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Abstract. 
Time-series stream is one of the most common data types in data mining field. It is prevalent in fields such as stock market, ecology, and medical care. Segmentation is a key step to accelerate the processing speed of time-series stream mining. Previous algorithms for segmenting mainly focused on the issue of ameliorating precision instead of paying much attention to the efficiency. Moreover, the performance of these algorithms depends heavily on parameters, which are hard for the users to set. In this paper, we propose PRESEE (parameter-free, real-time, and scalable time-series stream segmenting algorithm), which greatly improves the efficiency of time-series stream segmenting. PRESEE is based on both MDL (minimum description length) and MML (minimum message length) methods, which could segment the data automatically. To evaluate the performance of PRESEE, we conduct several experiments on time-series streams of different types and compare it with the state-of-art algorithm. The empirical results show that PRESEE is very efficient for real-time stream datasets by improving segmenting speed nearly ten times. The novelty of this algorithm is further demonstrated by the application of PRESEE in segmenting real-time stream datasets from ChinaFLUX sensor networks data stream.
 

1. Introduction
Time series stream is everywhere in our daily life. It is widely used in fields such as ecology, medical care, and environment. These applications make time series stream type be possibly the most frequently encountered type for data mining problems [1]. Hence, in recent years, a large number of works focus on time series stream mining.
In order to process massive data efficiently, the method of time series stream segmenting is employed. The primary purpose of time series segmenting is dimensionality reduction. To achieve the goal of accelerating later mining tasks, time-series stream segmenting decomposes the time series stream into smaller number of segments. After segmenting, each segment can be described by a simple model like linear segment and monotonic segment [2]. An example of time-series segmenting can be seen in Figure 1.
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(b)
Figure 1: Time series original data (a) and its segmenting result (b).


There are several time series stream fitting models proposed, including symbolic mappings [3], adaptive multivariate spline [4], hybrid adaptive [5], wavelets [6], Fourier transforms [7], and piecewise linear representation [8, 9]. However, neither of them could handle different types of time series streams or is parameter free.
For real-time series application, the algorithm should be able to handle continuously real-time stream, which means that the stream could only be scanned once. A lot of real applications such as sensor network data [10], stock market trading data [11], or intensive-care unit (ICU) data [12] are in this form since the data are generated very fast and the processing time is limited. So, for time series stream segmentation, the issues of scalability, numerical stability, and efficiency cannot be avoided.
In this paper, we propose PRESEE to segment time series stream based on  MDL
	
		
			

				/
			

		
	
MML  method [13, 14]. MDL
	
		
			

				/
			

		
	
MML is an information expressing method in the field of information theory. By capturing the characteristics of information distribution in data, it can reduce the size of data while retaining most of the critical information. PRESEE the following characteristics  has (1)High scalability. It can process time series stream in linear time. PRESEE adopts slide window to process data with the size of gigabytes or even larger scale.(2)Parameter free. Parameter settings are not essential in PRESEE for an entry-level user. This may avoid the trouble of misleading the algorithm by setting any improper parameters. Of course, if the end users are the domain experts and have confidence to set proper parameters, they can set some optional parameters to accelerate the segmenting speed.(3)Adaptive. PRESEE can segment the time series data according to the characteristic of data. Since the segmenting strategy is based on MDL
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MML, it can segment time series automatically. Violating place requires more characteristic points while elsewhere requires less.(4)Pipeline. PRESEE can output the earlier data while processing the newly arrived data. Thus, the later time series stream mining algorithm and PRESEE can run simultaneously.
The rest of this paper is organized as follows. The related work is described in Section 2. Some necessary concepts are introduced in Section 3. A time series stream segmenting algorithm named PRESEE is presented in Section 4. The result of experiments is evaluated in Section 5. Finally, the paper is concluded and future work is discussed in Section 6.
2. Related Work
2.1. Time Series Stream Mining
Time series stream mining is possibly the most frequent mining task in recent data mining community. In particularly, in the last several years, a large number of papers are related to this area [15–17]. Time series stream mining derives from traditional time-series mining [1–4, 11, 18]. As a further requirement of deep understanding of the time series, it turns into high-dimensional data mining problem. 
2.1.1. Segmenting
Segmenting is one of the major tasks in time-series stream mining. In order to process time-series data efficiently and effectively, segmenting is a key step for other time-series mining tasks. A lot of algorithms focus on finding good global segmenting of the time-series data.

