axis, driven by a certain amount of
static electricity. When the angular velocity along the Z-axis
is input, the vibration mass produces a Coriolis effect, and it
then moves onto the Y-axis and becomes a motion of the
sensory frame [14].

(e gyroscope connects the spring (U-shaped) to the
driving mass, and the X-axis of the driving spring is con-
nected to the two sensory masses, respectively. (e driving
mode follows the shifting fork principle. Figure 2 shows the
first four stages of simulation using Ansys software, and
there are large frequency differences between the modes.
Here set the actual driving mode as the fourth with a quality
factor greater than 2000. (e other three modes have dif-
ferent driving modes with different resonant frequencies,
and driver reversing mode is what we expect. (erefore, the
left and right Coriolis masses are two degrees of freedom of
the driving frame (X-axis) and the feeling frame (Y-axis),
respectively.
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Figure 1: Schematic of the dual-mass gyroscope structure.

(a) (b)

(c) (d)

Figure 2: First four modes: (a) drive in phase mode (first mode) with frequency ωx1� 2623× 2 rad/s; (b) sensing in phase mode (second
mode) with frequency ωy1� 3342× 2 rad/s; (c) sensing in anti-phase mode (third mode) with frequency ωy2� 3468× 2 rad/s; (d) drive in
anti-phase mode (fourth mode) with frequency ωx2� 3484× 2 πrad/s.
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MEMS gyroscope is driven by alternating Coriolis forces
caused by orthogonal vibration and rotation. Based on the
principle of conservation of angular momentum, it is a
constantly rotating object, and the axis direction does not
change with the rotation of the bracket. MEMS gyroscopes
use Coriolis forces to provide the tangential force exerted by
a rotating object in radial motion. (e equations of motion
of a gyroscope are equations (1)–(3).

nx is equivalent mass of drive mode, ny is the quality of
sense mode, and nc is equivalent mass of Coriolis mass. x, y1,
and y2 are the displacements of the driving mode, the
sensing in-phase mode and the anti-phase mode respec-
tively. Qx2, Qy1, and Qy2 are the quality factors of driving
mode, sensing in-phase and anti-phase modes.

2.2. *e Introduction of the Gyroscope Monitoring System.
(e monitoring system of the gyroscope is shown in Fig-
ure 3. When the driving sensor comb perceives the dis-
placement of the driving frame (set to x (t)), the signal is
transmitted to the split amplifier to require the full-wave
signal phasor, and the phase delay of the signal vector is 90°,
which also satisfies the phasor and the AC drive signal. (e
low-pass filter and the rectifier are then applied to the
extracted Vdac and the reference voltage Vref. After the
comparator outputs, the integrator controller generates a

control signal. Vdacsin (wdt) low-pass filter demodulates the
moving signal. (e yellow part of the image shows the
sensing open-loop output signal [15, 16].

By detecting the motion signals of the left and right
sensing frames, the differential detection amplifier amplifies
the output again and generates the motion signals of the
sensing mode. Vdacsin (wdt) demodulation can obtain de-
tection mode movement signal and eliminate noise [17]. To
generate a sensing mode movement signal, the output signal
can be processed with a second differential amplification.
Acquisition of detected mode motion signals is combined
with the use of low-pass filter noise cancellation.

3. Algorithm

3.1.VMDMethod. VMD is amethod of signal decomposition,
similar to a Vinax filter bank [11]. (e technology has the
ability to determine the number of mode decomposition.(en,
the search and the solving process can adaptively match best
center frequency for eachmode and limited bandwidth and can
achieve effective separation of intrinsic mode components
(IMF) and signal in the frequency domain and then get the
effective decomposition of given signal components. (e sum
of the decomposed subcomponents is the original signal, and
the constraint variational expression is as follows:
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where ϑk represents the k-th IMF and ρk represents the
central frequency.

(e Lagrange multiplier operator λ(t) and α solve the
problem of constrained variation by transforming the

constrained variation into unconstrained variation. (ere-
fore, the Lagrangian is
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(e multiplier alternating direction method (ADMM)
can be used to solve equation (2) and is updated according to
the following equations:
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(e update process is repeated until equation (9) is
satisfied.
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Given σ � 10−6, all IMFs can be recovered according to
the above cycle. (e specific VMD algorithm can be found
in [18].
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3.2. CSA-VMD Method. In the actual operation, the VMD
method must set the parameters (α and K) artificially. In
[19–22], it is explained that these two parameters have a
great influence on the decomposition amount, resulting in
overdecomposition or underdecomposition; thus, loss of
effective information and incomplete denoising are caused.
(e CSA algorithm can reasonably determine the param-
eters and optimize the parameters to the optimal position.
Figure 4 shows the flowchart of CSA-VMD.

