Some Analogies of the Banach Contraction Principle in Fuzzy Modular Spaces

Kittipong Wongkum, Parin Chaipunya, and Poom Kumam

Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Prachachoen Road, Bang Mod, Thung Khru, Bangkok 10140, Thailand

Correspondence should be addressed to Poom Kumam; poom.kum@kmutt.ac.th

Received 5 April 2013; Accepted 29 April 2013

Academic Editors: J. Fernández, J. Liu, K. Sadarangani, and H. Xu

Copyright © 2013 Kittipong Wongkum et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We established some theorems under the aim of deriving variants of the Banach contraction principle, using the classes of inner contractions and outer contractions, on the structure of fuzzy modular spaces.

1. Introduction and Preliminaries

The concept of a modular space was introduced by Nakano [1]. Soon after, Musielak and Orlicz [2] redefined and generalized the notation of modular space. After that, Kumam et al. [3–7] studied fixed points and some properties in modular spaces. In 2007, Nourouzi [8] proposed probabilistic modular spaces based on the theory of modular spaces and some researches on the Menger’s probabilistic metric spaces. A pair \((X, \rho)\) is called a probabilistic modular space if \(X\) is a real vector space and \(\rho\) is a mapping from \(X\) into the set of all distribution functions (for \(x \in X\), the distribution function \(\rho(x)\) is denoted by \(\rho_x\), and \(\rho_x(t)\) is the value \(\rho_x\) at \(t \in \mathbb{R}\)) satisfying the following conditions:

\[
\begin{align*}
\text{(PM1)} & \quad \rho_x(0) = 0; \\
\text{(PM2)} & \quad \rho_x(t) = 1 \text{ for all } t > 0 \text{ if and only if } x = \theta; \\
\text{(PM3)} & \quad \rho_{x+y}(s+t) \geq \rho_x(s) \land \rho_y(t) \text{ for all } x, y \in X \text{ and } s, t \in \mathbb{R}^+; \\
\text{(PM4)} & \quad \rho_{\alpha x + \beta y}(s + t) \geq \rho_x(s) \land \rho_y(t) \text{ for all } x, y \in X \text{ and } s, t \in \mathbb{R}^+.
\end{align*}
\]

For every \(x \in X\), \(t > 0\) and \(\alpha \in \mathbb{R} \setminus \{0\}\), if

\[
\rho_{\alpha x}(t) = \rho_x\left(\frac{t}{|\alpha|}\right),
\]

where \(\beta \in (0, 1]\), then we say that \((X, \rho)\) is \(\beta\)-homogeneous.

Recently, further studies have been made on the probabilistic modular spaces. Nourouzi [8] extended the well-known Baire’s Theorem to probabilistic modular spaces by using a special condition. Nourouzi [8] investigated the continuity and boundedness of linear operators defined between probabilistic modular spaces in the probabilistic sense. After that, Shen and Chen [9] following the idea of probabilistic modular space and the definition of fuzzy metric space in the sense of George and Veeramani [10], applied fuzzy concept to the classical notions of modular and modular spaces, and in 2013, Shen and Chen [9] introduced the concept of a fuzzy modular space.

Definition 1 (Vasuki [11]). A fuzzy set \(A\) in \(X\) is a function with domain \(X\) and value in \([0, 1]\).

Definition 2 (Arul Selvaraj and Sivakumar [12]). A triangular norm is a function \(\ast : [0, 1] \times [0, 1] \to [0, 1]\) satisfying, for each \(a, b, c, d \in [0, 1]\), the following conditions:

\[
\begin{align*}
(1) & \quad a \ast 1 = a; \\
(2) & \quad a \ast b \leq c \ast d \text{ whenever } a \leq c, b \leq d; \\
(3) & \quad a \ast (b \ast c) = (a \ast b) \ast c = a \ast (b \ast c) .
\end{align*}
\]

Definition 3 (Shen and Chen [9]). Let \(V\) be a real or complex vector space with a zero \(\theta\), \(\ast\) a continuous triangular norm, and \(\mu\) a fuzzy set on the product \(V \times \mathbb{R}^+\). Suppose that the following properties hold for \(x, y \in V\) and \(s, t > 0\):
(FM1) \(\mu(x, t) > 0 \);

(FM2) \(\mu(x, t) = 1 \) for all \(t > 0 \) if and only if \(x = \theta \);

(FM3) \(\mu(x, t) = \mu(-x, t) \);

(FM4) \(\mu(z, s + t) \geq \mu(x, s) \ast \mu(y, t) \) whenever \(z \) is the convex combination between \(x \) and \(y \);

(FM5) the mapping \(t \mapsto \mu(x, t) \) is continuous at each fixed \(x \in V \).