There are mainly three characteristics of these algorithms. Firstly, these methods are mainly based on dynamic programming [19, 20], top-down [21], and bottom-up [22]  strategies. Secondly, they require domain expert knowledge to set the parameters, either the parameter to measure the error [2, 22] or parameter 
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 (
	
		
			
				𝑘
				≪
				𝑛
			

		
	
) to control the number of segments [19, 21]. Thirdly, these algorithms can at most handle millions of data, and they  can hardly  to handle stream data (gigabytes at least) due to the limitation of the algorithms.

Segmenting with slide window can handle large-scale data. This method is attractive because it can be easily implemented as an online algorithm. Some existing slide-window-based algorithms work well, but their performances are parameter dependent. Since different time-series data types such as electrocardiogram (ECG), water level, and stock market own quite different characteristics, it is hard to find a general set of parameters for all these data types. 
2.1.2. MDL
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MML
The theory of minimum message length (MML) and minimum description length (MDL) first appears in the computation complexity community [23, 24] then in the categorization community [25]. Its application in data mining community is the work of climate data segmentation [26], trajectory clustering [27], and social network mining [28]. So far, to the best of our knowledge, our work segmenting time-series stream with MDL
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MML is the work with the most features.

3. Preliminary
This section reviews the concepts for time-series data mining. Section 3.1 introduces terminology about the time series. Section 3.2 presents the distance function used in this paper. Section 3.3 is the problem statement.

3.1. Terminology
We first begin with the definition of the time-series data type. 
Definition 1. Time-series:  let 
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 denote a set of the observed values for given variables in the research domain. Let 
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 is an ordered sequence of n such elements. From the stream view, the length of 
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 is infinite.
Slide window may be a general and effective way to handle massive data that cannot be processed in whole. Thus we employ slide window idea to do the segmenting task. 
Definition 2. Slide window: let B be a user-defined buffer to hold elements and w be the size of elements that 
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 is the buffer to hold a continuous subsequence of 
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 at any time. All the data in slide window can be processed by the algorithm in one time. 
3.2. Distance Function for Time Series Segments
For the ease of segmenting, some data transformation work should be done. Almost all kinds of time series data can be discretized and transformed in the form of lines. For example, the original time-series data 
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. The goal of segmenting is to generate 
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 lines that can represent most of the characteristics of original lines. There should be a distance function to measure the distance between the original time-series line 
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 and the candidate segment 
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. In order to better measure the distance between original time-series stream and its segmenting result, firstly, the distance function should be simple so that the stream can be processed very fast. Additionally, the measurement should consider the shape of stream and its segmenting result. Finally, the focus of factor in measurement can vary according to different application. After delving into the character of time-series data, we find that the best way to measure the distance between time-series by considering the conciseness and preciseness is to use Hausdorff metric. Hausdorff metric has been previously used in the area of pattern recognition and trajectory mining [27, 29]. Previous works proved that it is precise in the scenario of shape similarity measurement. In the scenario of time-series segmenting, we represent the segmenting distance by considering the perpendicular and angle space relationship based on Hausdorff metric.
Segmenting distance is a quantitative criterion to measure the quality of segmenting. Smaller distance represents better segment result for the original stream. The final form of distance between the original line and the segment it belongs to is defined in Definition 3.
Definition 3. Segmenting distance. Let  
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 be the smaller intersection angle between two lines. Then the following can be considered.(1)The perpendicular distance between two lines is defined as 
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 in Formula (2). In Formula (1), 
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 represent the coordinates of the start point and end point of a candidate segment time-series line (one possible segment solution in the process of segmenting computation), respectively.(2)The angle distance between two lines is defined as 
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 in Formula (3).(3)The segmenting distance between two lines is defined as 
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 in Formula (4): the weighted sum of perpendicular distance and angle distance.
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 should be 1, and they can both be set to 1/2 if there is no special requirement. Figure 2 and Example 4 show an example of how to compute the distance.










