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Wild animals are considered reservoirs for emerging and reemerging viruses, such as the novel severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2). Previous studies have reported that bats and ticks harbored variable important pathogenic viruses,
some of which could cause potential diseases in humans and livestock, while viruses carried by reptiles were rarely reported. Our
study frst conducted snakes’ virome analysis to establish efective surveillance of potential transboundary emerging diseases.
Consequently, Adenoviridae, Circoviridae, Retroviridae, and Parvoviridae were identifed in oral samples from Protobothrops
mucrosquamatus, Elaphe dione, and Gloydius angusticeps based on sequence similarity to existing viruses. Picornaviridae and
Adenoviridae were also identifed in fecal samples of Protobothrops mucrosquamatus. Notably, the ifavirus and foamy virus were
frst reported in Protobothrops mucrosquamatus, enriching the transboundary viral diversity in snakes. Furthermore, phylogenetic
analysis revealed that both the novel-identifed viruses showed low genetic similarity with previously reported viruses. Tis study
provided a basis for our understanding of microbiome diversity and the surveillance and prevention of emerging and unknown
viruses in snakes.

1. Introduction

Reptiles are highly diverse, includingmore than 1,200 genera
and 11,000 species [1], which were classifed into four orders:
Squamata (containing 10,417 species of lizards, snakes, and
amphisbaenians), Testudines (containing 351 turtle and
tortoise species), Crocodylia (containing 24 crocodiles, al-
ligator, caiman, and gavial), and Rhynchocephalia species
[2]. Currently, 205 snake species are found in mainland
China [3]. Snakes are natural carriers of a large variety of
viruses, including ranavirus (Chondropython viridis) [4],

erythrocytic necrosis virus (Tamnophis sauritus) [5], her-
pesvirus (Boa constrictor) [6], adenovirus (Python regius)
[7, 8], parvovirus (Pantherophis guttatus) [9], circovirus
(Aspidites melanocephalus) [10], retrovirus (Vipera russelli)
[11], reovirus (Python regius) [12], paramyxovirus (Bothrops
alternatus) [13–15], calicivirus (Crotalus unicolor) [16],
Japanese encephalitis virus (Zaocys dhumnades) [17],
western equine encephalitis virus (Tamnophis spp.) [18],
picornavirus (Zamenis lineatus) [19], eastern equine en-
cephalitis virus (Agkistrodon piscivoru) [20], and chi-
kungunya virus (Python regius) [21]. Besides, snakes could
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be a potential intermediate reservoir for SARS-CoV-2, based
on the relative synonymous codon usage bias resembling
snakes compared with other animals [22, 23]. Some of the
pathogens above could be transboundary viruses (e.g., JEV
and EEEV), which could also infect humans or other ani-
mals, seriously threatening public health and ecological
balance.

Next-generation sequencing (NGS) technology (e.g.,
pyrosequencing and sequencing-by-synthesis) [24] has been
widely applied in virology, including the metagenomic
characterization of viruses in ticks, wild rodent feces, bat
feces, and human nasopharyngeal aspirates and feces
[25–28]. NGS could detect and identify multiple pathogens
simultaneously and be applied in diagnosing mixed in-
fections and detecting unknown pathogens [29]. Besides, as
the emergence of atypical symptoms of various diseases has
been increasing in recent years, NGS could be an efcient
tool for updating the diagnostic strategy in pathogen
diagnosis [30].

Tis study collected fecal and oral samples of three
snake species (Protobothrops mucrosquamatus, Elaphe
dione, and Gloydius angusticeps) from Sichuan Province,
China, for metagenomic analysis. Te viromes of these
three species were characterized based on sequence-
independent polymerase chain reaction (PCR) amplif-
cation and NGS. Results revealed the complete or partial
genome sequences of fve novel viruses with low similarity
to known viruses. Tese genomic data extended our
knowledge of viral diversity and evolution in snakes.
Further studies are needed to understand these viruses’
pathogenicity and clinical impact. Our study provides the
foundation for further research on the virome in cold-
blooded animals and contributes to maintaining the
ecological balance in ravine and forest habitats in the
mountains. A preprint of this study has previously been
published [31].

