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Abstract. 
An 
	
		
			

				𝑅
			

		
	
-module 
	
		
			

				𝐴
			

		
	
 is called 
	
		
			
				𝐺
				𝐹
			

		
	
-regular if, for each 
	
		
			
				𝑎
				∈
				𝐴
			

		
	
 and 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
, there exist 
	
		
			
				𝑡
				∈
				𝑅
			

		
	
 and a positive integer 
	
		
			

				𝑛
			

		
	
 such that 
	
		
			

				𝑟
			

			

				𝑛
			

			
				𝑡
				𝑟
			

			

				𝑛
			

			
				𝑎
				=
				𝑟
			

			

				𝑛
			

			

				𝑎
			

		
	
. We proved that each unitary 
	
		
			

				𝑅
			

		
	
-module 
	
		
			

				𝐴
			

		
	
 contains a unique maximal 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodule, which we denoted by 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
. Furthermore, the radical properties of 
	
		
			

				𝐴
			

		
	
 are investigated; we proved that if 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			

				𝑅
			

		
	
-module and 
	
		
			

				𝐾
			

		
	
 is a submodule of 
	
		
			

				𝐴
			

		
	
, then 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐾
				)
				=
				𝐾
				∩
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
. Moreover, if 
	
		
			

				𝐴
			

		
	
 is projective, then 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 is a 
	
		
			

				𝐺
			

		
	
-pure submodule of 
	
		
			

				𝐴
			

		
	
 and 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				=
				𝑀
				(
				𝑅
				)
				⋅
				𝐴
			

		
	
.
 

1. Introduction
Throughout this paper, 
	
		
			

				𝑅
			

		
	
 is a commutative ring with identity and all modules are left unitary, unless otherwise stated. Recall that an element 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
 is said to be regular if there exists 
	
		
			
				𝑡
				∈
				𝑅
			

		
	
 such that 
	
		
			
				𝑟
				𝑡
				𝑟
				=
				𝑟
			

		
	
; a ring 
	
		
			

				𝑅
			

		
	
 is called regular if and only if each element of 
	
		
			

				𝑅
			

		
	
 is regular. An ideal 
	
		
			

				𝐼
			

		
	
 of a ring 
	
		
			

				𝑅
			

		
	
 is regular if each of its elements is regular in 
	
		
			

				𝑅
			

		
	
; indeed, a regular ideal 
	
		
			

				𝐼
			

		
	
 of 
	
		
			

				𝑅
			

		
	
 is itself a regular ring [1]. Brown and McCoy proved in [1] that each ring 
	
		
			

				𝑅
			

		
	
 contains a unique maximal regular ideal 
	
		
			
				𝑀
				(
				𝑅
				)
			

		
	
 which satisfies the well-known radical properties. The ideal 
	
		
			
				𝑀
				(
				𝑅
				)
			

		
	
 is called the regular radical of 
	
		
			

				𝑅
			

		
	
.
The concept of regularity was extended to modules in several ways and in [2] the notion of 
	
		
			

				𝐹
			

		
	
-regular modules (in the sense of Fieldhouse [3]) was generalized to 
	
		
			
				𝐺
				𝐹
			

		
	
-regular modules. Let 
	
		
			

				𝐴
			

		
	
 be an 
	
		
			

				𝑅
			

		
	
-module; an element 
	
		
			
				𝑎
				∈
				𝐴
			

		
	
 is said to be 
	
		
			
				𝐺
				𝐹
			

		
	
-regular if for each 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
 there exist 
	
		
			
				𝑡
				∈
				𝑅
			

		
	
 and a positive integer 
	
		
			

				𝑛
			

		
	
 such that 
	
		
			

				𝑟
			

			

				𝑛
			

			
				𝑡
				𝑟
			

			

				𝑛
			

			
				𝑎
				=
				𝑟
			

			

				𝑛
			

			

				𝑎
			

		
	
. An 
	
		
			

				𝑅
			

		
	
-module 
	
		
			

				𝐴
			

		
	
 is called 
	
		
			
				𝐺
				𝐹
			

		
	
-regular if and only if all its elements are 
	
		
			
				𝐺
				𝐹
			

		
	
-regular; in particular, a ring 
	
		
			

				𝑅
			

		
	
 is 
	
		
			
				𝐺
				𝐹
			

		
	
-regular if and only if 
	
		
			

				𝑅
			

		
	
 is 
	
		
			
				𝐺
				𝐹
			

		
	
-regular as an 
	
		
			

				𝑅
			

		
	
-module. On the other hand a ring 
	
		
			

				𝑅
			

		
	
 is 
	
		
			

				𝜋
			

		
	
-regular if and only if 
	
		
			

				𝑅
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular 
	
		
			

				𝑅
			

		
	
-module; recall that a ring 
	
		
			

				𝑅
			

		
	
 is 
	
		
			

				𝜋
			

		
	
-regular if, for each 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
, there exist 
	
		
			
				𝑡
				∈
				𝑅
			

		
	
 and a positive integer 
	
		
			

				𝑛
			

		
	
 such that 
	
		
			

