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Infectious bronchitis virus (IBV) is distributed worldwide and causes significant losses in the poultry industry. In recent decades,
lineages GI-19 and GI-7 have become the most prevalent IBV strains in China. However, the molecular evolution and phy-
lodynamics of the lineage GI-7 IBV strains remain largely unknown. In this study, we identified 19 IBV strains from clinical
samples from January 2021 to June 2022 in China, including 12 strains of GI-19, 3 strains of GI-7, and 1 strain each of GI-1, GI-9,
GI-13, and GI-28. These results indicated that lineages GI-19 and GI-7 IBVs are still the most prevalent IBVs in China. Here, we
investigated the evolution and transmission dynamics of lineage GI-7 IBVs. Our results revealed that the Taiwan province might
be the origin of lineage GI-7 IBVs and that South China plays an important role in the spread of IBV. Furthermore, we found low
codon usage bias of the S1 gene in lineage GI-7 IBVs. This allowed IBV to replicate in the host during evolution as a result of
reduced competition, mainly driven by natural selection and mutational pressure, where the role of natural selection is more
prominent. Collectively, our results reveal the genetic diversity and evolutionary dynamics of lineage GI-7 IBVs, which could
assist in the prevention and control of viral infection.

1. Introduction

Since the outbreak of coronavirus disease (COVID-19)
caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) in late 2019, the world economy and human
health have suffered significantly damage, drawing further
attention to the complex and huge coronavirus family [1, 2].
The most severely affected coronavirus in the poultry in-
dustry is the infectious bronchitis virus (IBV), which can
cause infectious bronchitis (IB) in chickens of all ages and

has caused huge economic losses worldwide [3]. The pre-
vention and control of IB are still current challenges.

IBV is a positive RNA single-stranded virus; however,
unlike SARS-CoV-2, which belongs to the -coronavirus
family, IBV belongs to the y-coronavirus family [4]. The IBV
genome encodes four structural proteins: nucleocapsid (NN)
protein, envelope (E) protein, membrane (M) glycoprotein,
and spike (S) glycoprotein, among which the S protein must
be cleaved into the S1 and S2 subunits for viral replication
[5]. Unlike the conserved S2 subunit, the S1 subunit contains
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IBV viral neutralizing epitopes and three different hyper-
variable regions (HVRs; AA 38-67, 91-141, and 274-387)
that play a critical role in IBV virulence and tissue tropism
[6, 7]. Therefore, analysis of the nucleotide sequence
encoded by the S1 gene has been conventionally used to
determine the genetic type of IBV. Among the numerous
classifications based on the S1 gene, the most commonly
used currently divides IBV into at least 35 lineages, including
7 genotypes (GI-GVII), with many additional interlineage
recombinants [8, 9].

IBV has been highly prevalent in China for a long time,
with a wide geographical infection range; this has been
harmful to the development of the poultry industry. Since its
first isolation in 1996, lineage GI-19 (QX-type) has become
the most prevalent IBV strain in China in the recent decade
[10, 11]. Moreover, lineages GI-7 (TW-type) and GI-13 (4/
91-type) have also been reported as major IBV strains in
China, with the lineages GI-1 (Mass-type), GI-9 (Ark-type),
and GI-28 (LDT3-type) reported sporadically [12, 13]. The
isolation rate of lineage GVI-1 IBV strains has also increased
in recent years [14-16], as part of critical continuous epi-
demiological surveillance of the complex prevalence of IBV
in China.

Bayesian phylogeographic inference is widely accepted
in the study of the evolutionary history and spatiotemporal
dynamics of RNA viruses using genomic and geospatial data
[17-20]. This method has also been used to investigate the
evolution and transmission of the GI-19 IBV lineage [21],
which was first isolated in the Taiwan province of China in
1965, and is known as the TW type and divided into TW-I
and TW-II sublineages [22]. As one of the main circulating
IBVs in China, the threats and number of lineage GI-7 IBV
isolates have increased gradually in recent years [11, 23].
However, the molecular evolution and phylodynamics of the
lineage GI-7 IBV strains remain largely unknown.

