B CELL PRECURSORS IN SENESCENT MICE EXHIBIT DECREASED MITOTIC RECRUITMENT, INCREASED APOPTOSIS, AND ALTERED EXPRESSION OF BCL-2 FAMILY MEMBERS

Richard L. Riley* and Erin M. Sherwood

Department of Microbiology and Immunology, University of Miami School of Medicine, P.O. Box 016960 (R-138), Miami, FL 33101
* rriley@med.miami.edu

INTRODUCTION. Senescence in inbred strains of mice affects lymphopoiesis within the bone marrow (1,2). In the development of B lineage cells, old age is associated with a significant decline in pre-B cells. This could result from increased cell death (apoptosis) and/or decreased mitotic activity. We have determined the mitotic activity of B cell precursors from aged mice \textit{ex vivo} and the kinetics of aged pro-B cell proliferation \textit{in vitro} at the single-cell level in response to IL-7. Furthermore, we have assessed susceptibility of \textit{ex vivo} aged B cell precursors to apoptosis and expression of the survival molecules Bcl-x$_L$ and Bcl-2 and the pro-apoptotic molecule Baxa \textit{in vitro}.

METHODS. Senescent (18-27 mo. old) and young adult (2-8 mo. old) BALB/c mice were obtained from the National Institute of Aging colony. Mitotic activity among \textit{ex vivo} B cell precursors was assessed by fluorescence flow cytometric DNA cell cycle analysis. Apoptosis among \textit{ex vivo} B cell precursors was measured with time during short-term (0-4 hr.) culture by flow cytometry (3). Subpopulations of pro-B and pre-B cells (Hardy Fractions A, B, C, C’, D [4]) were determined by 4-color flow cytometry. B cell precursors were expanded \textit{in vitro} upon stimulation with rmIL-7 for one week. \textit{In vitro} proliferation was monitored using CFSE staining. Bcl-x$_L$, Bcl-2, and Baxa proteins were determined by Western blot.

RESULTS. \textit{Ex vivo}, pro-B/early pre-B cells from aged mice exhibited normal proportions in S + G2/M active cell cycle stages. \textit{Ex vivo} pro-B cells (Hardy Fractions A, B) and pre-B cells (Hardy Fractions C, C’, D) only exhibited enhanced apoptosis upon short-term culture in mice with very severe deficits in B lymphopoiesis. \textit{In vitro}, aged pro-B cells generally showed limited expansion in response to IL-7 when compared to young pro-B cells. CFSE-labeling indicated that pro-B cells from aged mice underwent similar numbers of cell divisions over time, as did young pro-B cells; however, the numbers of expanded pro-B cells was decreased. The expansion of aged pro-B cells in response to IL-7 \textit{in vitro} also correlated inversely with the ratio of the pro-apoptotic protein Baxa to the survival protein Bcl-2. Expansion of aged pro-B cells was favored by particularly low Baxa:Bcl-2 protein ratios. The survival protein Bcl-x$_L$ was reduced in pro-B cells from the majority of aged mice, but this did not correlate with pro-B cell recovery \textit{in vitro}.

DISCUSSION. Decreased pre-B cells \textit{in vivo} and limited expansion of aged pro-B cells \textit{in vitro} did not reflect poor proliferative capacity \textit{per se}. More likely, aged mice have a lower frequency of pro-B/early pre-B cells, which are capable of undergoing extensive proliferation.
A subset of aged mice with severe deficits in B lymphopoiesis exhibited increased susceptibility to apoptosis among their B cell precursors. Altered expression of both pro- and anti-apoptotic molecules was observed in aged B cell precursors. Expansion of aged pro-B cells may be dictated by both recruitment of B cell precursors into mitosis and their survival.

ACKNOWLEDGEMENTS. Supported by NIH grant AG 15474 to RLR.

REFERENCES.
Submit your manuscripts at
http://www.hindawi.com