				𝑟
			

			

				𝑛
			

			
				𝑡
				𝑟
			

			

				𝑛
			

			
				=
				𝑟
			

			

				𝑛
			

		
	
. A submodule 
	
		
			

				𝑁
			

		
	
 of an 
	
		
			

				𝑅
			

		
	
-module 
	
		
			

				𝐴
			

		
	
 is called 
	
		
			
				𝐺
				𝐹
			

		
	
-regular if each element of 
	
		
			

				𝑁
			

		
	
 is 
	
		
			
				𝐺
				𝐹
			

		
	
-regular and every submodule of a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular module is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular module. Also, in [2] the concept of 
	
		
			

				𝐺
			

		
	
-pure submodules was introduced; a submodule 
	
		
			

				𝑃
			

		
	
 of an 
	
		
			

				𝑅
			

		
	
-module 
	
		
			

				𝐴
			

		
	
 is called 
	
		
			

				𝐺
			

		
	
-pure if, for each 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
, there exists a positive integer 
	
		
			

				𝑛
			

		
	
 such that 
	
		
			
				𝑃
				∩
				𝑅
				𝑟
			

			

				𝑛
			

			
				𝐴
				=
				𝑅
				𝑟
			

			

				𝑛
			

			

				𝑃
			

		
	
.
In this paper we show that each module contains a unique maximal 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodule, which we denote by 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
, and we show that 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 satisfies some but not all of the usual radical properties.
2. Main Results
Theorem 1.  Let 
	
		
			

				𝑅
			

		
	
 be any ring. Every 
	
		
			

				𝑅
			

		
	
-module contains a unique maximal 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodule. 
Proof.  Let 
	
		
			

				𝑅
			

		
	
 be any ring, let 
	
		
			

				𝐴
			

		
	
 be an 
	
		
			

				𝑅
			

		
	
-module, and let 
							
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				𝐺
				=
				{
				𝑁
				∣
				𝑁
				i
				s
				a
				𝐺
				𝐹
				-
				r
				e
				g
				u
				l
				a
				r
				s
				u
				b
				m
				o
				d
				u
				l
				e
				o
				f
				𝐴
				}
				,
			

		
	

						where 
	
		
			
				𝐺
				≠
				𝜙
			

		
	
 because 
	
		
			
				(
				0
				)
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodule of 
	
		
			

				𝐴
			

		
	
. Let 
	
		
			
				{
				𝑁
			

			

				𝑖
			

			

				}
			

		
	
 be an ascending chain in 
	
		
			

				𝐺
			

		
	
 and 
	
		
			
				⋃
				𝐵
				=
			

			
				𝑖
				∈
				Λ
			

			

				𝑁
			

			

				𝑖
			

		
	
. Let 
	
		
			
				𝑏
				∈
				𝐵
			

		
	
; there exists 
	
		
			
				𝑗
				∈
				Λ
			

		
	
 such that 
	
		
			
				𝑏
				∈
				𝑁
			

			

				𝑗
			

		
	
, but 
	
		
			

				𝑁
			

			

				𝑗
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodule; then; for each 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
, there exist 
	
		
			
				𝑡
				∈
				𝑅
			

		
	
 and a positive integer 
	
		
			

				𝑛
			

		
	
 such that 
	
		
			

				𝑟
			

			

				𝑛
			

			
				𝑡
				𝑟
			

			

				𝑛
			

			
				𝑏
				=
				𝑟
			

			

				𝑛
			

			

				𝑏
			

		
	
; therefore 
	
		
			

				𝑏
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular element in 
	
		
			

				𝐵
			

		
	
 which implies that 
	
		
			

				𝐵
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular 
	
		
			

				𝑅
			

		
	
-module. Now, by Zorn’s lemma, 
	
		
			

				𝐺
			

		
	
 contains a maximal element which we call 
	
		
			
				𝑀
				𝐺
				𝐹
			

		
	
. To prove the uniqueness of 
	
		
			
				𝑀
				𝐺
				𝐹
			

		
	
, assume that 
	
		
			
				𝑀
				𝐺
				𝐹
				1
			

		
	
 and 
	
		
			
				𝑀
				𝐺
				𝐹
				2
			

		
	
 be two maximal 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodules in 
	
		
			

				𝐴
			

		
	
; then for any maximal ideal 
	
		
			

				𝑃
			

		
	
 of 
	
		
			

				𝑅
			

		
	
 each of 
	
		
			
				𝑀
				𝐺
				𝐹
				1
			

			

				𝑝
			

		
	
 and 
	
		
			
				𝑀
				𝐺
				𝐹
				2
			

			

				𝑝
			

		
	
 is semisimple over 
	
		
			

				𝑅
			

			

				𝑝
			

		
	
 [2, Proposition 21]. Now, let 
	
		
			
				𝑀
				𝐺
				𝐹
				1
			

			

				𝑝
			

			
				∩
				𝑀
				𝐺
				𝐹
				2
			

			

				𝑝
			

			
				=
				𝐾
			

			