Synonymous codons are not randomly chosen within
and between genomes, a phenomenon called codon usage
bias [24, 25] that allows viruses to efficiently survive and
adapt to their hosts [26]. Codon usage patterns are influ-
enced by natural or translational selection and mutation
pressure. Many RNA viruses have a low codon usage bias
[27-30] that allows for efficient replication in the host cell by
lowering competition with host genes. Therefore, analysis of
IBV codon usage patterns could provide insights into the
evolution of IBV.

In this study, we conducted an epidemiological sur-
veillance of IBV in China from January 2021 to June 2022
and identified the S1 gene of 19 IBV strains isolated from
clinical samples. We also investigated the prevalence, ge-
notype, and recombination of these viruses. In addition, we
explored the molecular evolution, phylogeography, and
codon usage patterns of all GI-7 IBVs isolated.

2. Materials and Methods

2.1. Virus Isolation and Identification. IBV strains were
isolated from tissue samples of chickens with clinical re-
spiratory symptoms raised on poultry farms in China during
an active surveillance program between January 2021 and
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June 2022. All sick chickens were immunized against mass
strains such as H120 and H52. The samples were treated as
previously described [14]. The presence of IBV's was verified,
and the S1 gene of the isolates was sequenced via reverse
transcription polymerase chain reaction (RT-PCR), as de-
scribed previously [14].

2.2. Recombination Analysis. Putative recombination events
and parental strains were identified using the Re-
combination Detection Program version 4.0 (RDP 4.0;
Simmonics, University of Warwick, Coventry, UK). Mul-
tiple methods and default program settings were used to
analyze the data, including RDP, Bootscan, GeneConv,
Maxchi, Chimaera, SiSscan, LARD, 3Seq, and PhylPro [31].
The most likely recombinant fragments (p<10~'2) were
determined along with the possible parental virus and the
beginning and end points. The potential recombination
events and breakpoints were determined by similarity plot
(SimPlots) analysis in SimPlot version 3.5.1, using a window
of 200bp and a step size of 20 bp.

2.3. Phylogenetic Analysis. In addition to the IBVs isolated in
this study, 107 S1 gene sequences of 35 lineage IBV strains
were obtained from GenBank (NCBI, Bethesda, MD, USA).
All sequences were aligned using MAFFT v7.221.3 [32]. A
maximum likelihood (ML) tree was constructed based on
the S1 gene sequences and GTR+ F+R5 model, selected
with ModelFinder [33], using IQ-TREE software [34] with
1000 bootstrap replicates. The ML tree was visualized using
Figtree version 1.4.2.

To determine the temporal structure of the lineage GI-7
IBV strains, in addition to the IBVs isolated in this study, all
199 S1 gene sequences (n > 1620 nucleotides, nt) of lineage
GI-7 IBVs submitted before August 2022 were collected
from GenBank (Table S1) and divided into seven regions
according to geographical location. A regression of root-
to-tip genetic distance was performed for the data set using
TempEst software [35] based on the unrooted ML tree of
lineage GI-7 IBVs generated by IQ-TREE and implemented
by the TIM + F+ R5 model selected in ModelFinder. The
Bayesian Markov chain Monte Carlo (MCMC) method was
used to infer the evolutionary rate and timescale of lineage
GI-7 IBVs in BEAST version 1.10.4 [36], with a strict clock
model and constant-size coalescence. The MCMC was run in
parallel for four chains with the GTR + F + G4 substitution
model selected using ModelFinder, each with 100 million
steps and a burn-in of 10%. The parallel result files were
integrated using LogCombiner (part of BEAST version
1.10.4). Convergence of all parameters (i.e., effective sample
sizes >200) was confirmed visually using Tracer version 1.7
[37]. The maximum clade credibility (MCC) tree was
inferred using TreeAnnotator (part of BEAST version 1.10.4)
and visualized using FigTree version 1.4.2. A similar sta-
tistical method was used to estimate the most recent
common ancestor (TMRCA) for sublineages TW-I and
TW-II of the GI-7 IBV strains. To investigate the de-
mographic history of all lineage GI-7 IBV strains, a Bayesian
skyline plot (BSP) was used to infer changes in lineage GI-7
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IBV in an effective population size, using BEAST version
1.10.4 [18]. The results were plotted using Tracer version
1.7 [37].