CSA is called a crow search algorithm, which is observed
from the behavior of crows.(e crows put the food they have
hunted in their nests and take it back when they eat it. Crows
also observe other crows hiding food in their nests and
attempt to steal the food from the current nest. When the
first crow commits a theft, it will be on high alert and take
certain protective measures to prevent itself from becoming
the victim of stolen food. Research has shown that crows are
highly logical, and they will use a variety of reasonable ways
to protect their food, such as moving nests. (ey use their
behavioral experience to predict what the next thief will do
and to move their nest to a safer place to avoid food theft.

Based on the habits of crows, the CSA algorithm is used
in this paper to optimize the parameter selection of the
traditional VMD method. (e principles are as follows:

(1) Crows live in groups.
(2) Crows can remember the location of the nest where

they hide their food.
(3) Crows have the ability to learn from other crows to

steal food.
(4) Crows have a sense of protection and can reasonably

choose the location of their new nest after being
stolen.

Next, according to the above principles, in order to
determine the internal parameters of the VMD method, we

will conduct the simulation of this algorithm in a three-
dimensional environment.

Step 1. initialize the problem. Let the number of crows
N� 30, the probability of protection consciousness be
AP� 0.1, the flight length be f1� 2, all crows be regarded as a
crow group, and the maximum iteration number be 30.

Step 2. Set the crow group and the crow memory matrix
according to equations (10) and (11). Since the crows have
no experience at the beginning, let the food be hidden in the
crows’ nests, that is, the initial position.
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Step 3. Since internal parameters α and K need to be op-
timized, we put values of α and K into each nest.

Step 4. (efitness function (ft) was set to determine whether
the crows formed memories.

Step 5. Identify the location of the crow’s new nest by
equation (12) and determine if it is feasible. If feasible,
update the nest location; otherwise, the original position
remains unchanged.
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Figure 3: Gyroscope system schematic diagram.
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where xi,NEST+1 represents the new nest, xi,NEST represents
the last nest, rand represents the consciousness probability
of the crow, and mj,NEST represents the location of the new
nest in the memory of the crow.

Step 6. Update the crow’s memory by equation (13).
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Step 7. Determine whether the iteration is completed, de-
termine the best memory and the best position, and cor-
respond to the internal parameters α and K of the VMD
method.

3.3. SE Method. Take a time series f(i)  � f(1), f(2),

f(3), . . . , f(k)}, whose length is n. Renumber k. f(i) 

generating a sequence of vectors with dimension
m fp(1), fp(2), . . . , fp(k − p + 1) , where [23–25]

fp(i) � f(i), f(i + 1), . . . , f(i + p − 1) , 1≤ i≤ k − p + 1.

(14)

(is means that there are m consecutive values of x. (e
distance between xp+1(j) and xp(j) is the absolute value of

the maximum value of the difference between the two
elements.

d xp(i), xp(j)  � maxh�0,...p−1(|x(i + k) − x(j + h)|).

(15)

Calculate the distance between xp(i) and xp(j) given,
and record the number of distances that are less than or
equal to r, which we call φi.
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(e sample entropy is defined as
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internal parameters

Perform optimal VMD
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Figure 4: (e flowchart of CSA-VMD method.
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SampEn(p, r) � lim
k⟶∞

−ln
c

p
(r)

φp
(r)

  . (19)

After CSA-VMD decomposition, sample entropy is used
to classify the decomposed subsignals to achieve the purpose
of denoising.

3.4. SGFiltering. (e SG smoothing algorithmwas proposed
by Savitzky and Golay. Polynomial smoothing algorithm is
based on least squares principle, also known as convolution
smoothing. In [26], the algorithm is described in detail. Take
m points near the original data x and set x as the origin. Next,
construct 2m+ 1 x-centered sampling points to take window
data and then construct i-order polynomial:

q(n) � 
K

i�0
ain

i
. (20)

(e corresponding residual is

εk � 
M

n�−M

(q(n) − x(n))
2

� 
M

n�−M



K

i�0
ain

i
− x(n)⎛⎝ ⎞⎠

2

.