				𝑝
			

		
	
; then 
	
		
			

				𝐾
			

			

				𝑝
			

			
				⊆
				𝑀
				𝐺
				𝐹
				1
			

			

				𝑝
			

		
	
 and 
	
		
			

				𝐾
			

			

				𝑝
			

			
				⊆
				𝑀
				𝐺
				𝐹
				2
			

			

				𝑝
			

		
	
; thus 
	
		
			
				𝑀
				𝐺
				𝐹
				1
			

			

				𝑝
			

			
				=
				𝐾
			

			

				𝑝
			

			
				+
				𝐴
				1
			

			

				𝑝
			

		
	
 and 
	
		
			
				𝑀
				𝐺
				𝐹
				2
			

			

				𝑝
			

			
				=
				𝐾
			

			

				𝑝
			

			
				+
				𝐴
				2
			

			

				𝑝
			

		
	
, where 
	
		
			
				𝐴
				1
			

			

				𝑝
			

		
	
 and 
	
		
			
				𝐴
				2
			

			

				𝑝
			

		
	
 are two submodules of 
	
		
			

				𝐴
			

			

				𝑝
			

		
	
 [4]. Hence, 
	
		
			
				𝑀
				𝐺
				𝐹
				1
			

			

				𝑝
			

			
				+
				𝑀
				𝐺
				𝐹
				2
			

			

				𝑝
			

			
				=
				𝐴
				1
			

			

				𝑝
			

			
				+
				𝐾
			

			

				𝑝
			

			
				+
				𝐴
				2
			

			

				𝑝
			

		
	
, but each of 
	
		
			
				𝐴
				1
			

			

				𝑝
			

		
	
, 
	
		
			
				𝐴
				2
			

			

				𝑝
			

		
	
, and 
	
		
			

				𝐾
			

			

				𝑝
			

		
	
 is a semisimple submodule; thus 
	
		
			
				𝑀
				𝐺
				𝐹
				1
			

			

				𝑝
			

			
				+
				𝑀
				𝐺
				𝐹
				2
			

			

				𝑝
			

		
	
 is a semisimple submodule which implies that 
	
		
			
				𝑀
				𝐺
				𝐹
				1
			

			

				𝑝
			

			
				+
				𝑀
				𝐺
				𝐹
				2
			

			

				𝑝
			

		
	
 is 
	
		
			
				𝐺
				𝐹
			

		
	
-regular [2]. So 
	
		
			
				𝑀
				𝐺
				𝐹
				1
				+
				𝑀
				𝐺
				𝐹
				2
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodule [2, Theorem 20]. Now, each of 
	
		
			
				𝑀
				𝐺
				𝐹
				1
			

		
	
 and 
	
		
			
				𝑀
				𝐺
				𝐹
				2
			

		
	
 is a maximal 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodule and hence 
	
		
			
				𝑀
				𝐺
				𝐹
				1
				+
				𝑀
				𝐺
				𝐹
				2
				=
				𝑀
				𝐺
				𝐹
				2
				=
				𝑀
				𝐺
				𝐹
				1
			

		
	
. 
Remark 2. We denote the unique maximal 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodule of an 
	
		
			

				𝑅
			

		
	
-module 
	
		
			

				𝐴
			

		
	
 by 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
. It is obvious that 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 contains every 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodule of 
	
		
			

				𝐴
			

		
	
; this means that 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodule which is not contained properly in any other 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodule. In fact, 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 is the sum of all 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodules of 
	
		
			

				𝐴
			

		
	
 and 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				=
				𝐴
			

		
	
 if and only if 
	
		
			

				𝐴
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular module. 
Example 3. (a) Since the 
	
		
			

				𝑍
			

		
	
-module 
	
		
			

				𝑍
			

			

				𝑛
			

		
	
 is 
	
		
			
				𝐺
				𝐹
			

		
	
-regular for each positive integer 
	
		
			

				𝑛
			

		
	
 [2], then 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝑍
			

			

				𝑛
			

			
				)
				=
				𝑍
			

			

				𝑛
			

		
	
. (b) Each element in the 
	
		
			

				𝑍
			

		
	
-module 
	
		
			

				𝑄
			

		
	
 is not 
	
		
			
				𝐺
				𝐹
			

		
	
-regular [2]; hence 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝑄
				)
				=
				(
				0
				)
			

		
	
. (c) Let 
	
		
			

				𝑝
			

		
	
 be a prime number and let 
	
		
			
				𝐴
				=
				𝑍
			

			

				𝑝
			

			

				∞
			

			
				=
				⋃
			

			
				∀
				𝑖
			

			

				𝑍
			

			

				𝑝
			

			

				𝑖
			

		
	
 be a 
	
		
			

				𝑍
			

		
	
-module. Let 
	
		
			
				⋃
				𝑎
				∈
			

			
				∀
				𝑖
			

			

				𝑍
			

			

				𝑝
			

			

				𝑖
			

		
	
; then there exists a positive integer 
	
		
			

				𝑚
			

		
	
 such that 
	
		
			
				𝑎
				∈
				𝑍
			

			