2.4. Bayesian Phylogeographic Analysis. To understand the
spatial diffusion patterns of the GI-7 IBVs, an asymmetric
continuous-time Markov chain phylogeographic model with
Bayesian stochastic search variable selection (BSSVS) was
implemented using BEAST version 1.10.4. The ancestral
geographical regions, diffusion rates, and migration patterns
of these viruses were then analyzed. GI-7 IBV strains from
different regions of China were selected and coded as dis-
crete states using a strict clock model and Bayesian skyline
coalescence. We also applied a BSSVS procedure to identify
the best-supported individual transitions between the dis-
crete states. The Bayes factor (BF) test was adopted to
identify significant nonzero transition rates in SPREAD3
version 0.9.7 [38]. To confirm the reliability of the analysis,
the MCMC was run five times, independently, each with 100
million steps and a burn-in of 10%. Significant transitions
were determined based on the combination of both BF>3
and a mean indicator of 0.5, where 3 <BF <10 indicated
statistically significant support, 10<BF <100 indicated
strong support, 100 < BF < 1000 indicated very strong sup-
port, and BF > 1000 indicated decisive support [17].

2.5. Codon Usage Analysis. To understand the codon usage
patterns in the evolution of lineage GI-7 IBVs, we in-
vestigated the codon usage bias patterns of IBVs from two
sublineages, TW-I and TW-II. Furthermore, we determined
the frequencies of all nucleotides (A%, U%, G%, C%, AU%,
and GC%) as well as the A, C, G, and U frequencies of codons
at different sites (GC1%, GC2%, GC3%, GC12%, A3%, U3%,
G3%, C3%, and AU3%). The nucleotide frequencies of
synonymous codons at the third position and the effective
number of codons (ENC) were calculated using Codon W
v1.4.2 (https://codonw.sourceforge.net/).

To identify the most commonly used synonymous co-
dons, the relative synonymous codon usage (RSCU) values
for 59 codons were calculated using MAFFT v7.221.3. RSCU
values less than, greater than, and equal to 1.0 represented
negative codon usage bias, positive codon usage bias, and no
bias, respectively [39, 40]. Codons with RSCU <0.6 and >1.6
were  considered under- and  over-represented,
respectively [41].

To investigate the impact of mutation and selection
pressure on codon usage, parity rule 2 (PR2) plot analysis
was performed with GC deviation [G3/(G3 + C3)] as the
abscissa and AU deviation [A3/(A3 + U3)] as the ordinate.
The genome is evenly distributed in the center of the graph
when A="U, G=C, indicating that mutation pressure and
selectivity (substitution rate) have the same effect on codon
usage [42].

To investigate the effects of natural selection and mu-
tation pressure on codon usage bias, a neutrality analysis was
performed using GC3s as the horizontal coordinate and
GCl12 as the vertical coordinate. The GC3s and GCI2
contents of S1 genes of lineage GI-7 IBVs in the dataset were

plotted, and the regression line was calculated. Regression
lines with a slope close to 1 indicate that the genome is
distributed almost diagonally and that codon usage bias is
only affected by mutation pressure, while a decrease in the
slope indicates an increase in the effect of natural selection
[29, 43].

3. Results

3.1. Virus Identification and Phylogenetic Analysis. In this
study, 591 samples were collected from poultry farms in
China between January 2021 and June 2022. A total of 19 (19/
591, 3.21%) IBV strains were isolated and identified, in-
cluding 9 isolates from Guangdong province (9/19, 47.37%),
4 from Guangxi province (4/19, 21.05%), 3 from Yunnan
province (3/19, 15.79%), and 1 each from Hebei province (1/
19, 5.26%), Shandong province (1/19, 5.26%), and Jiangxi
province (1/19, 5.26%) (Table S2).

Based on the S1 gene sequences, an ML tree was con-
structed, and the 19 isolated IBV strains segregated into 6
lineages: GI-19 (12/19, 63.16%), GI-7 (3/19, 15.79%), GI-1
(1/19, 5.26%), GI-9 (1/19, 5.26%), GI-13 (1/19, 5.26%), and
GI-28 (1/19, 5.26%) (Figure 1).

