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A class of nonlinear Neumann problems driven by 𝑝(𝑥)-Laplacian with a nonsmooth locally Lipschitz potential (hemivariational
inequality) was considered.The approach used in this paper is the variationalmethod for locally Lipschitz functions.More precisely,
Weierstrass theorem and Mountain Pass theorem are used to prove the existence of at least two nontrivial solutions.

1. Introduction

Recently, there are several papers on the research of the
Neumann-type problems involving the 𝑝(𝑥)-Laplacian. Of
the existing works in the literature, the majority deal with
problems in which the potential function is smooth (i.e.,
𝐹(𝑥, ⋅) ∈ 𝐶

1
(R)). We mention the works of Mihailescu [1],

Fan and Ji [2], Yao [3], Shi and Ding [4] and Cammaroto et
al. [5]. Problems with a nonsmooth potential, were studied
by Dai [6, 7], who for the case 𝑁 < 𝑝

−
< +∞ estab-

lished the existence of three or infinitely many solutions for
Neumann-type differential inclusion problems involving the
𝑝(𝑥)-Laplacian, using the nonsmooth three-critical-points
theorem and nonsmooth Ricceri type variational principle,
respectively. Not long ago, Qian et al. [8] studied the nonho-
mogeneousNeumann problemwith indefinite weight; that is,

− div (|∇𝑢|𝑝(𝑥)−2∇𝑢)+𝑉(𝑥) |𝑢|𝑝(𝑥)−2𝑢∈𝜕𝐹(𝑥, 𝑢 (𝑥)) , in Ω,

|∇𝑢|
𝑝(𝑥)−2 𝜕𝑢

𝜕𝑛
∈ 𝜕𝐺 (𝑥, 𝛾

0
(𝑢 (𝑥))) , on 𝜕Ω,

(1)

where Ω ⊂ R𝑁 is a bounded domain with smooth boundary
𝜕Ω, √2𝑝− > 𝑁, 𝑉 ∈ 𝐿

∞
(Ω) is a function possibly changing

sign, 𝛾
0
: 𝑊

1,𝑝(𝑥)
(Ω) → 𝐿

𝑝(𝑥)
(𝜕Ω) is the trace operator

with 𝛾
0
(𝑢) = 𝑢|

𝜕Ω
for all 𝑢 ∈ 𝑊

1,𝑝(𝑥)
(Ω), 𝐹(𝑥, 𝑡) and 𝐺(𝑥, 𝑡)

are locally Lipschitz functions in the 𝑡-variable integrand

(in general it can be nonsmooth), 𝜕𝐹(𝑥, 𝑡) and 𝜕𝐺(𝑥, 𝑡) are
the subdifferentials with respect to the 𝑡-variable in the sense
of Clarke [9]. The authors prove the existence of at least one
nontrivial solution of (1) using the nonsmoothMountain Pass
theorem and Weierstrass theorem.

If 𝑉(𝑥) ≡ 1, then problem (1) becomes problem (2) as
follows:

− div (|∇𝑢|𝑝(𝑥)−2∇𝑢) + |𝑢|𝑝(𝑥)−2𝑢 ∈ 𝜕𝐹 (𝑥, 𝑢) , in Ω,

|∇𝑢|
𝑝(𝑥)−2 𝜕𝑢

𝜕𝑛
∈ 𝜕𝐺 (𝑥, 𝑢) , on 𝜕Ω.

(2)

In this paper, our goal is to establish the existence of at least
two nontrivial solutions for problem (2).

We emphasize that the operator − div(|∇𝑢|𝑝(𝑥)−2∇𝑢) is
said to be 𝑝(𝑥)-Laplacian, which becomes 𝑝-Laplacian when
𝑝(𝑥) ≡ 𝑝 (a constant). The 𝑝(𝑥)-Laplacian possesses
more complicated nonlinearities than the 𝑝-Laplacian; for
example, it is inhomogeneous and in general, it has not the
first eigenvalue. The study of various mathematical prob-
lems with variable exponent growth conditions has received
considerable attention in recent years. These problems are
interesting in applications to modeling electrorheological
fluids (see [10, 11]) and image restoration (see [12]).

