Research Article

On Satnoianu-Wu’s Inequality

Bo-Yan Xi

College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia 028043, China

Correspondence should be addressed to Bo-Yan Xi; baoyintu78@qq.com

Received 22 April 2013; Accepted 28 June 2013

Academic Editors: F. J. Garcia-Pacheco, Y. Sawano, and S. Tikhonov

1. Introduction

For \(n \in \mathbb{N} = \{1, 2, 3, \ldots\} \) and \(x_i \in \mathbb{R}_+ = (0, \infty) \) with \(i = 1, 2, \ldots, n \), let

\[
A_n(x) = \frac{1}{n} \sum_{i=1}^{n} x_i, \quad G_n(x) = \left(\prod_{i=1}^{n} x_i \right)^{1/n}, \quad H_n(x) = \frac{n}{\sum_{i=1}^{n} (1/x_i)}.
\]

These quantities are, respectively, called the arithmetic, geometric, and harmonic means of a positive sequence \(x = (x_1, x_2, \ldots, x_n) \). For more information on the theory of means, see the monograph [1] or the papers [2–5] and plenty of references therein.

For convenience, in what follows, we use the notation \(x^q = (x_1^q, x_2^q, \ldots, x_n^q) \) for

\[
0 < m \leq x_1^q, x_2^q, \ldots, x_n^q \leq M,
\]

and \(q \in \mathbb{R} = (-\infty, \infty) \).

In [6], Satnoianu posed the following conjecture.

Conjecture 1. For \(n \geq 2, \ x_i > 0, \) and \(\lambda \geq n^{-1} - 1 \), it is valid that

\[
\sum_{i=1}^{n} \left(\frac{x_i^{n-1}}{x_i^{n-1} + \lambda \prod_{k=1, k \neq i}^{n} x_k} \right)^{1/(n-1)} \geq \frac{n}{1 + \lambda}^{1/(n-1)}.
\]

This conjecture has been solved and researched in [7–10]. Among them, Wu obtained in [10] the following result.

\[
\sum_{i=1}^{k} x_i \leq \sum_{i=1}^{k} y_i, \quad \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i.
\]

2. Definitions and Lemmas

We need the following definitions and lemmas.

Definition 3 (see [II, page 8]). Let \(x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n \) and \(y = (y_1, y_2, \ldots, y_n) \in \mathbb{R}^n \). We say that \(x \) is majorized by \(y \) (in symbols \(x < y \)) if

\[
\sum_{i=1}^{k} x_i \leq \sum_{i=1}^{k} y_i, \quad \sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i.
\]
for $k = 1, 2, \ldots, n - 1$, where $x_{[1]} \geq \cdots \geq x_{[n]}$ and $y_{[1]} \geq \cdots \geq y_{[n]}$ are rearrangements of x and y in a descending order.

Definition 4 (see [12]). Let $\Omega \subseteq \mathbb{R}_+^n$.

1. The set Ω is said to be geometrically convex if $(x_1^y, y_1^x, \ldots, x_n^y, y_n^x) \in \Omega$ for every $x, y \in \Omega$ and $\lambda \in [0, 1]$.
2. A function $\varphi : \Omega \to \mathbb{R}$ is said to be Schur-geometrically convex on Ω if $\ln x = (\ln x_1, \ldots, \ln x_n) < \ln y = (\ln y_1, \ldots, \ln y_n)$ implies $\varphi(x) < \varphi(y)$ for every $x, y \in \Omega$.
3. A function $\varphi : \Omega \to \mathbb{R}_+$ is said to be Schur-geometrically concave on Ω if $\ln x = (\ln x_1, \ldots, \ln x_n) < \ln y = (\ln y_1, \ldots, \ln y_n)$ implies $\varphi(x) \geq \varphi(y)$ for every $x, y \in \Omega$.

Lemma 5 (see [12]). Let $\Omega \subseteq \mathbb{R}_+^n$ be a symmetric and geometrically convex set with inner points and $\varphi : \Omega \to \mathbb{R}_+$ a symmetric and differentiable function in Ω. Then φ is a Schur-geometrically convex (or Schur-geometrically concave, resp.) function on Ω if and only if

$$\ln(x_1 - \ln x_2) \left[x_1 \frac{\partial \varphi(x)}{\partial x_1} - x_2 \frac{\partial \varphi(x)}{\partial x_2} \right] \geq 0 \quad (or \leq 0, \text{ resp.}), \quad x \in \Omega.$$

Lemma 6 (see [1, page 4, Bernoulli’s inequality]). The inequality

$$(1 + t)^r \geq 1 + rt \quad (8)$$

holds for $r \geq 1$ and $t \geq -1$ or for $r \leq 0$ and $t > -1$. If $0 < r < 1$ and $t \geq -1$, inequality (8) is reversed.