3.2. Recombination Analysis. Recombination analysis of the
S1 gene sequences of all 19 IBV strains isolated in this study
was performed using RDP 4.0. The four isolates,
21B1388GXQZ (Figure 2(a)), 21B1336GDJM (Figure 2(b)),
21B1200GDJM  (Figure  2(c)), and 21B590JXGZ
(Figure 2(d)), were found to have recombination events. The
breakpoint positions and specific p values for each re-
combination event detection method are listed in Table S3.
As shown in Figures 2(a)-2(d), recombination of multiple
IBV lineages was observed, and lineage GI-7 and GI-13 IBVs
were identified as parental strains in two recombination
events. Together, these results indicated that prevalent lin-
eage IBVs, such as GI-7 strains, have a higher probability of
involvement in recombination events.

3.3. Population and Evolutionary Dynamics of Lineage GI-7
IBVs. Owing to the increasing threat of lineage GI-7 IBVs,
we collected all S1 gene sequences of this lineage submitted
to GenBank before August 2022 for analysis. The Bayesian
skyline coalescent was reconstructed to reveal the relative
genetic diversity of GI-7 IBVs and illustrate the effective
population size of these viruses. The population size of
lineage GI-7 IBV's was relatively constant prior to 2007, with
a large reduction in the population size observed after 2007,
indicating a decrease in the relative genetic diversity of these
viruses (Figure 3). The population size of lineage GI-7 IBV's
expanded after 2010, fluctuated around 2015, and then
exhibited a steady state.

3.4. Spatial Dynamics of Lineage GI-7 IBVs. A root-to-tip
regression analysis of lineage GI-7 IBVs showed that the
correlation coefficient and R* were 0.6629 and 0.4394, re-
spectively, confirming the presence of a temporal structure.
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Figure 1: Maximum likelihood (ML) tree based on the S1 gene from 35 lineages of infectious bronchitis virus (IBV). The tree was
constructed using IQ-TREE software with the GTR + F+ R5 model. Red circles indicate the stains isolated in this study.
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FIGURE 2: Recombination events in the S1 gene from the isolated infectious bronchitis virus (IBV) strains. Simplot analysis was performed to
detect recombination within the S1 gene from (a) 21B1388GXQZ, (b) 21B1336GDJM, (c) 21B1200GDJM, and (d) 21B590JXGZ. The y-axis
represents the ratio of identity within a 200-bp wide sliding window centered on the position plotted, with a 20 bp step size between plots.

The time-scaled MCC tree of lineage GI-7 IBV's based on the
S1 gene showed that all lineage GI-7 IBV's were divided into
two sublineages, TW-I and TW-II and that all three strains
isolated in this study belonged to sub-lineage TW-I (Fig-
ure 4). The majority of lineage GI-7 IBVs belonged to
sublineage TW-I, with TMRCA occurring in 1947 (95%
highest posterior density (HPD): 1935-1959). Furthermore,
the first lineage GI-7 IBV isolate, TP/64, was identified as
sublineage TW-II, with TMRCA occurring in 1886 (95%
HPD: 1865-1906). In addition, the Bayesian analysis placed
the root of the tree in the Taiwan province, with a posterior
probability of 0.98 (Figure 4).

The dispersal history of lineage GI-7 IBVs was de-
termined via global animations made in SpreaD3. Snapshots
of dispersal patterns also showed that the Taiwan province
was the origin of the lineage GI-7 IBVs in the early 1900s

(Figure 5(a)). This lineage then propagated outwards to
South and Southwest China after the 1950s and 1980s, re-
spectively (Figures 5(b) and 5(c)), and was then transmitted
to South China from Taiwan by the early 1990s (Figure 5(d)).
The lineage GI-7 IBVs from South, Southwest, and East
China spread outwards in the 2010s (Figure 5(e)) and have
become prevalent throughout China in recent vyears
(Figure 5(f)).