				𝑝
			

			

				𝑚
			

		
	
, but 
	
		
			

				𝑍
			

			

				𝑛
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular 
	
		
			

				𝑍
			

		
	
-module for each positive integer 
	
		
			

				𝑛
			

		
	
; hence 
	
		
			

				𝑎
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular element, so 
	
		
			
				𝑎
				∈
				𝑀
				𝐺
				𝐹
				(
				𝑍
			

			

				𝑝
			

			

				∞
			

			

				)
			

		
	
 which implies that 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝑍
			

			

				𝑝
			

			

				∞
			

			
				)
				=
				𝑍
			

			

				𝑝
			

			

				∞
			

		
	
. (d) Let 
	
		
			
				𝑄
				/
				𝑍
			

		
	
 be a 
	
		
			

				𝑍
			

		
	
-module; since 
	
		
			
				𝑄
				/
				𝑍
			

		
	
 is a torsion 
	
		
			

				𝑍
			

		
	
-module, then 
	
		
			
				𝑄
				/
				𝑍
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular 
	
		
			

				𝑍
			

		
	
-module [2, Proposition 6]. Since 
	
		
			
				∑
				𝑄
				/
				𝑍
				=
			

			

				𝑝
			

			

				𝑍
			

			

				𝑝
			

			

				∞
			

		
	
 for each prime number 
	
		
			

				𝑝
			

		
	
, then 
	
		
			
				∑
				𝑀
				𝐺
				𝐹
				(
				𝑄
				/
				𝑍
				)
				=
			

			

				𝑝
			

			

				𝑍
			

			

				𝑝
			

			

				∞
			

		
	
 for all primes 
	
		
			

				𝑝
			

		
	
. 
Proposition 4.  Let 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐵
			

		
	
 be 
	
		
			

				𝑅
			

		
	
-modules, and let 
	
		
			

				𝐾
			

		
	
 be a submodule of 
	
		
			

				𝐴
			

		
	
; then (a)
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐾
				)
				=
				𝐾
				∩
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
, (b)
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				⊕
				𝐵
				)
				⊆
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				⊕
				𝑀
				𝐺
				𝐹
				(
				𝐵
				)
			

		
	
. 
Proof. (a) Let 
	
		
			

				𝐾
			

		
	
 be a submodule of 
	
		
			

				𝐴
			

		
	
, and let 
	
		
			
				𝑘
				∈
				𝑀
				𝐺
				𝐹
				(
				𝐾
				)
			

		
	
; then 
	
		
			
				𝑘
				∈
				𝐾
			

		
	
 and 
	
		
			

				𝑘
			

		
	
 is 
	
		
			
				𝐺
				𝐹
			

		
	
-regular in 
	
		
			

				𝐾
			

		
	
 which implies that 
	
		
			

				𝑘
			

		
	
 is 
	
		
			
				𝐺
				𝐹
			

		
	
-regular in 
	
		
			

				𝐴
			

		
	
, thus 
	
		
			
				𝑘
				∈
				𝐾
				∩
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
. Conversely, let 
	
		
			
				𝑘
				∈
				𝐾
			

		
	
 and 
	
		
			
				𝑘
				∈
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
; therefore 
	
		
			

				𝑘
			

		
	
 is 
	
		
			
				𝐺
				𝐹
			

		
	
-regular in 
	
		
			

				𝐾
			

		
	
 which means that 
	
		
			
				𝑘
				∈
				𝑀
				𝐺
				𝐹
				(
				𝐾
				)
			

		
	
 and hence 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐾
				)
				=
				𝐾
				∩
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
. (b) Let 
	
		
			
				𝑐
				∈
				𝑀
				𝐺
				𝐹
				(
				𝐴
				⊕
				𝐵
				)
			

		
	
; then 
	
		
			
				𝑐
				=
				(
				𝑎
				,
				𝑏
				)
			

		
	
, where 
	
		
			
				𝑎
				∈
				𝐴
			

		
	
 and 
	
		
			
				𝑏
				∈
				𝐵
			

		
	
. Since 
	
		
			

				𝑐
			

		
	
 is 
	
		
			
				𝐺
				𝐹
			

		
	
-regular, then each of 
	
		
			

				𝑎
			

		
	
 and 
	
		
			

				𝑏
			

		
	
 is 
	
		
			
				𝐺
				𝐹
			

		
	
-regular which means that 
	
		
			
				𝑎
				∈
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 and 
	
		
			
				𝑏
				∈
				𝑀
				𝐺
				𝐹
				(
				𝐵
				)
			

		
	
; hence 
	
		
			
				𝑐
				∈
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				⊕
				𝑀
				𝐺
				𝐹
				(
				𝐵
				)
			

		
	
. 
Proposition 5.  Let 
	
		
			

				𝐴
			

		
	
 and 
	
		
			

				𝐴
			

			

				
			

		
	
 be 
	
		
			

				𝑅
			

		
	
-modules, and let 
	
		
			
				𝑓
				∶
				𝐴
				→
				𝐴
			

			

				
			