2. Materials and Methods

2.1.EthicsApproval. Our experimental procedures complied
with the current laws of China for the care and use of ex-
perimental animals and were approved by the Animal Re-
search Ethics Committee of Yibin University. No animals
were sacrifced specifcally for this study.

2.2. Sample Collection. From July to September 2020, four
brown-spotted pit vipers (Protobothrops mucrosquamatus)
and three dione rat snakes (Elaphe dione) were captured
from ravine and forest habitats in the Laojun Mountains,
110 km from Yibin city (average altitude: 300–600m) of
Sichuan provence.Tree Gloydius angusticeps were captured
from grassland and lakeside habitats in the Ruoergai Prairie
(average altitude: 3,300–3,600m) in Sichuan (Figure 1). Te
10 snakes were individually placed in sterilized tubs over-
night to collect pharyngeal and anal swab samples. Animals
were individually placed in sterilized tubs, and their skins
were cleaned with 75% alcohol to prevent sample con-
tamination. All samples were collected opportunistically

with sterilized swabs in areas where snakes were captured.
Te swabs were placed in RNase-free tubes and immediately
transported on dry ice to Shanghai Biozeron Biotechnology
Co., Ltd. (China) the same day. Te snakes were then re-
leased back into the wild.

2.3. RNA and DNA Extraction. Total RNA was extracted
from tissue using TRIzol® (Invitrogen) following the
manufacturer’s instructions. Te complementary DNA
was synthesized using random hexamer primers, M-MLV
Reverse Transcriptase. According to the manufacturer’s
protocols, DNA was extracted from 10 fecal and oral
samples using an EZNA® Stool DNA Kit (Omega BioTek,
Norcross, GA, USA). Te DNA libraries were constructed
and sheared with a fragment length of 450 bp using
a Covaris S220 Focused-Ultrasonicator (Woburn, MA,
USA). Raw sequencing reads were processed to improve
the validity of reads for further analysis using Trimmo-
matic (https://www.usadellab.org/cms/uploads/
supplementary/Trimmomatic) [32]. Reads were then
mapped against the human genome (version: hg19) using
the BWA-MEM algorithm (parameters: -M -k 32 -t 16,
https://bio-bwa.sourceforge.net/bwa.shtml).

2.4. Library Preparation and Illumina HiSeq Sequencing.
Te transcriptome was analyzed and described as pre-
viously described [33]. Briefy, to select cDNA fragments
of 200–300 bp in length, the libraries were purifed and
amplifed with universal PCR primers and index primers
by Phusion DNA polymerase (NEB) using PCR assay. Te
library quality was assessed, and the library preparations
were sequenced on Illumina HiSeq 4000 platform by
NovoGene (Beijing). Paired-end reads were generated
with 150 bp. Raw paired-end reads were verifed using
Trimmomatic parameters (SLIDINGWINDOW: 4:15
MINLEN: 75) (v0.36 https://www.usadellab.org/cms/
uploads/supplementary/Trimmomatic). 200.0 Gb of
paired-end reads were obtained for all the samples. Clean
data from all samples were used for assembly with
MEGAHIT (https://www.l3-bioinfo.com/products/
megahit.html). Metagenome binning of contigs from
each sample was performed using metaBAT2 [34].
Completeness and contamination of bins were de-
termined using CheckM v1.0.3 [35]. MetaSPAdes was
used for 4. Metagenomic assembled genomes (MAGs) re-
assembly with clean reads using the BWA-MEM method
to improve the assembly quality of MAGs [36]. All genes
in all bins were transformed and used for phylogenetic
tree reconstruction using PhyloPhlAn [37].