(21)

(e filtering result is

y(0) � q(0) � a0. (22)

Savitzky and Golay found that calculating a0 is equiv-
alent to performing a FIR filter on the original data. In other
words, you can do it using convolution.

y(n) � 
M

m�−M

φ(m)x(n − m) � 
n+M

m�n−m

φ(n − m)x(m).

(23)

When εK is the minimum value, it has a good fitting
degree with the original data. (e partial derivative of εK

with respect to each parameter is 0.

zεK

zaj

� 
M

n�−M

2n
j
(q(n) − x(n)) � 

M

n�−M

2n
j



K

i�0
ain

i
− x(n)⎛⎝ ⎞⎠ � 0.

(24)

After the formula is solved, the result is



K

i�0


M

n�−M

n
i+j⎛⎝ ⎞⎠ai � 

M

n�−M

n
j
x(n) j � 0, 1, . . . N. (25)

After equation (16), SG filtering is completed.

3.5. CSA-LSSVMMethod. (e introduction of CSA-LSSVM
will be divided into two parts. SVM- and LSSVM-related
issues will be explained.

Support vector machine (SVM) can directly analyze the
linear case.When the linearity is not separable, the nonlinear
mapping algorithm is used to transform it into the linear
separable state of the high-dimensional mode. In this way,
the linear algorithm is used to analyze the original nonlinear
situation in the high-dimensional space, and then it is ex-
tended to the function fitting and other machine learning
problems.

Based on structural risk minimization, SVM seeks a
balance between the complexity (learning accuracy) and
learning ability (error-free recognition) of the model con-
structed with limited sample information, so as to obtain the
best generalization ability (generalization ability). SVM
schematic diagram is shown in Figure 5. Its optimal clas-
sification function is

f(x) � sgn 
l

k�1
m
∗
k ykF xk, x(  + n

∗⎡⎣ ⎤⎦. (26)

Obviously, the SVM classification function is similar to
the neural network in form, which obtains the corre-
sponding output through the linear combination of the
process nodes. (e inner product of the support vector
machine corresponds to the nodes, which is also called the
support vector network. Due to the inequality constraint
problem, SVM has great hindrance in solving Lagrange
multiplier and alpha. (e least square support vector ma-
chine (LSSVM) transforms the original inequality constraint
problem into equality constraint, which greatly optimizes
the solution process and speeds up the operation speed.
Inequality constraints for SVM are as follows:

min J(λ, μ) �
1
2
λTλ + c 

l

k�1
μ2k,

s.t.
yk λTφ xk(  + n ≥ 1 − μk, k � 1, . . . , N,

μk ≥ 0, k � 1, . . . , N.

(27)

(e equality constraints for LSSVM are as follows:

min J(λ, η) �
1
2
λTλ +

1
2
ε 

l

k�1
η2k,

s.t.
yk � λTφ xk(  + n + ηk,

k � 1, . . . , N,

(28)
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where μ is the relaxation variable and represents the in-
troduction outlier in the support vector. (e optimization
objective contains η and μ, ε and c, and they determine the
optimal hyperplane and the minimum deviation value. Next,
the Lagrangemultiplier method is used to find themaximum
value of m in the classification function

L(λ, n, η, m) � J(λ, η) − 
l

k�1
mk λTφ xk(  − n − yk + ηk .

(29)

Take the derivative of the parameters, respectively, make
the derivative result 0, and define the kernel matrix
F(xk, xt):

zL

zλ
� 0⇒λ � 

l

k�1
mkφ xk( ,

zL

zn
� 0⇒

l

k�1
mk � 0,

zL

zηk

� 0⇒mk � εηk, k � 1, . . . , l,

zL

zmk

� 0⇒λTφ xk(  + n + ηk − yk � 0, k � 1, . . . , l

F xk, xt(  � φ xk(  · φ xt( , k, t � 1, . . . , l.

(30)

Obtain the linear equations of A and B:

0 1 · · · 1

1 F xk, xt(  + 1/ε · · · F xk, xt( 

· · · · · · . . .

1 F xk, xt(  · · · F xk, xt(  + 1/ε

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n

m1

· · ·

ml

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

0

y1

· · ·

yl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(31)

After solving the equation and getting relevant data, the
regression function of LSSVM is as follows:

f(x) � 
l

k�1
mkF xk, xt(  + n. (32)

(e advantages of CSA-LSSVM are described below.
Firstly, the least square support vector machine

(LSSVM) is an improvement of the support vector machine
(SVM), which realizes the optimization of temperature
compensation effect. It is to change the inequality constraint
of traditional support vector machine into equality con-
straint and take the error square and loss function as the
experience loss of training set, so that the quadratic pro-
gramming problem is transformed into the problem of
solving linear equations, and the speed and convergence
precision of solving the problem are improved.