		
	
 be an 
	
		
			

				𝑅
			

		
	
-homomorphism; then 
	
		
			
				𝑓
				(
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				)
				⊆
				𝑀
				𝐺
				𝐹
				(
				𝑓
				(
				𝐴
				)
				)
			

		
	
. 
Proof.  If 
	
		
			
				𝑎
				∈
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
, then 
	
		
			
				𝑅
				/
				𝑎
				𝑛
				𝑛
				(
				𝑎
				)
			

		
	
 is a 
	
		
			

				𝜋
			

		
	
-regular ring, but 
	
		
			
				𝑎
				𝑛
				𝑛
				(
				𝑎
				)
				⊆
				𝑎
				𝑛
				𝑛
				(
				𝑓
				(
				𝑎
				)
				)
			

		
	
; thus 
	
		
			
				𝑅
				/
				𝑎
				𝑛
				𝑛
				(
				𝑓
				(
				𝑎
				)
				)
			

		
	
 is an epimorphic image of 
	
		
			
				𝑅
				/
				𝑎
				𝑛
				𝑛
				(
				𝐴
				)
			

		
	
; hence it is a 
	
		
			

				𝜋
			

		
	
-regular ring. Therefore, 
	
		
			
				𝑓
				(
				𝑎
				)
				∈
				𝑀
				𝐺
				𝐹
				(
				𝑓
				(
				𝑎
				)
				)
			

		
	
 and 
	
		
			
				𝑓
				(
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				)
				⊆
				𝑀
				𝐺
				𝐹
				(
				𝑓
				(
				𝐴
				)
				)
			

		
	
. 
Remark 6. (a) If 
	
		
			
				𝑓
				∶
				𝐴
				→
				𝐴
			

			

				
			

		
	
 is an 
	
		
			

				𝑅
			

		
	
-epimorphism, then 
	
		
			
				𝑓
				(
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				)
				≠
				𝑀
				𝐺
				𝐹
				(
				𝐴
			

			

				
			

			

				)
			

		
	
 in general. In fact, let 
	
		
			
				𝜋
				∶
				𝑍
				→
				𝑍
			

			

				4
			

			
				≃
				𝑍
				/
				4
				𝑍
			

		
	
 be the natural map, where 
	
		
			

				𝑍
			

		
	
 and 
	
		
			

				𝑍
			

			

				4
			

		
	
 are 
	
		
			

				𝑍
			

		
	
-modules. It is easy to check that 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝑍
				)
				=
				(
				0
				)
			

		
	
, 
	
		
			
				𝑓
				(
				𝑀
				𝐺
				𝐹
				(
				𝑍
				)
				)
				=
				(
				0
				)
			

		
	
, but 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝑍
			

			

				4
			

			
				)
				≃
				𝑍
			

			

				2
			

		
	
. (b) It is shown in [1] that, for a ring 
	
		
			

				𝑅
			

		
	
, 
	
		
			
				𝑀
				(
				𝑅
				/
				𝑀
				(
				𝑅
				)
				)
				=
				(
				0
				)
			

		
	
 which is not true in case of 
	
		
			
				𝐺
				𝐹
			

		
	
-regular modules; this means that 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				/
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				)
				≠
				(
				0
				)
			

		
	
 (as in (a)). 
Corollary 7.  For each 
	
		
			

				𝑅
			

		
	
-module 
	
		
			

				𝐴
			

		
	
, 
	
		
			
				𝑀
				(
				𝑅
				)
				⋅
				𝐴
				⊆
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
. 
Proof. For each 
	
		
			
				𝑎
				∈
				𝐴
			

		
	
, let 
	
		
			
				𝑓
				∶
				𝑅
				→
				𝐴
			

		
	
 be an 
	
		
			

				𝑅
			

		
	
-homomorphism defined by 
	
		
			
				𝑓
				(
				𝑟
				)
				=
				𝑟
				𝑎
			

		
	
. Then 
	
		
			
				𝑓
				(
				𝑀
				(
				𝑅
				)
				)
				⊆
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 by Proposition 5, but 
	
		
			
				∑
				𝑀
				(
				𝑅
				)
				⋅
				𝐴
				=
			

			

				𝑎
			

			
				𝑓
				(
				𝑀
				(
				𝑅
				)
				)
			

		
	
; hence 
	
		
			
				𝑀
				(
				𝑅
				)
				⋅
				𝐴
				⊆
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
. 
Let 
	
		
			
				𝐽
				(
				𝑅
				)
			

		
	
 be the Jacobson radical of a ring 
	
		
			

				𝑅
			

		
	
. Brown and McCoy proved in [1] that 
	
		
			
				𝑀
				(
				𝑅
				)
				∩
				𝐽
				(
				𝑅
				)
				=
				(
				0
				)
			

		
	
. However, this is not true for 
	
		
			
				𝐺
				𝐹
			

		
	
-regular modules; for example, if 
	
		
			
				𝐴
				=
				𝑍
			

			

				4
			

		
	
 is a 
	
		
			

				𝑍
			

		
	
-module, then 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				≃
				𝑍
			

			