2.5. Detection of Specifc Viruses in Fecal and Oral Samples
from Snakes. Specifc primers were designed based on
ifavirus, adenovirus, circovirus, foam virus, and parvovirus
sequences. Te primers are listed in Table 1. Before se-
quencing, positive amplifcation products were cloned into
the pMD18-T vector (TaKaRa). Tree independent clones
were sequenced and verifed.
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2.6. Complete Genome Sequencing of Ifavirus. Extraction of
RNA and generation of cDNA were performed as previous
described [38]. In total, 12 pairs of primers were developed
for PCR amplifcation, as described in Table 1.

2.7. Sequence Alignment and Phylogenetic Analysis.
Sequence data were assembled and analyzed using ClustalX
and DNASTAR. Phylogenetic trees based on whole-genome
sequences were constructed in MEGA (v6.0) with the
maximum-likelihood (ML) method. Bootstrap values were
estimated for 1,000 replicates.

2.8. Nucleotide Sequence Accession Numbers. Te complete
sequence PMP20 obtained in this study has been submitted
to the GenBank database (accession number: MZ005704).
Te accession numbers for PM-LJS-1 and PM-LJS-5, ED-

LJS-4, PM-LJS-3, ED-LJS-6, GA-LJS-8 are OP644553 to
OP644558, respectively.

3. Results

3.1. Solexa Sequencing and General Virome of Snakes.
After removing the barcode and host gene sequences,
3.42 ×108 reads were obtained by Solexa sequencing with
an average length of 823 nucleotides (nt). Table 2 shows
3,218,295 and 1.48 ×108 reads were annotated to eu-
karyotes and bacteria, respectively, while 225,014 reads
were matched to viruses, including Retroviridae, Adeno-
viridae, Caliciviridae, Circoviridae, and Parvoviridae. A
total of 2,038 assembled contigs (>100 nt) were con-
structed and compared with GenBank. Among them, 967
contigs were homologous to phages, and 1,071 were ho-
mologous to eukaryotic viruses. Te longest contig was

Yibin city

Laojun Mountain Nature Reserve

Ruoergai Prairie

Figure 1: Map of Laojun Mountain Nature Reserve.
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4,769 nt. Most confgs showed low similarities with the
protein sequences of known viruses, suggesting that these
sequences represent novel viruses.

3.2. Detection and Identifcation of Ifavirus. Ifaviruses be-
long to the family Ifaviridae (order Picornavirales) and
contain positive-stranded RNA genomes between 9 and

Table 1: Primers for identifying and sequencing the targeted sequences.

Name Sequence (5′-3′) Position

Ifavirus

1F TTCTTACCCCAAAGGTAGGA 1–20
1R CAACCAGCTTAAATTCTACA 990–1009
2F CTTTTCATTGAGGATCCCAG 900–919
2R CTTAACAATGTCAAACTCAT 1970–1989
3F TGATATTGCTAAGAAGCAGA 1800–1819
3R ATTTTTTGGTCGAATAAGTT 2870–2889
4F CAGCACCAAATAACTAAGAT 2746–2765
4R ACTTCACCCAGATCTGTCAA 3727–3746
5F GCATACGATCTATGATCTTA 3471–3490
5R ATTCCTAACGAACAAGAAAG 4268–4287
6F TTGGCAAAATACTTAAGCAG 4034–4053
6R TTAACTAAGACGTCTCGTCT 5014–5033
7F CTGAGCTCTACCAGCTGAAG 4856–4875
7R AACAAGCTCATAATTACAAC 5842–5861
8F TGTAGCAAAATCTCCTGTGG 5677–5696
8R ATATCGCTGTAGTTTTCAGC 6514–6533
9F GCCTTGTAACACTACTGATT 6387–6406
9R GCTCTAATTCTAGCTCCAGT 7405–7424
10F TAGTGCATATGATGAACTGA 7242–7261
10R AGCGAAGGTGAGAAGTAAAA 8205–8224
11F GGAGGCAAGGAATTTTAGCA 8054–8073
11R CATATGATAGCAATAGGCTA 9081–9100
12F TCTCCAAAACATGTCATTTT 8922–8941
12R TTTATATTGTTTTTGTATTT 9789–9808