The space \((V, \mu, *) \) is said to be \(\mu \)-complete if \(\mu \)-Cauchy sequences actually \(\mu \)-converges. We note that it makes more sense if we require a complete fuzzy modular space to be equipped with the strongest triangular norm.

A mapping \(f \) from \(V \) into itself is said to be an inner contraction if there exists a positive constant \(q < 1 \) such that

\[
\mu(f(x) - f(y), t) \geq \mu(x - y, t),
\]

for all \(x, y \in V \) and \(t > 0 \).

On the other hand, \(f \) is said to be an outer contraction if there exists a positive constant \(q < 1 \) such that

\[
\mu(f(x) - f(y), t) - 1 \geq q \mu(x - y, t) - 1,
\]

for all \(x, y \in V \) and \(t > 0 \).

In this paper, we shall be working under the aim of deriving some variants of the Banach contraction principle, by using the classes of mappings defined above, on the structure of fuzzy modular spaces.

2. Main Results

We divide this section into two parts, discussing independently about the two main categories of our contractions predefined in the previous section. Notice that it is clear from the definition that every fuzzy metric space is in turn a fuzzy modular space. Hence, our results are also supplied with corollaries in fuzzy metric spaces. We shall, however, omit such consequences since they are obvious.

2.1. Fixed-Point Theorem for an Inner Contraction

Theorem 6. Let \(V \) be a real vector space equipped with a \(\beta \)-homogeneous fuzzy modular \(\mu \) and the strongest triangular norm \(* \) such that \((V, \mu, *) \) is \(\mu \)-complete. Suppose that at each \(x \in V \), \(\mu(x, t) \to 1 \) as \(t \to \infty \). If \(f: V \to V \) is an inner contraction with constant \(q \in (0, 1) \), then \(f \) has a unique fixed point.

Proof. Given a point \(x_0 \in V \), we suppose that \(f^n x_0 \neq f^{n+1} x_0 \) for all \(n \in \mathbb{N} \). Let \(t > 0 \), observe that

\[
\mu(f^n x_0 - f^{n+1} x_0, t) \geq \mu(f^{n-1} x_0 - f^n x_0, \frac{t}{q}) \geq \mu(f^{n-2} x_0 - f^{n-1} x_0, \frac{t}{q^2}) \geq \cdots \geq \mu(x_0 - x_n, t) \geq 1 - \varepsilon \text{ whenever } m, n > N.
\]

As \(n \to \infty \), we have \(f^n x_0 - f^{n+1} x_0 \to \theta \) for every \(t > 0 \). That is, for any given \(t > 0 \) and \(\varepsilon \in (0, 1) \), there exists \(N \in \mathbb{N} \) such that

\[
\mu(f^N x_0 - f^{N+1} x_0, t) \geq \mu(f^N x_0 - f^{N+1} x_0, \frac{t}{2^N}) > 1 - \varepsilon.
\]
We now claim to show by induction that \(\mu(f^N x_0 - f^{N+p} x_0, t/2^{β+1}) > 1 - \epsilon\) for all \(p \in \mathbb{N}\). Let us assume first that
\[\mu(f^N x_0 - f^{N+j} x_0, t) > 1 - \epsilon\]
holds at some \(j \in \mathbb{N}\). Observe that
\[
\begin{align*}
\mu(f^N x_0 - f^{N+j+1} x_0, t) \\
= \mu \left(\frac{1}{2} (f^N x_0 - f^{N+j+1} x_0) + \frac{1}{2} (f^N x_0 - f^{N+j+1} x_0), \frac{t}{2^{β+1}} \right) \\
\geq \mu(f^N x_0 - f^{N+j} x_0, \frac{t}{2^{β+1}}) \ast \mu(f^N x_0 - f^{N+j+1} x_0, \frac{t}{2^{β+1}}) \\
\geq \mu(f^N x_0 - f^{N+j} x_0, \frac{t}{2^{β+1}}) \ast \mu(f^N x_0 - f^{N+j+1} x_0, \frac{t}{2^{β+1}}) \\
\geq \mu(f^N x_0 - f^{N+j} x_0, \frac{t}{2^{β+1}}) \ast \mu(f^N x_0 - f^{N+j+1} x_0, \frac{t}{2^{β+1}}) \\
\geq (1 - \epsilon) \ast (1 - \epsilon) \\
= 1 - \epsilon.
\end{align*}
\]