The circulation of lineage GI-7 IBVs was estimated by
performing BSSVS analysis, which supported the presence of
12 migration links in the diffusion of lineage GI-7 IBVs
(Figure 6(a); Table 1). The lowest mean migration rates were
observed from Northeast China to North China, whereas the
highest mean migration rates were observed from South
China to Southwest China (Table 1). Three routes from
South China were identified with decisive support, whereas
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FIGURE 4: Maximum clade credibility (MCC) tree of the S1 gene from lineage GI-7 infectious bronchitis virus (IBV) strains. The trees were
constructed using BEAST version 1.10.4 software. All lineage GI-7 IBV strains contained the 202 isolates available in GenBank as of August 2022, with
the three isolates identified in our study indicated by red circles. The root state posterior probabilities for the regions are shown in the inset panel.

one route from South China was identified with statistically
significant support. In addition, the routes from Taiwan
province to Northeast and South China were identified with
statistically significant support, and several routes from East,
Northeast, Southwest, and Central China were also

identified. Furthermore, migration from South China was
much greater than that from the other regions (Figure 6(b)).
These results revealed that South China might have played
a key role in causing the lineage GI-7 IBVs epidemic in
China.
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Central China

Southwest China

Central China

Southwest China

FIGURE 5: Spatiotemporal dynamics of lineage GI-7 infectious bronchitis virus (IBV) strains among the different localities tested. Snapshots
of dispersal patterns in (a) 1904, (b) 1950, (c) 1980, (d) 1990, (e) 2010, and (f) 2022. The data were collected from GenBank that were

submitted before June 2022 and from this study.
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FIGURE 6: Spatial diffusion of lineage GI-7 infectious bronchitis virus (IBV) strains. (a) Spatial diffusion pathways of lineage GI-7 IBV
strains. Only statistically supported migrations with a BF >3 are shown. (b) Histogram of the total number of state transitions.

3.5. Codon Usage Patterns of S1 Genes in Lineage GI-7 IBVs.  frequently than C (16.903 + 5.904%) and G (19.499 £ 2.631%)
Codon usage analysis was performed to further explore the  in S1 genes of lineage GI-7 IBVs, with the majority of codons
molecular evolution of lineage GI-7 IBVs. Nucleotide and ending in A/U (76.79%) (Table S1). Moreover, the nucle-
synonymous codon composition analyses showed that A otide content of the synonymous codons at the third po-
(27.715 £ 2.688%) and U (35.881 +2.723%) were used more sition was U3s> A3s > G3s > C3s. The RSCU value further



8 Transboundary and Emerging Diseases
TaBLE 1: Statistically supported migration rates of lineage GI-7 IBV strains estimated from the S1 gene.
From To Mean transition rate BF' Posterior probability®
Northeast East 0.874 6.64580713 0.5574929
Taiwan Northeast 0.831 6.77522664 0.5622454
Taiwan South 0.957 7.42901484 0.58477348
South Northeast 0.957 7.55680915 0.58890878
East Central 1.130 14.1735003 0.72876805
Central Southwest 0.803 16.6563502 0.75947414
Northeast North 0.757 17.0458349 0.76367115
Southwest East 1.556 20.1349931 0.79240217
Southwest Central 0.881 31.4690196 0.85643748
South Southwest 1.675 2843.61705 0.99814838
South East 1.607 10678.0704 0.99950623
South Central 1.573 85461.4888 0.99993828

Bayes factor (BF) > 100 indicates decisive support for transition between hosts. Only statistically supported transitions with a BF > 3 are shown. *Posterior

probability >0.5 indicates well-supported viral transition.
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FiGure 7: Codon usage pattern of S1 genes from lineage GI-7 infectious bronchitis virus (IBV) strains. (a) Effective number of codons
(ENC)-plot analysis of S1 genes against GC3s of different sublineages. The black line represents a standard curve for when the codon usage
bias is determined only by GC3s composition. (b) Parity rule 2 (PR2)-bias plot [A3/(A3 + U3) against G3/(G3 + C3)] of SI genes.

(c) Neutrality analysis (GC12 against GC3s) of S1 genes.

confirmed that the frequency of S1 gene codons ending in U/
A was higher than those ending in C/G. Among the 18
preferred synonymous codons of the S1 gene of lineage GI-7
IBVs, 16 ended with A/U, whereas only 2 ended with C/G.
Analysis of codon over- and under-representation revealed
that 8 out of the 18 preferred codons had RSCU values >1.6,
including GUU (V), UUA (L), AUU (I), UCU (S), GCA (A),
AGG/A (R), CCU (P), and GGU (G) (Table S4).