				2
			

		
	
, 
	
		
			
				𝐽
				(
				𝐴
				)
				≃
				𝑍
			

			

				2
			

		
	
 and 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				∩
				𝐽
				(
				𝐴
				)
				≠
				(
				0
				)
			

		
	
.
Lemma 8.  Let 
	
		
			

				𝐴
			

		
	
 be an 
	
		
			

				𝑅
			

		
	
-module and let 
	
		
			

				𝑃
			

		
	
 be a 
	
		
			

				𝐺
			

		
	
-pure submodule of 
	
		
			

				𝐴
			

		
	
. For any 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
, there exists a positive integer 
	
		
			

				𝑛
			

		
	
 such that 
	
		
			
				𝑃
				=
				𝑅
				𝑟
			

			

				𝑛
			

			

				𝑃
			

		
	
 if and only if 
	
		
			
				𝑃
				⊆
				𝑅
				𝑟
			

			

				𝑛
			

			

				𝐴
			

		
	
. 
Proof. Since 
	
		
			

				𝑃
			

		
	
 is 
	
		
			

				𝐺
			

		
	
-pure in 
	
		
			

				𝐴
			

		
	
, then, for each 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
, there exists a positive integer 
	
		
			

				𝑛
			

		
	
 such that 
	
		
			
				𝑃
				∩
				𝑅
				𝑟
			

			

				𝑛
			

			
				𝐴
				=
				𝑅
				𝑟
			

			

				𝑛
			

			

				𝑃
			

		
	
. If 
	
		
			
				𝑃
				=
				𝑅
				𝑟
			

			

				𝑛
			

			

				𝑃
			

		
	
, then 
	
		
			
				𝑃
				∩
				𝑅
				𝑟
			

			

				𝑛
			

			
				𝐴
				=
				𝑃
			

		
	
, and hence 
	
		
			
				𝑃
				⊆
				𝑅
				𝑟
			

			

				𝑛
			

			

				𝐴
			

		
	
. Conversely, if 
	
		
			
				𝑃
				⊆
				𝑅
				𝑟
			

			

				𝑛
			

			

				𝐴
			

		
	
, then 
	
		
			
				𝑃
				∩
				𝑅
				𝑟
			

			

				𝑛
			

			
				𝐴
				=
				𝑃
			

		
	
, but 
	
		
			
				𝑃
				∩
				𝑅
				𝑟
			

			

				𝑛
			

			
				𝐴
				=
				𝑅
				𝑟
			

			

				𝑛
			

			

				𝑃
			

		
	
; therefore 
	
		
			
				𝑃
				=
				𝑅
				𝑟
			

			

				𝑛
			

			

				𝑃
			

		
	
. 
Lemma 9.  Let 
	
		
			
				𝑟
				∈
				𝐽
				(
				𝑅
				)
			

		
	
; if 
	
		
			

				𝑃
			

		
	
 is a finitely generated 
	
		
			

				𝐺
			

		
	
-pure submodule of an 
	
		
			

				𝑅
			

		
	
-module 
	
		
			

				𝐴
			

		
	
 such that 
	
		
			
				𝑃
				⊆
				𝑅
				𝑟
			

			

				𝑛
			

			

				𝐴
			

		
	
 for some positive integer 
	
		
			

				𝑛
			

		
	
, then 
	
		
			
				𝑃
				=
				0
			

		
	
. 
Proof.  By Lemma 8 we get that 
	
		
			
				𝑃
				=
				𝑅
				𝑟
			

			

				𝑛
			

			

				𝑃
			

		
	
 and by Nakayama’s lemma [5], 
	
		
			
				𝑃
				=
				0
			

		
	
. 
Theorem 10.  Let 
	
		
			

				𝐴
			

		
	
 be an 
	
		
			

				𝑅
			

		
	
-module. If 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 is a 
	
		
			

				𝐺
			

		
	
-pure submodule of 
	
		
			

				𝐴
			

		
	
, then 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				∩
				𝐽
				(
				𝑅
				)
				⋅
				𝐴
				=
				(
				0
				)
			

		
	
. 
Proof. Let 
	
		
			
				𝑟
				∈
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				∩
				𝐽
				(
				𝑅
				)
				⋅
				𝐴
			

		
	
, and let 
	
		
			
				𝑃
				=
				𝑅
				𝑟
			

		
	
. It is clear that 
	
		
			
				𝑃
				⊆
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
. Since 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular module, then 
	
		
			

				𝑃
			

		
	
 is a 
	
		
			

				𝐺
			

		
	
-pure submodule in 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 [2, Theorem 11]. But 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 is 
	
		
			

				𝐺
			

		
	
-pure in 
	
		
			

				𝐴
			

		
	
; hence 
	
		
			

				𝑃
			

		
	
 is 
	
		
			

				𝐺
			

		
	
-pure in 
	
		
			

				𝐴
			

		
	
. Now, 
	
		
			
				𝑃
				⊆
				𝐽
				(
				𝑅
				)
				⋅
				𝐴
			

		
	