Secondly, CSA optimized the two parameters of LSSVM,
GAM and SIG2, to find the optimal combination of pa-
rameters, so as to improve the classification accuracy and
achieve the optimal processing of temperature
compensation.

(e flowchart of CSA-LSSVM model recognition pro-
cess is shown in Figure 6.

3.6. CSA-VMD-SG-LSSVM Method. Based on the previous
explanation, this paper integrates the above methods and
applies them to MEMS gyroscope denoising and tempera-
ture compensation. (e flowchart is shown in Figure 7. (e
specific steps are as follows:

(1) (e experimental MEMS gyroscope output data are
decomposed by variational mode decomposition
(VMD).

(2) CSA is used to optimize the two parameters of VMD,
and the optimal solution was obtained.

(3) (e decomposed components are divided into drift
layer, mixed layer, and pure noise layer by using
sample entropy.

(4) CSA-LSSVM processing is applied to the trend layer,
and SG filtering is applied to the mixed noise layer to
remove the pure noise layer.

(5) (e processed trend layer and the mixed noise layer are
superimposed to form the final reconstructed signal.

4. Experiment and Discussion

4.1. Experiments. By testing the temperature characteristics
of MEMS gyroscopes, we can verify the accuracy and fea-
sibility of the proposed method—CSA-VMD-SE-SG. (e
gyroscopes and instruments used in the experiment are
shown in Figure 8. (e detection circuit is connected to the
electrical signal through a metal pin and the printed circuit
board is wrapped with a rubber pad to protect the printed
circuit. To shield against electromagnetic interference, the
coated printed circuit board is placed in a grounded metal
housing. (e structure chip connection interface (the first
PCB) realizes the processing of the weak signal, and the
sensing loop and the drive closed loop correspond to the two
remaining PCBs, respectively. (e experimental device has a
signal generator for generating test voltage, signal amplitude,
and phase; ±10 v DC voltage and ground power supply
(Agilent E3631A) are obtained by means of multimeter
(Agilent 34401A) and oscilloscope (Agilent DSO7104B).(e

F(x2,x)

F(x3,x) y

F(xk,x)

x1

F(x1,x)
x2

x3

...... ......

xd

Figure 5: SVM schematic diagram.
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temperature oven provides a full temperature range for our
experiment; the actual bandwidth is measured by the
measuring gyroscope [24].

First, the MEMS gyroscope is powered for one hour at
room temperature. (e ambient temperature is raised to
60°C (initial temperature) using a temperature oven, and the

temperature of the gyroscope’s inner shell remains the same
as the ambient temperature. To ensure that there is no
temperature difference between the gyroscope and the oven,
the temperature of the oven should be kept at 10°C per hour
during the data collection. (e detailed experimental data
and analysis process are presented below.

Start

End

Output test
results

Train the
model

Training sample

Test sample

LSSVM training

LSSVM test

Model
initializationSelect the data

Normalize the data

Data preprocessing

CSA algorithm for
parameters selection

Establish the least
square support vector

machine model

LSSVM model construction

Figure 6: (e flowchart of CSA-LSSVM method.

Figure 7: (e flowchart of CSA-VMD-SG-LSSVM model.

V

Oscilloscope
Agilent

DSO7104B

Multimeter
Agilent 34401A

+10

GND

-10V
VTes

VOclose

Signal generator
Agilent 33220A

Power

Temperature oven
Turntable

Signal connection line Schematic line

Figure 8: (e equipment of temperature experiments.
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4.2. Experimental Results. (e original data of the MEMS
gyroscope experiment are shown in Figure 9. (e experi-
ment is accompanied by noise interference. Figure 9 shows
the output analysis and temperature drift analysis based on
the experimental data. It can be seen from the image that
there is a certain correlation between the two, and the
voltage changes by 0.0301V between 55°C and −32°C. To
minimize the error of the experimental results, we need to
carry out denoising operation. Next, we will process the
noise signal to make it easy to compare the effect before and
after noise removal.