A standard curve representing the ENC values that
would result if GC composition was the only factor influ-
encing codon usage bias is shown in Figure 7(a) [44]. If the
ENC value for a genome lies on the standard curve, it in-
dicates that codon usage bias is affected only by mutation
pressure [45]. Hence, the ENC result indicated that in ad-
dition to mutation pressure, other factors, such as natural
selection, affected the codon usage bias of the S1 gene of
lineage GI-7 IBVs (Figure 7(a)). In the PR2 plot, all points
were separated from the center of the plot, suggesting that
codon usage bias of S1 genes of lineage GI-7 IBV's might be
determined by multiple factors, including natural selection
and mutation pressure (Figure 7(b)). The neutrality analysis
revealed a narrow distribution and low GC3s values
(0.205-0.255). Regression analyses were performed to de-
cipher the effects of mutational pressure and natural se-
lection on the two sublineages of GI-7. The slopes of the TW-
I and TW-II groups were 0.1031 and 0.1859, respectively,
indicating that the influence of mutation pressure on codon
usage bias in SI was 10.31% and 18.59% for the TW-I and
TW-II IBVs, respectively (Figure 7(c)).

4. Discussion

As alarge family, coronaviruses are widely found in nature.
A growing body of research suggests that SARS-CoV-2,
which caused a global outbreak in late 2019, might have
originated in nature [46]. Therefore, the study of corona-
viruses in different species has received more attention from

the scientific community. Chicken-derived coronavirus
(IBV) is widespread worldwide, causing huge losses and
threats to the poultry industry. In this study, an epidemi-
ological surveillance of IBV conducted in China isolated 19
IBV strains from 591 infected chicken tissue samples from
January 2021 to June 2022. Compared to the analyses by Lian
et al. [12] in South China between April 2019 and March
2020 (139/420) and Xu et al. [11] in China from January 2016
to December 2017 (213/801), the IBV isolation rate reported
in the current study decreased significantly. A credible ex-
planation for this result is that the source of the clinical
samples we collected included chickens that were not suf-
fering from respiratory diseases due to IBV infection. We
also isolated other pathogens, including avian influenza
virus (AIV), Newcastle disease virus (NDV), adenovirus,
and others, especially AIV-mixed infections. These other
pathogens may have caused the disappearance of IBV in the
process of chicken embryo passage. These potential variables
within the collected samples will be addressed in a future
study. Overall, our results showed that lineage GI-19 (QX
type) IBV still dominated the epidemic, followed by lineage
GI-7 (TW type) IBV. Other IBV lineages were sporadically
isolated, which was similar to the results from research in
China reported in recent years [11, 23]. However, more IBV
strains were isolated in South China, with nine in Guang-
dong province and four in Guangxi province, which is di-
rectly linked to the development of the poultry industry in
these two provinces. It is worth mentioning that our pre-
vious studies showed that lineage GVI-1 IBVs were widely
prevalent in South China [14], but no GVI-1 strain was
isolated from this region in this study. However, attention
should be paid to this IBV lineage. The IB vaccines currently
used in China are mainly attenuated vaccines of MASS
strains such as H120, which are different in serotype and
genotype from the popular strains such as lineages GI-19
and GI-7. Therefore, these vaccines cannot provide effective
cross-protection, making it critical to conduct continuous
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epidemiological surveillance against IBVs and to screen for
the most prevalent genotypes and serotypes to identify
vaccine candidates for IB prevention and control in China.

Recombination has been an important contributing factor
to the emergence and evolution of IBV, and even to the
emergence of new coronaviruses and novel diseases [8, 47].
Recombination always occurs when the viral polymerase
switches from one template to another during genomic
synthesis in the host [48]. Therefore, the degree of re-
combination observed in the S protein, which has
conformation-dependent epitopes that induce viral neutral-
ization and serotype-specific antibodies, may be one of the
main mechanisms responsible for generating genetic and
antigenic diversity in IBVs [5, 49]. We identified four
recombinant events of the S1 gene, among which lineages GI-
7 and GI-13 IBVs were more frequently involved in re-
combination (Figure 2), indicating that these major prevalent
lineages might play key roles in the transmission of IBV in
China. However, the results of genome-wide and S1 gene
recombination analyses are not always consistent [49, 50].
Hence, recombination analyses of the entire genome of IBV
are equally important to deduce the epidemic evolution of the
virus to a certain extent and provide a scientific basis for the
prevention and control of the disease caused by IBVs.