, so 
	
		
			
				𝑃
				=
				0
			

		
	
 by Lemma 9. Therefore 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				∩
				𝐽
				(
				𝑅
				)
				⋅
				𝐴
				=
				(
				0
				)
			

		
	
. 
Recall that 
	
		
			
				𝑀
				(
				𝑅
				)
			

		
	
 is always a pure ideal in 
	
		
			

				𝑅
			

		
	
. Hence 
	
		
			
				𝑀
				(
				𝑅
				)
			

		
	
 is 
	
		
			

				𝐺
			

		
	
-pure [2].
Theorem 11.  Let 
	
		
			

				𝐴
			

		
	
 be a projective 
	
		
			

				𝑅
			

		
	
-module; then (a)
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				=
				𝑀
				(
				𝑅
				)
				⋅
				𝐴
			

		
	
, (b)
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 is a 
	
		
			

				𝐺
			

		
	
-pure submodule of 
	
		
			

				𝐴
			

		
	
, (c)
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				∩
				𝐽
				(
				𝐴
				)
				=
				(
				0
				)
			

		
	
. 
Proof. (a) By the dual basis lemma [4], for each 
	
		
			
				𝑎
				∈
				𝐴
			

		
	
 we have that 
	
		
			
				∑
				𝑎
				=
			

			

				𝑖
			

			

				𝑓
			

			

				𝑖
			

			
				(
				𝑎
				)
				𝑎
			

			

				𝑖
			

		
	
, where 
	
		
			

				𝑎
			

		
	
,   
	
		
			

				𝑎
			

			

				𝑖
			

			
				∈
				𝐴
			

		
	
 for all 
	
		
			

				𝑖
			

		
	
 and 
	
		
			

				𝑓
			

			

				𝑖
			

			
				∈
				𝐴
			

			

				∗
			

			
				∶
				=
				H
				o
				m
			

			

				𝑅
			

			
				(
				𝐴
				,
				𝑅
				)
			

		
	
. If 
	
		
			
				𝑎
				∈
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
, then the submodule 
	
		
			
				𝑅
				𝑎
			

		
	
 is 
	
		
			
				𝐺
				𝐹
			

		
	
-regular and 
	
		
			

				𝑓
			

			

				𝑖
			

			
				(
				𝑅
				𝑎
				)
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular ideal in 
	
		
			

				𝑅
			

		
	
 by Proposition 5, hence 
	
		
			
				𝑀
				(
				𝑅
				)
			

		
	
. Thus 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				⊆
				𝑀
				(
				𝑅
				)
				⋅
				𝐴
			

		
	
. We get the other direction of the inclusion by Corollary 7.  (b) First we claim that; for any two ideals 
	
		
			

				𝐾
			

		
	
 and 
	
		
			

				𝐿
			

		
	
 of 
	
		
			

				𝑅
			

		
	
, 
	
		
			
				(
				𝐾
				∩
				𝐿
				)
				𝐴
				=
				𝐾
				𝐴
				∩
				𝐿
				𝐴
			

		
	
; it is enough to show this locally; thus we may assume that 
	
		
			

				𝐴
			

		
	
 is free. It is clear that 
	
		
			
				(
				𝐾
				∩
				𝐿
				)
				𝐴
				⊆
				𝐾
				𝐴
				∩
				𝐿
				𝐴
			

		
	
. On the other hand, let 
	
		
			
				𝑥
				∈
				𝐾
				𝐴
				∩
				𝐿
				𝐴
			

		
	
; then
							
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				
				𝑟
				𝑥
				=
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			
				=
				
				𝑠
			

			

				𝑖
			

			

				𝑥
			

			

				𝑖
			

			

				𝑟
			

			

				𝑖
			

			
				∈
				𝐾
				,
				𝑠
			

			

				𝑖
			

			
				∈
				𝐿
				.
			

		
	

						By freeness, 
	
		
			

				𝑟
			

			

				𝑖
			

			
				=
				𝑠
			

			

				𝑖
			

		
	
 and 
	
		
			
				𝑥
				∈
				(
				𝐾
				∩
				𝐿
				)
				𝐴
			

		
	
. Now, let 
	
		
			

				𝐾
			

		
	
 be any ideal in 
	
		
			

				𝑅
			

		
	
; then by (a) we get 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				∩
				𝐾
				𝐴
				=
				𝑀
				(
				𝑅
				)
				∩
				𝐾
				𝐴
				=
				(
				𝑀
				(
				𝑅
				)
				∩
				𝐾
				)
				𝐴
			

		
	
. But 
	
		
			
				𝑀
				(
				𝑅
				)
			

		
	
 is 
	
		
			

				𝐺
			

		
	
-pure ideal, so, for each 
	
		
			
				𝑟
				∈
				𝑅
			

		
	
, there exists a positive integer 
	
		
			

				𝑛
			

		
	
 such that 
	
		
			
				𝑀
				(
				𝑅
				)
				∩
				𝑅
				𝑟
			

			

				𝑛
			

			
				=
				𝑅
				𝑟
			

			