This paper is divided into three sections: in the sec-
ond section, we introduce some necessary knowledge on
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the nonsmooth analysis and basic properties of the general-
ized Lebesgue-space 𝐿𝑝(𝑥)(Ω) and the generalized Lebesgue-
Sobolev space 𝑊

1,𝑝(𝑥)
(Ω). In the third section, we give

the assumptions on the nonsmooth potentials 𝐹(𝑥, 𝑡), 𝐺(𝑥, 𝑡)
and prove the multiplicity results for problem (2).

2. Preliminary

In this section, we first review some facts on variable expo-
nent spaces 𝐿𝑝(𝑥)(Ω) and𝑊1,𝑝(𝑥)

(Ω). For the details, see [13–
18].

Firstly, we need to give some notations, which we will use
through this paper:

𝐶
+
(Ω) = {𝑝 ∈ 𝐶 (Ω) : 𝑝 (𝑥) > 1 for any 𝑥 ∈ Ω} ,

𝑝
−
= min

𝑥∈Ω

𝑝 (𝑥) , 𝑝
+
= max

𝑥∈Ω

𝑝 (𝑥) for any 𝑝 ∈ 𝐶
+
(Ω) .

(3)

Obviously, 1 < 𝑝
−
≤ 𝑝

+
< +∞.

Denote by U(Ω) the set of all measurable real functions
defined on Ω. Two functions in U(Ω) are considered to be
one element of U(Ω), when they are equal almost every-
where.

For 𝑝 ∈ 𝐶
+
(Ω), define

𝐿
𝑝(𝑥)

(Ω) = {𝑢 ∈ U (Ω) : ∫
Ω

|𝑢|
𝑝(𝑥)

𝑑𝑥 < +∞} (4)

with the norm

|𝑢|
𝐿
𝑝(𝑥)

(Ω)
= |𝑢|𝑝(𝑥) = inf {𝜆 > 0 : ∫

Ω

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢

𝜆

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝(𝑥)

𝑑𝑥 ≤ 1} ,

𝑊
1,𝑝(𝑥)

(Ω) = {𝑢 ∈ 𝐿
𝑝(𝑥)

(Ω) : |∇𝑢| ∈ 𝐿
𝑝(𝑥)

(Ω)}

(5)

with the norm

‖𝑢‖ = ‖𝑢‖
𝑊
1,𝑝(𝑥)

(Ω)
= |𝑢|𝑝(𝑥) + |∇𝑢|𝑝(𝑥). (6)

Denote

𝑝
∗
(𝑥) =

{

{

{

𝑁𝑝 (𝑥)

𝑁 − 𝑝 (𝑥)
, 𝑝 (𝑥) < 𝑁,

+∞, 𝑝 (𝑥) ≥ 𝑁,

𝑝
∗
(𝑥) =

{

{

{

(𝑁 − 1) 𝑝 (𝑥)

𝑁 − 𝑝 (𝑥)
, 𝑝 (𝑥) < 𝑁,

+∞, 𝑝 (𝑥) ≥ 𝑁.

(7)

Let𝑋 be a Banach space and𝑋∗ its topological dual space
and we denote ⟨⋅, ⋅⟩ as the duality bracket for pair (𝑋∗

, 𝑋). A
function 𝜑 : 𝑋 󳨃→ R is said to be locally Lipschitz, if for every
𝑥 ∈ 𝑋, we can find a neighbourhood 𝑈 of 𝑥 and a constant
𝑘 > 0 (depending on 𝑈), such that |𝜑(𝑦) − 𝜑(𝑧)| ≤ 𝑘‖𝑦 −

𝑧‖, for all 𝑦, 𝑧 ∈ 𝑈.
For a locally Lipschitz function 𝜑 : 𝑋 󳨃→ R, we define

𝜑
0
(𝑥; ℎ) = lim sup

𝑥
󸀠
→𝑥; 𝜆↓0

𝜑 (𝑥
󸀠
+ 𝜆ℎ) − 𝜑 (𝑥

󸀠
)

𝜆
. (8)

It is obvious that the function ℎ 󳨃→ 𝜑
0
(𝑥; ℎ) is sublinear

and continuous and so is the support function of a nonempty,
convex, and 𝑤∗-compact set 𝜕𝜑(𝑥) ⊆ 𝑋

∗, defined by

𝜕𝜑 (𝑥) = {𝑥
∗
∈ 𝑋

∗
; ⟨𝑥

∗
, ℎ⟩ ≤ 𝜑

0
(𝑥; ℎ) , ∀ℎ ∈ 𝑋} . (9)

Themultifunction 𝜕𝜑 : 𝑋 󳨃→ 2
𝑋
∗

is called the generalized
subdifferential of 𝜑.