In the last decade, lineage GI-7 IBV has become one of
the most prevalent IBV lineages in China, and its influence
on the poultry industry has become increasingly important
[12, 23, 51]. Our results also suggest that more attention
should be paid to lineage GI-7 IBV. To the best of our
knowledge, this is the first reported phylodynamic analysis
of all S1 gene sequences (n>1620nt) of the lineage GI-7
IBVs uploaded to GenBank. Although some recent studies
have included phylogenetic analyses of IBVs, they only
focused on lineage GI-19 strains [21, 50], which do not
represent the genetic evolution of other lineages of IBVs.
Our Bayesian skyline plot analysis showed a sharp decline in
the relative genetic density of lineage GI-7 IBVs after 2007,
which could have been caused by poor regional sampling
and the ban on interprovincial trade of live poultry. As avian
influenza became a public health issue in China in the early
2000s [52, 53], China implemented a ban on interprovincial
live poultry trade, which greatly reduced the chances of live
poultry coming into contact with each other from different
areas. High numbers of IBV strains were isolated after 2010,
and the relative genetic density of this virus was restored,
indicating that lineage GI-7 IBVs have not been effectively
controlled under current prevention and control conditions.
In the MCC trees, the viruses isolated from the Taiwan
province were located at the root of the tree with the highest
root state posterior probability of 0.98, indicating that
Taiwan might have been the origin of GI-7 IBVs, which is
consistent with current understanding. However, it is worth
noting that some factors, such as sparse sampling, biased
collection, and sequencing process, could potentially affect
these conclusions [17, 54, 55]. The TW-I and TW-II sub-
lineage TMRCAs were 1947 and 1886, respectively, which
were far earlier than the first isolation of the GI-7 IBV strain
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(1964), indicating that there may have been unknown
transmission in the intervening decades. Our results showed
that after lineage GI-7 IBVs spread into South China in the
1990s, the region gradually became the transmission center
of the virus, further indicating that South China played an
important role in the transmission of IBVs. Moreover, our
previous studies and those of others have shown that South
China plays a key role in the transmission of AIV and NDV,
and this region is also an important habitat for migratory
birds [17, 56]. Therefore, the epidemic potential of various
avian viruses in South China is complex and needs to be
continuously monitored. Currently, lineage GI-7 IBVs are
endemic only in China; however, with the massive devel-
opment of China’s poultry industry and the increase in
international trade, and the risk of this virus being exported
has increased. Thus, based on the One Health Model [57],
a global multiregional epidemiological investigation of IBV's
should be conducted to better understand IBVs.

Detailed genetic analyses of viruses are important for
understanding and estimating the risk of ongoing viral
transmission, as well as for developing effective counter-
measures. However, few studies have focused on codon bias
analysis of IBVs. Our analysis showed that the S1 genes of
lineage IBVs exhibited high A/U content at the third po-
sition of synonymous codons, which was consistent with the
RSCU analysis. Additionally, the ENC value was higher than
35, indicating that S1 genes of lineage GI-7 IBV's exhibited
low codon bias. These results are consistent with a previous
study that examined samples that included all IBV sequences
uploaded to GenBank [44]. Other studies have also reported
low codon usage bias in other viruses, including multiple
types of influenza viruses and NDV, which might allow
viruses to replicate in the host environment by avoiding
competition and reducing the energy required for viral
protein biosynthesis [29, 58-60]. Here, RSCU, ENC-plot,
and PR2 analyses suggested that the bias in the S1 genes of
lineage IBVs was influenced by mutation pressure and
natural selection. Moreover, a neutrality plot analysis sug-
gested that natural selection was the most dominant of these
factors, and that sublineage TW-I IBVs were affected more
by natural selection than were TW-II IBVs. This might be
due to the low codon usage bias in lineage GI-7 IBVs caused
by natural selection when the viruses try to adapt to
host cells.

In conclusion, this study is one of the first to reveal
lineage GI-7 IBV diffusion patterns among different geo-
graphic regions. Moreover, we analyzed the codon usage
pattern of S1 genes of lineage GI-7 IBVs to provide a better
understanding of the evolutionary changes in IBVs and the
influence of natural selection on this virus. The findings of
this study improve our understanding of IBV's and strategies
for prevention and control of IBVs.
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