	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	


	
		
	
	
		
	
	
		
	


	
		
	
	
		
	
	
		
	

Figure 2: Distance between 3 original lines and one segment that they belong to.


Example 4. As shown in Figure 2, there are 3 original lines 
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3.3. Problem Statement
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Figure 3: The comparison between original time-series 
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 and the character points 
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.


The segmenting algorithm is implemented under a pipeline framework shown in Figure 4. Besides the segmenting algorithm, we had already implemented the time-series stream motif mining algorithm. This framework is designed specifically for handling time-series stream mining. It owns several advantages as follows.









	
		
			
		
			
		
	



	
		
			
		
			
		
	



	
		
			
		
			
		
	




	
		
			
		
			
		
	



	
		
			
		
			
		
	



	
		
			
		
			
		
	




	
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
	


	
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
		
		
	


	
		
		
		
		
		
		
	
	
		
	



Figure 4:  The pipeline for time-series mining. All data are processed as stream. At first the original data are flowed into PRESEE and then flowed into any other time-series stream mining algorithms.


(1)Data stream is only scanned once. When data flow out of the slide window, it would never turn back to slide window again. (2)Mining tasks can be processed simultaneously. Earlier data that have been segmented before can be processed by following mining task while the later data is under processing by segmenting task.4. PRESEE Algorithm
This section first introduces how to use segmenting strategy based on MDL
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MML in our algorithm PRESEE, and then introduces this algorithm in detail.
4.1. Information-Theory-Based Segmenting Strategy
Our algorithm aims at finding the best segments for time-series. As for the problem of segmenting, there are two properties to measure the quality: preciseness and conciseness. Preciseness measures the distance between the  lines  represented by consecutive points of the character point 
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. Smaller distance indicates better preciseness. Conciseness measures how less the character points are used to depict the certain length of data points in original stream. Less character points represents better conciseness.
It is easy to get the conclusion that, when every point in original stream is the character point, preciseness gets its maximum. However, such kind of segmenting is meaningless since it in fact just lets the stream go through the slide window and does not do any work to compress the stream. Conciseness reaches the maximum when there are only two character points for the stream, the start point and the end point.
The best preciseness and best conciseness cannot be satisfied at the same time because they are contradictory. Therefore, we need to do some work to find the optimum tradeoff   between preciseness and conciseness, which generates the best segmenting  
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.
In order to find the optimum tradeoff, we intend to solve this problem in information perspective by employing the MDL
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MML principle in information theory area. We use MDL
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MML in our algorithm because it is parameter free. MDL
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MML can automatically find a proper estimate of original information. If no proper segmenting solution exists, the data S are deemed as random data. In our scenario, we simply keep all the information.
The code of MDL
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 combinations are the optimum solution for the piece of information. In our scenario, it are the optimum for stream segmenting.
The cost of code is represented by its length. In Shannon’s theory, the length of coding an event 
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. In time-series segmenting scenario, the computation of the formula is as follows:
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In the first two formulas, w represents the size of data  
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 represents the character points. The optimum segmenting is the minimum value of sum  of  
	
		
			
				𝐿
				(
				𝐻
				)
			

		
	
 and 
	
		
			
				𝐿
				(
				𝑆
				∣
				𝐻
				)
			

		
	