Adenovirus

ADE-F1 ATGGAGCCGCAGCGTGAGTT
ADE-R1 TCATGTCGCCGCCGAGCCCG
ADE-F2 TGGACAATGAAAACCCGTTC
ADE-R2 TTCTAGTGGGTTGATTGATA

Parvovirus PA-F ACTCCAACAATGAAAACT TT
PA-R ATAGCTTTAAATTCTTTAAC

Foamy virus FO-F TATTTTTAAGGACTTTGATT
FO-R ATAAAAAGGTCTGACTAGTT

Circovirus

CIR-F1 AACTGTGTCTATGCAATTGT
CIR-R1 ACAAACTCCATAGTGCCTCC
CIR-F2 ATACTTGATGATTTTTATCG
CIR-R2 CAATCTTCACTATACCATTC

Table 2: Overview of Solexa sequencing.

Pool Datesize (nt) Reads Contigs A. length Eukaryotic Bacterial Virus-like
PDY 28611987 51491382 37769 2703 234324 19384699 1064
LJS-1 67315710 27714252 761127 497.415 650151 4718859 77203
LJS-2 63880587 39182981 629161 464.155 486001 18276106 63946
LJS-3 71080937 28793902 722020 516.55 146057 11660467 9592
LJS-4 83663608 26110389 101522 580.145 173409 15834919 9663
LJS-5 88838540 27797398 50633 560.58 137339 16159340 4693
LJS-6 76047551 39507966 102727 535.655 171782 28801253 11734
LJS-7 90501243 17737928 75617 643.07 201026 4438947 13408
LJS-8 101601196 37060828 172874 548.51 408994 11789563 13092
LJS-9 96756160 15200070 130527 577.545 222964 4297182 7650
LJS-10 86284497 31362454 136134 616.48 386248 12204637 12969
Total 854582016 341959550 2920111 8243.105 3218295 147565972 225014
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11 kb in length [39]. Ifavirus genome organization is
monopartite andmonocistronic, encoding capsid proteins at
the 5′ end and replicase proteins at the 3′ end [40]. All
classifed ifaviruses species infect arthropod hosts, mostly
insects, including honeybees [41], planthoppers [42], soy-
bean thrips [43], mites [44], and mosquitoes [45, 46].

Here, we identifed an ifavirus from the feces of
Protobothrops mucrosquamatus, denoted as YB-PMP20.
Te YB-PMP20 genome was 9,808 nt in length, with an A,
G, T, and C nucleotide composition of 2,827, 2,329, 2,680,
and 1,972, respectively. Te G +C content in the YB-
PMP20 genome was 43.85%, higher than that reported for
other ifaviruses, including Vespa velutina-associated ifa-
like virus (VVAILV) (35.71%), Aedes Ifa-like virus
(AEIV) (36.42%), Culex picorna-like virus (CUPV) 1
(36.75%), Fitzroy Crossing ifavirus (FCIV) 1 (37.83%),
Darwin bee virus (DABV) 2 (36.39%), and Sanxia water
strider virus (SWSV) 8 (37.06%), but lower than that of
Lygus lineolaris virus (Lylv) 1 (46.15%) (Table 3). Te
genome contained a 5′-untranslated region (UTR), fol-
lowed by a single open reading frame spanning 8,988 nt
from position 304 to 9,291, and a 3′-UTR. A consensus
invertebrate initiation sequence (ANNAUGG; N � any
nucleotide) was located at nucleotide position 301–307 nt,
and a translation initiation codon (AUG) was located at
nucleotide position 304–306 nt. Te 2,995-amino acid (aa)
polyprotein had a calculated molecular mass of 335.3 kDa,
an isoelectric point of 6.709, and a charge of −8.611 at
pH 7.0. Alignment of the polyprotein sequences of YB-
PMP20 and ifavirus showed the highest sequence identity
with Hubei picorna-like virus (HUPV) 36 (99.2% in nt
and 99.6% in aa), LyIV-1 (46.6% in nt and 20.9% in aa),
VVAILV (58.6% in nt and 48.6% in aa), and AEIV (43.7%
in nt and 24.6% in aa) (Table 3).