3. Main Results

Now we start off to demonstrate our main results.

Theorem 7. Let m, M be defined as in (2) and $n \geq 2$, let $\alpha, \beta, x_i \in \mathbb{R}$, for $i = 1, 2, \ldots, n$, and let $p, q \in \mathbb{R}$ with $p \neq 0$. If $(1 - p) m \beta \geq 2p M \alpha$, then

$$\sum_{i=1}^{n} \left[\frac{x_i^q}{\alpha x_i^q + \beta A_n(x^n)} \right]^{1/p} \geq \frac{n}{(\alpha + \beta)^{1/p}}.$$

If $(1 - p) M \beta \leq 2p M \alpha$, inequality (9) is reversed.

Proof. For $M' > m' > 0$, let $f(\mathbf{u} = \sum_{i=1}^{n} (1 + u_i)^p, \quad \mathbf{u} \in [m', M']^n).$

Then

$$\frac{\partial f(\mathbf{u})}{\partial u_i} = (1 + u_i)^{r-1},$$

$$\frac{\partial}{\partial u_i} \left[\frac{\partial f(\mathbf{u})}{\partial u_i} \right] = (1 + u_i)^{r-2} (1 + ru_i),$$

for $1 \leq i \leq n$. When $r > 0$, or when $r < 0$ and $1 + r M' < 0$, we have

$$\ln(u_1 - \ln u_2) \left[\frac{\partial f(\mathbf{u})}{\partial u_1} - \frac{\partial f(\mathbf{u})}{\partial u_2} \right] \geq 0, \quad \mathbf{u} \in [m', M']^n;$$

when $r < 0$ and $1 + r M' > 0$, inequality (17) is reversed.
Using Lemma 5, we have the following conclusions:

1. If \(r > 0 \), or if \(r < 0 \) and \(1 + rm' < 0 \), the function \(f(u) \) is Schur-geometrically convex on \([m', M']\);
2. If \(r < 0 \) and \(1 + rm' > 0 \), the function \(f(u) \) is Schur-geometrically concave on \([m', M']\).

By the fact that
\[
\ln G_n(u) = (\ln u_1, \ln u_2, \ldots, \ln u_n), \quad u \in \mathbb{R}_+^n,
\]
and by Definition 4, if \(r > 0 \), or if \(r < 0 \) and \(1 + rm' < 0 \), we have
\[
\sum_{i=1}^{n} (1 + u_i)^r \geq n(1 + G_n(u))^r, \quad u \in [m', M']^n;
\]
if \(r < 0 \) and \(1 + rm' > 0 \), inequality (19) is reversed.

Letting \(u_i = \beta G_n(x_i)/\alpha x_i \) for \(i = 1, 2, \ldots, n \), one has
\[
\sum_{i=1}^{n} \left(\frac{x_i^q}{\alpha x_i^q + \beta A_n(x_i)} \right)^{1/p} \geq \frac{n}{(\alpha + \beta)^{1/p}}.
\]

Remark 12. When \(n \geq 2 \) and \(p > 1 \), from Lemma 6 and (4), it follows that
\[
\beta \geq \left(n^{\max\{p,1\}} - 1 \right) \alpha > p(n-1)\alpha.
\]

Theorem 13. Let \(n \geq 2, \alpha, \beta, x_i \in \mathbb{R}_+ \) for \(i = 1, 2, \ldots, n \), and \(p, q \in \mathbb{R} \) with \(p \neq 0 \). If \(p \geq 1 \), then
\[
\sum_{i=1}^{n} \left(\frac{x_i^q}{\alpha x_i^q + \beta H_n(x_i)} \right)^{1/p} \geq \frac{n}{(\alpha + \beta)^{1/p}};
\]
if \(p \leq -1 \), inequality (22) is reversed.