. The following is a concrete computation example for Figure 3. Line 
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4.2. Algorithm Details
Finding global optima requires computing all partitions possibilities of the points, which is prohibitive for real applications. We present a greedy algorithm to find local optima. 
Algorithm 1 shows the  details  of the segmenting process. At first, only the data flowed into slide window are processed. In lines 5 and 6, the costs of MDLseg and MDLnoseq are computed, respectively. 
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. In the greedy strategy, the local optimum solution is the longest segment that satisfies the inequality (9).
		Input: points in slideWindow Seg = 
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, 
	          batchSize  
	Output: character points set C = 
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startIndex = 1, length = 1; 
	(3)         While  startIndex + length < len  do
	(4)             curIndex = startIndex + length;
	(5)             
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 into C;
	(8)              ++curSize;
	(9)                If  curSize == batchSize  then       
	                    // enough batch has been processed
	(10)                 Return  C;
	(11)               Else  startIndex = curIndex – 1; length = 1;
	(12)            Else  length = length + 1;
	(13)            If  C has only one point do
	(14)              Return NULL;
	(15)            Else   
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	Algorithm 1: Segment in slide window.


In the algorithm shown previously, the points in slide window are scanned sequentially only once. The candidate segmenting (segment with 
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 as start point, and end point resp.) grows once per time to test whether it satisfies inequality (9). 
There is a parameter batchSize for this algorithm. The default value is 1, and the user can set it as a larger integer. The algorithm will return batchSize + 1 character points per time. Thus, the algorithm can run faster.
Consider
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PRESEE algorithm calls Algorithm 1 every time when slide window is full. Algorithm 2 describes PRESEE algorithm in the form of pseudocode.
		Input: windowSize, S = 
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〉, batchSize  
	Output:  C = 
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	(1)        slideWindow = 
	
		
			
				{
				}
			

		
	
, apprSet = 
	
		
			
				{
				}
			

		
	

	(2)        Read data into slideWindow  
	(3)        While  ReadIn() do
	(4)            tmpSet = MDLSlideWindow(slideWindow,  
	                batchSize); 
	(5)            If  tmpSet.size() < 2 do
	                // no proper hypothesis is found, 
	                     data deemed as random noise  
	(6)             Add all data in slideWindow into apprSet  
	(7)             Empty slideWindow  
	(8)          Else
	(9)             Add at most first batchSize + 1 points in 
	                 tmpSet into apprSet 
	(10)              Take out used points from slideWindow  
	(11)                Output apprSet


	Algorithm 2: PRESEE.


In line 2, the slide window is filled at the first time. Then the method ReadIn() is called in while loop. ReadIn() takes the response of filling slide window and checking whether there is new data. It returns false when no new data exists. In line 4, Algorithm 1 is called to provide the local optima segmenting result based on the data in slide window. It is possible that no proper segment exists. Thus the size of tmpSet is less than 2. In this scenario, we simply put all the data in slide window into apprSet and empty the slide window. Otherwise, add at most first batchSize + 1 points in tmpSet into apprSet. We use “at most” here because it is possible that  all  the points in slide window  may be generated  less than  in  batchSize segments.
From the pseudocode, we can see that the data are input and output simultaneously (line 4 and line 13), which guarantees that the earlier data can be processed by later mining algorithm. Additionally, it is obvious that the stream is only scanned once and processed once. Thus the time complexity of both algorithms is O(n), where n is the length of time-series stream.
5. Empirical Comparison of the Segmenting Algorithms
In this section, we demonstrate the effectiveness and efficiency of the proposed algorithm through several sets of experiments on large collections of real and synthetic time-series datasets. For the effectiveness test, the precision of the proposed method is compared with nonstream segmenting algorithm. Then the speed and scalability of the algorithm are tested with a different scale of datasets ranging from 10 M to 10 G.
All the experiments are performed on a laptop computer with 2 GHz Intel Core 2 Duo CPU and 3G main memories. The C++ implementation of the algorithm and the related source code are all av