Te peptide domains of the YB-PMP20 capsid protein,
helicase, peptidase, and RNA-directed RNA polymerase
(RdRp) were identifed through similarity searches using the
Simple Modular Architecture Research Tool (SMART:
https://smart.embl-heidelberg.de), Conserved Domain Da-
tabase (CDD: https://www.ncbi.nlm.nih.gov/Structure/cdd/
cdd/shtml), and SWISS-MODEL Bioinformatics server
[47, 48]. Te YB-PMP20 polyprotein amino acid regions
130–382, 429–680, and 747–992 were identifed as capsid
proteins VP2, 3, and 1, respectively, which shared low
protein sequence identity (30%) with the sacbrood virus.Te
conserved VP4-VP3 cleavage site (NX/DXP) has been con-
frmed in Ifavirus [49]. However, the deduced VP4 was not
found in the consensus sequences (Figure 2).

RNA helicase domains were identifed in the polyprotein
from 1,437–1,583 aa and showed 25.93% amino acid identity
with 2C helicase from enterovirus 71 (EV71) and 2C ATPase
from picornavirus (Figure 3). Tree conserved helicase
motifs (A, B, and C) are present in picornaviruses and
ifaviruses [50]. Te highly conserved amino acids within
motif A (GxxGxxGKS) and motif B (QxxxxxDD) were
identifed in the YB-PMP20 sequence between aa
1,449–1,456 and 1,495–1,503. In YB-PMP20, the amino acids
within motif C were KKxxxxPxxxxxATN, in contrast to the
consensus motif KGxxxxSxxxxxSTN [51]. Protease was

identifed at aa 2,174–2,379 and showed 22.29% amino acid
identity with the 3C protease from coxsackievirus [52]. Te
putative residues H2217, E2290, and C2340 may form the
catalytic triad in the protease of PMP20. RdRp domains were
identifed at aa 2,416–2,974 and showed 20.86% amino acid
identity with the RdRp of Sapporo virus. Eight conserved
RdRp amino acid motifs are found in RNA viruses [50]. Te
putative RdRp conserved domains of PMP20 are shown in
Figure 3(c). A highly conserved domain (2526TSxGxP2631)
was found in PMP20 prior to motif I of the RdRp domain
[53]. Using the ML approach, we constructed a phylogenetic
tree based on the full sequences of ifaviruses. Te ifaviruses
clustered into a large clade consisting of two subclades. Te
phylogenetic tree indicated that YB-PMP20 was clustered in
the same subclade as HUPV 36, LyIV-1, and VVAILV
(Figure 2). Tese fndings may contribute to understanding
the evolution of ifaviruses in snakes.

3.3. Detection and Identifcation of Adenovirus. Previous
research indicated that members of the family Adenoviridae
could infect a variety of vertebrates, including mammals,
birds, fsh, and amphibians, and cause various diseases
[54, 55]. Adenoviruses can also cause respiratory infection
and subclinical to lethal symptoms in reptiles [56]. In this
study, two adenoviruses were identifed in oral and fecal
samples of Protobothrops mucrosquamatus by PCR. Te
hexon genes were amplifed, and two sequences were con-
frmed, i.e., PM-LJS-5 (1 254 bp) and PM-LJS-1 (2 736 bp),
respectively. Sequence and phylogenetic analyses based on
the hexon genes showed that PM-LJS-5 and PM-LJS-1 were
divergent from current adenoviruses, with 70% identity with
snake and lizard adenoviruses. PM-LJS-1 was closely clus-
tered with lizard and snake adenoviruses, forming a unique
clade. In the oral samples, PM-LJS-5 was closely related to
but difered from adenovirus, indicating they were diferent
isolates (Figure 4).