We decompose the experimental data using the CSA-
VMD method, as shown in Figure 10, into eleven IMFs.
(rough experiments, we found that CSA found the optimal

α and K (30 iterations). However, due to the influence of
artificially set internal parameters, VMD has under-
decomposition, as shown in Figure 11. Next, the sample
entropy of the 11 components after decomposition is cal-
culated, and the calculated results are shown in Figure 12.
According to the sample entropy theory, the larger the
sample entropy is, the more complex the sample component
is. After the sample entropy is divided, the noisy component
is divided into three parts, which are drift part, mixed noise
part, and pure noise part.

First of all, SG filtering is used to denoise the mixed noise
part. As can be seen from Figure 13, SG filtering can ef-
fectively filter out noise interference and retain effective data.
Next, the drift part is compensated. (e CSA-LSSVM
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compensation method adopts two groups of experimental
data for training and testing. As shown in Figure 14, the
predicted output and the test output have a good fit. (e
reconstructed signal after compensation is shown in Fig-
ure 15. It can be seen that the temperature drift phenomenon
is greatly eliminated after compensation, and the fitting
error is small.

4.3. Comparison. In the following, we will intuitively il-
lustrate the effectiveness of the processing method by
comparing the eigenvalues of the original signal and the
signal processed based on CSA-VMD-SG-LSSVM. Fig-
ure 15 shows the comparison of denoising effects of
different denoising methods in this experiment. It can be

clearly seen that CSA-VMD-SG has the best denoising
result. In order to illustrate the superiority and effec-
tiveness of CSA algorithm, we separately compared VMD
with CSA-VMD, LSSVM, and CSA-LSSVM.

As shown in Figure 16, due to the underdecomposition
problem of VMD algorithm, although the noise is reduced to
some extent, some noise is still not effectively removed.
CSA-VMD selects the optimal parameters during the
stratification, and after the optimal stratification, the noise
can be removed to the maximum extent within the capability
of the method, which lays a foundation for the subsequent
SG filtering.

Similarly, there are two parameters of LSSVM that need
to be determined by CSA algorithm. Figure 17 compares the
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predicted output and test output before and after the use of
CSA. (ere is a significant error in the range of 6000 to 8000
seconds, and the LSSVM-predicted output has a large de-
viation from the test output. From the local magnification of
other fitting parts, it can be seen that CSA-LSSVM has better
fitting degree than LSSVM. (e mean square error of
LSSVM is 0.0049°/s, while that of CSA-LSSVM is
4.0678 ∗ 10−5°/s, which can intuitively show the differences
between the two methods through data. No matter the mean
difference or the contrast figure of two methods, CSA-
LSSVM has a higher fitting effect than LSSVM and can better
eliminate errors caused by temperature drift.

(e variances of the two signals are calculated by Allan
algorithm. Allan algorithm has a high degree of recognition
in the aspect of gyroscope denoising analysis. Figure 18
shows the processing results of signals before and after
denoising using different algorithms.(e results in the figure
show that for the original signal, the angular random walk
value is 0.0054°/h/√Hz, and the angular random walk value
based on CSA-VMD-SE-SG-LSSVM processing is
1.1175 ∗ 10−4°/h/√Hz. (e bias stability of the original
signal is 0.0909°/h, and the denoising signal is 0.0017°/h.
Compared with the original signal, angular random walk
value of the processed signal is optimized by 98.1% and bias
stability of it is optimized by 98.2%.

In order to show the advantages of CSA algorithm di-
rectly, the Allan algorithm without using CSA algorithm is
analyzed. (e angular random walk value is 1.0364 ∗ 10−4°/
h/√Hz, and the bias stability is 0.0103°/h. Compared with
the original signal, these two indexes are optimized by 98.1%
and 88.7%, respectively. It can be clearly seen from the
optimized percentage that the optimized result of CSA al-
gorithm is significantly better than the unoptimized one.
(erefore, the method proposed in this paper can filter out
the noise in the original signal well and has a good per-
formance in the data processing of MEMS gyroscope.

5. Conclusion

A temperature error denoisingmethod forMEMS gyroscope
based on CSA-VMD-SG-LSSVM is proposed in this paper.
First of all, the above methods are effective in denoising. In
both VMD and LSSVM, the optimized results using CSA are
better than those before optimization. Each component can
be distinguished from the analysis of the SE of each com-
ponent, and the mixing layer can be filtered by SG and CSA-
LSSVM compensates the drift layer. (en, by comparing the
angular randomwalk value and the bias stability of the signal
before and after denoising, the optimization effect is intu-
itively demonstrated. It can be seen from the above ex-
perimental results that the proposed method is more
effective in MEMS gyroscope denoising.
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