Thus, \((f^n x_0)\) is Cauchy, and so the \(\mu\)-completeness yields that
\[f^n x_0 \rightarrow x^*\]
for some \(x^* \in V\). It follows that
\[
\lim_{n \to \infty} \mu(f^n x_0 - f x^*, t) \geq \lim_{n \to \infty} \mu(f^n x_0 - x^*, \frac{t}{q}) \\
\geq \lim_{n \to \infty} \mu(f^n x_0 - x^*, \frac{t}{q}) = 1,
\]
\[\forall t > 0.
\]

This means \(fx^* = x^*\), since \(\mathcal{F}_q\) is Hausdorff. To show that the fixed point of \(f\) is unique, assume that \(y^* \in V\) is a fixed point of \(f\) as well. Finally, we obtain that
\[
\begin{align*}
\mu(x^* - y^*, t) &= \mu(f^n x^* - f^n y^*, t) \\
&\geq \mu(x^* - y^*, \frac{t}{q}) \rightarrow 1, \quad \forall t > 0.
\end{align*}
\]

Therefore, it must be the case that \(x^* = y^*\), and so the conclusion is fulfilled.

\[\square\]
\[\mu \left(f^{n+2}x_0 - f^{n+1}x_0, \frac{t}{2^{n+1}} \right) \]

\[\vdots \]

\[\mu \left(f^n x_0 - f^{n+1}x_0, \frac{t}{2^n} \right) \]

\[\mu \left(f^{n+1}x_0 - f^{n+2}x_0, \frac{t}{2^{n+1}} \right) \]

\[\mu \left(f^{n+p-1}x_0 - f^{n+p}x_0, \frac{t}{2^{p-1}n} \right) \]

\[> (1-\varepsilon) \ast (1-\varepsilon) \ast \cdots \ast (1-\varepsilon) = 1 - \varepsilon. \]

(15)

Thus, the sequence \((f^n x_0)\) is Cauchy, and so the \(\mu\)-completeness yields that \(f^n x_0 \rightarrow x^*\) for some \(x^* \in V\). It follows that

\[\mu \left(f^{n+1}x_0 - fx^*, t \right) \geq q \mu \left(f^n x_0 - x^*, t \right) + (1-q) \]

\[\forall t > 0. \]

(16)

Taking \(n \rightarrow \infty\), we have

\[\mu \left(f^{n+1}x_0 - fx^*, t \right) \rightarrow 1. \]

(17)

This means \(fx^* = x^*\), since \(\mathcal{F}_\mu\) is Hausdorff. To show that the fixed point of \(f\) is unique, assume that \(y^* \in V\) is a fixed point of \(f\) as well. Finally, we obtain that

\[\mu \left(x^* - y^*, t \right) = \mu \left(fx^* - fy^*, t \right) \]

\[\geq q \mu \left(x^* - y^*, t \right) + (1-q). \]

(18)

Hence, we have \(\mu(x^* - y^*, t)(1-q) \geq (1-q)\) which implies that \(\mu(x^* - y^*, t) = 1\). Therefore, it must be the case that \(x^* = y^*\), and so the conclusion is fulfilled.

\(\square\)

Open Question 1. Is Theorem 7 true under the assumption that \(V\) is \(\mu\)-complete as in Theorem 6?

Acknowledgments

The authors would like to thank the Higher Education Research Promotion and National Research University Project of Thailand’s Office of the Higher Education Commission for financial support (under NRU-CSEC Project no. 56000508).

References