Proof. Since \((1 + r)^p \) is a convex (or concave, resp.) function on \(\mathbb{R}_+ \) for \(r \geq 1 \) or \(r < 0 \) (or for \(0 < r \leq 1 \), resp.), by Jensen's inequality, if \(r \geq 1 \) or \(r < 0 \), we have
\[
\sum_{i=1}^{n} (1 + u_i)^r \geq n(1 + A_n(u))^r, \quad u \in \mathbb{R}_+^n;
\]
if \(0 < r \leq 1 \), inequality (22) is reversed.

Letting \(u_i = \beta H_n(x_i)/\alpha x_i \) and \(r = -1/p \) shows \(A_n(u) = \beta/\alpha \). Further from (23), we obtain inequality (22). The proof of Theorem 13 is complete.

Remark 14. It is clear that inequalities (9) and (22) both generalize inequality (3).

Corollary 15. Let \(n \geq 2, \alpha, \beta, x_i \in \mathbb{R}_+ \) for \(i = 1, 2, \ldots, n \), \(p, q \in \mathbb{R} \) with \(p \neq 0 \), and \(m, M \) defined as in (2).

1. When \(-1 \leq p < 0\), one has
\[
\sum_{i=1}^{n} \left(\frac{x_i^q}{\alpha x_i^q + \beta A_n(x_i)} \right)^{1/p} \geq \frac{n}{(\alpha + \beta)^{1/p}}.
\]

2. When \(0 < p < 1 \) and \((1 - p)m\beta > 2pM\alpha \), one has
\[
\sum_{i=1}^{n} \left(\frac{x_i^q}{\alpha x_i^q + \beta H_n(x_i)} \right)^{1/p} \geq \frac{n}{(\alpha + \beta)^{1/p}}.
\]

3. When \(p > 0 \) and \(m\beta > pM\alpha \), one has
\[
\sum_{i=1}^{n} \left(\frac{x_i^q}{\alpha x_i^q + \beta A_n(x_i)} \right)^{1/p} \leq \frac{n}{(\alpha + \beta)^{1/p}}.
\]

4. When \(p > 0 \) and \(M\beta < mp\alpha \), one has
\[
\sum_{i=1}^{n} \left(\frac{x_i^q}{\alpha x_i^q + \beta H_n(x_i)} \right)^{1/p} \leq \frac{n}{(\alpha + \beta)^{1/p}}.
\]

Proof. This follows from utilizing the well-known harmonic-geometric-arithmetic mean inequality
\[
H_n(x) \leq G_n(x) \leq A_n(x)
\]
Corollary 16. Under the conditions of Corollary 15 and when $M = (n - 1)m$,

(1) if $0 < p < 1$ and $(1 - p)\beta > 2p(n - 1)\alpha$, one has

$$\sum_{i=1}^{n} \left[\frac{x_i^{\alpha}}{ax_i^{\alpha} + \beta H_n(x^\alpha)} \right]^{1/p} \geq \sum_{i=1}^{n} \left[\frac{x_i^{\alpha}}{ax_i^{\alpha} + \beta H_n(x^\alpha)} \right]^{1/p} \geq \frac{n}{(\alpha + \beta)^{1/p}}.$$ (29)

(2) if $p > 0$ and $\beta > p(n - 1)\alpha$, one has

$$\sum_{i=1}^{n} \left[\frac{x_i^{\alpha}}{ax_i^{\alpha} + \beta H_n(x^\alpha)} \right]^{1/p} \geq \sum_{i=1}^{n} \left[\frac{x_i^{\alpha}}{ax_i^{\alpha} + \beta A_n(x^\alpha)} \right]^{1/p} \geq \frac{n}{(\alpha + \beta)^{1/p}}.$$ (30)

(3) if $p > 0$ and $(n - 1)\beta < p\alpha$, one has

$$\sum_{i=1}^{n} \left[\frac{x_i^{\alpha}}{ax_i^{\alpha} + \beta A_n(x^\alpha)} \right]^{1/p} \leq \sum_{i=1}^{n} \left[\frac{x_i^{\alpha}}{ax_i^{\alpha} + \beta G_n(x^\alpha)} \right]^{1/p} \leq \frac{n}{(\alpha + \beta)^{1/p}}.$$ (31)

Acknowledgments

The author thanks four anonymous referees for their careful corrections to and valuable comments on the original version of this paper. This work was partially supported by the Foundation of the Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region under Grant no. NJZY13159, China.

References