				𝑛
			

			
				𝑀
				(
				𝑅
				)
			

		
	
; hence 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				∩
				𝑅
				𝑟
			

			

				𝑛
			

			
				𝐴
				=
				𝑅
				𝑟
			

			

				𝑛
			

			
				𝑀
				(
				𝑅
				)
				⋅
				𝐴
				=
				𝑅
				𝑟
			

			

				𝑛
			

			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
. (c) Since 
	
		
			

				𝐴
			

		
	
 is projective, then 
	
		
			
				𝐽
				(
				𝐴
				)
				=
				𝐽
				(
				𝑅
				)
				⋅
				𝐴
			

		
	
 [4] which implies that 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				∩
				𝐽
				(
				𝐴
				)
				=
				(
				0
				)
			

		
	
 by Theorem 10. 
Corollary 12.  Let 
	
		
			

				𝑅
			

		
	
 be any ring, and let 
	
		
			

				𝐴
			

		
	
 be any 
	
		
			

				𝑅
			

		
	
-module such that 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
			

		
	
 is a 
	
		
			

				𝐺
			

		
	
-pure submodule and 
	
		
			
				𝐽
				(
				𝐴
				)
				=
				𝐽
				(
				𝑅
				)
				⋅
				𝐴
			

		
	
; then 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				∩
				𝐽
				(
				𝐴
				)
				=
				(
				0
				)
			

		
	
. 
Proof. Since 
	
		
			
				𝐽
				(
				𝐴
				)
				=
				𝐽
				(
				𝑅
				)
				⋅
				𝐴
			

		
	
, then by Theorem 10 we get that 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				∩
				𝐽
				(
				𝐴
				)
				=
				(
				0
				)
			

		
	
. 
Remark 13. If 
	
		
			

				𝐴
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular 
	
		
			

				𝑅
			

		
	
-module, then 
	
		
			
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				=
				𝐴
			

		
	
; hence 
	
		
			
				𝐽
				(
				𝑅
				)
				⋅
				𝐴
				=
				𝐽
				(
				𝑅
				)
				⋅
				𝐴
				∩
				𝐴
				=
				𝐽
				(
				𝑅
				)
				⋅
				𝐴
				∩
				𝑀
				𝐺
				𝐹
				(
				𝐴
				)
				=
				(
				0
				)
			

		
	
. In fact, this shows that Theorem 10 is a generalization of [2, Proposition 28]. In [2] we noticed that every module over 
	
		
			

				𝜋
			

		
	
-regular ring is 
	
		
			
				𝐺
				𝐹
			

		
	
-regular, but the converse need not be true in general. The next result shows how the converse may be true, but first we recall that if 
	
		
			

				𝐴
			

		
	
 is an 
	
		
			

				𝑅
			

		
	
-module, then the trace of 
	
		
			

				𝐴
			

		
	
 is 
	
		
			
				∑
				t
				r
				(
				𝐴
				)
				=
			

			
				𝑓
				∈
				𝐴
			

			

				∗
			

			
				𝑓
				(
				𝐴
				)
			

		
	
, where 
	
		
			

				𝐴
			

			

				∗
			

			
				=
				H
				o
				m
				(
				𝐴
				,
				𝑅
				)
			

		
	
.
Proposition 14.  Let 
	
		
			

				𝐴
			

		
	
 be a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular 
	
		
			

				𝑅
			

		
	
-module. If 
	
		
			
				t
				r
				(
				𝐴
				)
				=
				𝑅
			

		
	
, then 
	
		
			

				𝑅
			

		
	
 is a 
	
		
			

				𝜋
			

		
	
-regular ring. 
Proof. For each 
	
		
			
				𝑎
				∈
				𝐴
			

		
	
 and 
	
		
			
				𝑓
				∈
				𝐴
			

			

				∗
			

			
				=
				H
				o
				m
				(
				𝐴
				,
				𝑅
				)
			

		
	
, since 
	
		
			
				𝑅
				𝑎
			

		
	
 is a 
	
		
			
				𝐺
				𝐹
			

		
	
-regular submodule of 
	
		
			

				𝐴
			

		
	
, then by [2, Proposition 7] we get that 
	
		
			
				𝑓
				(
				𝑅
				𝑎
				)
			

		
	
 is a 
	
		
			

				𝜋
			

		
	
-regular ideal. Thus 
	
		
			
				𝑓
				(
				𝑅
				𝑎
				)
				⊆
				𝑀
				(
				𝑅
				)
			

		
	
, but 
	
		
			
				𝑓
				(
				𝑅
				𝑎
				)
				⊆
				t
				r
				(
				𝐴
				)
			

		
	
; hence 
	
		
			
				t
				r
				(
				𝐴
				)
				=
				𝑅
				⊆
				𝑀
				(
				𝑅
				)
			

		
	
, which implies that 
	
		
			
				𝑀
				(
				𝑅
				)
				=
				𝑅
			

		
	
 and 
	
		
			

				𝑅
			

		
	
 is 
	
		
			

				𝜋
			

		
	
-regular.
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