CRITICAL ROLE OF SMAD AND AP-1 COMPLEXES IN TGF-β-DEPENDENT APOPTOSIS

Yasuko Yamamura1,2,*, Xianxin Hua1, Svetlana Bergelson1, and Harvey F. Lodish1

1Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA and 2Department of Retroviral Regulation, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan

* yama.mbch@med.tmd.ac.jp

INTRODUCTION. Transforming growth factor-β1 (TGF-β1) induces not only cell growth inhibition but also apoptosis in hepatocytes, myeloid cells, and epithelial cells. Smad complexes (Smad2-Smad4 and Smad3-Smad4) are identified as key signaling molecules which transmit TGF-β1 signal for growth inhibition from the TGF-β receptors to the nucleus (1, 2). However, their roles are unclear in the induction of apoptosis. Our results show here that both Smad and AP-1 complexes play a critical role in TGF-β1 signaling for apoptosis.

METHOD. Apoptosis was quantified by a photometric enzyme-immunoassay measuring the presence of cytoplasmic histone-associated DNA-fragments (mono- and oligonucleosomes) as a result of apoptosis. Nuclear extracts were prepared from TGF-β1-stimulated cells and an electrophoretic mobility shift assay was performed using a radiolabeled complementary oligonucleotides containing the consensus AP-1 binding site, TPA-responsive gene promoter element (TRE) as a probe.

RESULTS. Overexpression of a dominant-negative Smad3 mutant or inhibitory Smad7, both of which impair Smad-mediated signal transduction, inhibited TGF-β1-dependent apoptosis. Only the AP-1 complex consisting of JunD and FosB proteins (JunD-FosB) was markedly activated during TGF-β1-dependent apoptosis. FosB substantially enhanced Smad3-Smad4-dependent transcription, and dominant-negative FosB blocked TGF-β1-dependent apoptosis but not growth inhibition. Overexpression of JunD-FosB significantly enhanced induction of apoptosis by TGF-β1. Moreover, JunD-FosB bound to the AP-1 binding site, TRE and recruited Smad3-Smad4 to form a multi-component complex.
DISCUSSION. Although Smad proteins are suggested to cooperate with the AP-1 complex to regulate transcription of target genes, involvement of the AP-1 complex has not been demonstrated in cell growth inhibition or apoptosis induced by TGF-β1. We show here that not only Smad but also AP-1 complexes actually participate in TGF-β1 signaling for apoptosis. Moreover, our present results suggest synergistic cooperation between Smad and AP-1 complexes in TGF-β1-dependent apoptosis, but not growth inhibition. Smad proteins may positively or negatively modify transcription of target genes through cooperation with their DNA-binding partners to exert diverse biological activities.

ACKNOWLEDGEMENT. This work was supported by National Institutes of Health grant CA63260 (to H.F.L.) and grants-in-aid for scientific research from the Ministry of Education, Science, Sports and Culture of Japan (to Y.Y.). Y.Y. was supported by a fellowship from the Research Training Program of the National Cancer Institute of the United States of America and the Japanese Foundation for Cancer Research of Japan.

REFERENCES.
Submit your manuscripts at http://www.hindawi.com