If 𝜑 is also convex, then 𝜕𝜑(𝑥) coincides with subdiffer-
ential in the sense of convex analysis, defined by

𝜕
𝐶
𝜑 (𝑥) = {𝑥

∗
∈ 𝑋

∗
: ⟨𝑥

∗
, ℎ⟩ ≤ 𝜑 (𝑥 + ℎ) − 𝜑 (𝑥) ∀ℎ ∈ 𝑋} .

(10)

If 𝜑 ∈ 𝐶
1
(𝑋), then 𝜕𝜑(𝑥) = {𝜑

󸀠
(𝑥)}.

A point 𝑥 ∈ 𝑋 is a critical point of 𝜑 if 0 ∈ 𝜕𝜑(𝑥). It is
easily seen that if 𝑥 ∈ 𝑋 is a local minimum of 𝜑, then 0 ∈

𝜕𝜑(𝑥).
A locally Lipschitz function 𝜑 : 𝑋 󳨃→ R satisfies the

nonsmooth 𝐶-condition at level 𝑐 ∈ 𝑅 (the nonsmooth 𝐶𝑐-
condition for short), if for every sequence {𝑥

𝑛
}
𝑛≥1

⊆ 𝑋, such
that 𝜑(𝑥

𝑛
) → 𝑐 and (1 + ‖𝑥

𝑛
‖)𝑚 (𝑥

𝑛
) → 0, as 𝑛 → +∞,

there is a strongly convergent subsequence, where 𝑚(𝑥
𝑛
) =

inf{‖𝑥∗‖
∗
: 𝑥

∗
∈ 𝜕𝜑(𝑥

𝑛
)}. If this condition is satisfied at every

level 𝑐 ∈ R, then we say that 𝜑 satisfies the nonsmooth 𝐶-
condition.

Lemma 1 (see [19]). Consider the following.

(1) The spaces 𝐿𝑝(𝑥)(Ω) and𝑊1,𝑝(𝑥)
(Ω) are separable and

reflexive Banach spaces. Moreover, 𝐿𝑝(𝑥)(Ω) is uniform
convex.

(2) If 𝑞 ∈ 𝐶
+
(Ω) and 𝑞(𝑥) < 𝑝

∗
(𝑥) for any 𝑥 ∈ Ω, then

the imbedding from𝑊
1,𝑝(𝑥)

(Ω) to 𝐿𝑞(𝑥)(Ω) is compact
and continuous.

(3) If 𝑞 ∈ 𝐶
+
(𝜕Ω) and 𝑞(𝑥) < 𝑝

∗
(𝑥) for any 𝑥 ∈ 𝜕Ω, then

the imbedding from𝑊
1,𝑝(𝑥)

(Ω) to 𝐿𝑞(𝑥)(𝜕Ω) is compact
and continuous.

Lemma 2 (see [15]). The conjugate space of 𝐿
𝑝(𝑥)

(Ω) is
𝐿
𝑞(𝑥)

(Ω), where (1/𝑝(𝑥)) + (1/𝑞(𝑥)) = 1. For any 𝑢 ∈ 𝐿𝑝(𝑥)(Ω)
and V ∈ 𝐿𝑞(𝑥)(Ω), one has

∫
Ω

|𝑢V| 𝑑𝑥 ≤ (
1

𝑝−
+

1

𝑞−
) |𝑢|

𝐿
𝑝(𝑥)

(Ω)
|V|

𝐿
𝑞(𝑥)

(Ω)
. (11)

Lemma 3 (see [15]). Set 𝐼(𝑢) = ∫
Ω
(|∇𝑢|

𝑝(𝑥)
+ |𝑢|

𝑝(𝑥)
)𝑑𝑥. If

𝑢, 𝑢
𝑘
∈ 𝑊

1,𝑝(𝑥)
(Ω), then

(1) for 𝑢 ̸= 0, ‖𝑢‖ = 𝜆 ⇔ 𝐼(𝑢/𝜆) = 1;
(2) ‖𝑢‖ < 1(= 1; > 1) ⇔ 𝐼(𝑢) < 1(= 1; > 1);