3.4. Detection and Identifcation of Circovirus.
Circoviruses have been found in human fecal samples, wild
chimpanzees, bats, and snakes [10, 57–59]. Based on Solexa
sequencing, we identifed two sequences in oral samples
from Elaphe dione (ED-LJS-6), and Gloydius angusticeps
(GA-LJS-8), which were 164 nt and 605 nt in length, re-
spectively, and contained in Rep. Phylogenetic analysis
showed that the two circovirus sequences shared 67% nt
identity with all known circoviruses, indicating they were
diferent isolates (Figure 5). Te two sequences formed
a unique cluster and shared 60% and 67% identity with the
only known snake circovirus, indicating that they were novel
isolates.

3.5. Detection and Identifcation of the Foamy Virus.
Foamy viruses belong to the Retroviridae family and can
infect cattle, cats, horses, gorillas, monkeys, and humans
[60]. Tis study identifed and designated a foamy virus
sequence in Protobothrops mucrosquamatus as PM-LJS-
3. A partial genomic sequence (859 nt) that encoded the N
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terminus of the pol gene was also detected in this study.
Te partial pol gene of PM-LJS-3 showed 70% nucleotide
acid identity with the pol genes of other foamy viruses. We
constructed a phylogenetic tree based on the complete
sequences of PM-LJS-3 and other foamy viruses (Fig-
ure 6). Te results indicated that PM-LJS-3 had low ge-
nomic similarity with other foamy viruses that infect
other hosts.

3.6. Detection and Identifcation of Parvovirus. Parvovirus
has been detected in reptiles, named Dependovirus, which
was found in the intestinal epithelium [9, 56]. In our study,
we identifed one sequence (ED-LJS-6) from the oral samples
of Elaphe dione using PCR, which showed a nucleotide acid
identity of 76% to NS1 of parvovirus (Figure 7). Te

phylogenetic tree based on complete parvovirus sequences
indicated that ED-LJS-6 (106 nt) was clustered with mink
parvovirus.

4. Discussion

Snakes are widely distributed in the world and are common
predators of monkeys [61], shell snails [62], kangaroos [63],
fsh [64], leeches [64], earthworms [64], frogs [64], tadpoles
[64], fsh eggs [65], lizards [66, 67], feld voles [66], and
shrews [66]. Along with more than 15 diferent viruses,
various zoonotic diseases have also been confrmed in snakes
[22, 68]. Previous studies also showed that snakes might act
as reservoirs for transboundary viruses [69, 70]. Tree
snakes were captured from the southwest of Sichuan
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RdRp. (b) Maximum-likelihood phylogenetic tree based on genomic sequences of ifavirus.
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Province for metagenomic analysis. All snake habitats were
located within or close to the nature reserve to facilitate
identifying and tracking viral communities in wildlife. In
this study, we frst detailed the viromes of three kinds of
snakes in China from oral and fecal samples and identifed

various viruses in Adenoviridae, Circoviridae, Retroviridae,
Parvoviridae, and Picornaviridae, providing a basis for our
general understanding of microbiome diversity.

According to the NGS data taxonomic assignment re-
sults, we directly conducted the alignments with the valid

(a)
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Figure 3: Alignment of conserved amino acid motifs of helicase (a), protease (b), and RdRp (c).
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reads. Te assembled contigs were then used in subsequent
genome sequencing to facilitate reads-based PCR. Various
viruses in bats, ticks, and humans have been identifed using
metagenomic analyses [25, 28, 58, 71–74]. In the present
study, we frst identifed and characterized an ifavirus strain
(YB-PMP20) from the brown-spotted pit viper, which
showed characteristics typical of the Ifaviridae family, in-
cluding capsid protein, helicase, protease, and RdRp do-
mains. Sequence analysis indicated that YB-PMP20 was
similar to HUPV 36, LyIV-1, and VVAIV in Diptera spp.,
Lygus lineolaris, andVespa velutina nigrithorax, respectively,
raising the question of how this insect virus exists in snakes.
We speculated that (1) snakes may occasionally prey on
insects, resulting in transmission of the virus from insects to
snakes, and (2) amphibians, including frogs, may feed on
insects, resulting in viral transmission from insects to am-
phibians to snakes. Tus, these results indicate that snakes
could be a reservoir of insect and amphibian pathogens.

Previous studies showed that adenoviruses were found in
the harbor in bats with wide geographic distribution [72].
Adenoviruses can cause lethargy, neurological disorder,
esophagitis, and gastroenteritis in snakes [19]. Here, we
identifed two adenoviruses, PM-LJS-1 and PM-LJS-5, in the
fecal and oral samples of Protobothrops mucrosquamatus,
respectively. PM-LJS-1 was closely related to adenoviruses
from lizards and snakes, while PM-LJS-5 was clustered with
the adenoviruses. Tese results suggest that multiple ade-
noviruses are prevalent in snakes. Te adenoviruses of bats
and snakes identifed in China have diferent ancestors.

Tis study is the frst to identify a foamy virus (PM-LJS-
3) in snakes, suggesting that members of the Retroviridae
family can infect reptiles and mammalian hosts. Previous
studies have shown that foamy viruses can exhibit cross-
species transmission, with potential risk to humans [75, 76].
Te foamy virus was also identifed in Chinese bats.
However, no consistent sequence alignment results in an-
alyzing the evolution and origin of the foamy virus in China.
Tus, further research is required to monitor widely dis-
tributed snake species closely.

Te previous study isolated parvovirus and circovirus
strains in corn snakes (Elaphe guttata) and black-headed
pythons [9, 10]. Here, we identifed parvovirus and circo-
virus sequences in Elaphe dione (ED-LJS-4 and ED-LJS-6,
respectively) and a circovirus sequence in Gloydius angus-
ticeps (GA-LJS-8). Phylogenetic analysis showed that ED-
LJS-4 was closely related to mink parvovirus, and the two
circovirus sequences formed a unique cluster among other
circoviruses. Interestingly, Gloydius angusticeps live in high-
altitude localities with limited human exposure. Tese re-
sults suggest that greater attention should be paid to snakes
and snake-borne viruses to monitor potential disease out-
breaks in other wildlife.

Tis study had three main limitations. First, we did not
determine the sex and age of the snakes, which might afect
the hunting behavior. Second, the concentration of nucleic
acid in feces and oral cavities was low, and the sequences
were not completely amplifed and assembled. Tird, the
identifed viruses were not successfully isolated. Tus, more
factors, including sex, age, behavior, season, and location,

should be considered, and virus isolation and whole-genome
sequencing should also be carried out in the experiment.

In conclusion, we explored the viromes of three snake
species in China. Two viruses (adenovirus and ifavirus)
were identifed in fecal samples from Protobothrops
mucrosquamatus. In oral samples from Protobothrops
mucrosquamatus, Elaphe dione, and Gloydius angusticeps,
four viruses (adenovirus, circovirus, foamy virus, and par-
vovirus) were detected. Notably, this study identifed the
ifavirus and foamy virus in snakes (Protobothrops
mucrosquamatus) for the frst time, and most identifed
viruses were distinct from any known virus, including bat-
borne viruses. Tese results suggest that snakes may serve as
reservoirs for multiple viral diseases. Tus, more attention
should be paid to the relationship between snakes and snake-
associated viruses, and further studies are required to
characterize viruses and pathogenesis in snakes.
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