(3) ‖𝑢‖ > 1 ⇒ ‖𝑢‖
𝑝
−

≤ 𝐼(𝑢) ≤ ‖𝑢‖
𝑝
+

; ‖𝑢‖ < 1 ⇒ ‖𝑢‖
𝑝
+

≤ 𝐼(𝑢) ≤ ‖𝑢‖
𝑝
−

;
(4) lim

𝑘→+∞
‖𝑢

𝑘
‖ = 0 ⇔ lim

𝑘→+∞
𝐼(𝑢

𝑘
) = 0; ‖𝑢

𝑘
‖ →

+∞ ⇔ 𝐼(𝑢
𝑘
) → +∞.
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In this paper, we denote by 𝑋 =: 𝑊
1,𝑝(𝑥)

(Ω); 𝑋∗
=:

(𝑊
1,𝑝(𝑥)

(Ω))
∗ the dual space and by ⟨⋅, ⋅⟩ the dual pair.

Consider the following function:

𝐽 (𝑢) = ∫
Ω

1

𝑝 (𝑥)
(|∇𝑢|

𝑝(𝑥)
+ |𝑢|

𝑝(𝑥)
) 𝑑𝑥, 𝑢 ∈ 𝑋. (12)

We know that (see [20]) 𝐽 ∈ 𝐶
1
(𝑋,R) and 𝑝(𝑥)-Laplacian

operator −Δ
𝑝(𝑥)

𝑢 = − div(|∇𝑢|𝑝(𝑥)−2∇𝑢) is the derivative
operator of 𝐽 in the weak sense. We denote L = 𝐽

󸀠
: 𝑋 →

𝑋
∗; then ⟨L(𝑢), V⟩ = ∫

Ω
(|∇𝑢|

𝑝(𝑥)−2
∇𝑢 ⋅ ∇V + |𝑢|

𝑝(𝑥)−2
𝑢V)𝑑𝑥,

for all 𝑢, V ∈ 𝑋.

Lemma 4 (see [19]). Set𝑋 = 𝑊
1,𝑝(𝑥)

(Ω),L is as above, then

(1) L : 𝑋 → 𝑋
∗ is a continuous, bounded, and strictly

monotone operator;

(2) L is a mapping of type (𝑆
+
); that is, if 𝑢

𝑛
⇀ 𝑢 weakly

in𝑋 and lim sup
𝑛→∞

⟨L(𝑢
𝑛
), 𝑢

𝑛
−𝑢⟩ ≤ 0, implies that

𝑢
𝑛
→ 𝑢 in𝑋;

(3) L : 𝑋 → 𝑋
∗ is a homeomorphism.

The following theorem, which is used as a theoretical
basis in this paper, is a nonsmooth version of the well-known
Mountain Pass theorem (see Chang [19] or Kourogenis and
Papageorgiou [21]).

Theorem 5. Let 𝜑 : 𝑋 → R be locally Lipschitz function and
𝑥
0
, 𝑥

1
∈ 𝑋. If there exists a bounded open neighbourhood 𝑈

of 𝑥
0
, such that 𝑥

1
∈ 𝑋 \ 𝑈, max{𝜑(𝑥

0
), 𝜑(𝑥

1
)} < inf

𝜕𝑈
𝜑

and 𝜑 satisfies the nonsmooth 𝐶-condition at level 𝑐, where
𝑐 = inf

𝛾∈Tmax
𝑡∈[0,1]

𝜑(𝛾(𝑡)), T = {𝛾 ∈ 𝐶([0, 1]; 𝑋) : 𝛾(0) =

𝑥
0
, 𝛾(1) = 𝑥

1
}, then 𝑐 is a critical value of 𝜑 and 𝑐 ≥ inf

𝜕𝑈
𝜑.

3. The Main Result and Proof of the Theorem

In this section, we will discuss the existence of weak solution
of (2).

Our hypotheses on nonsmooth potential 𝐹(𝑥, 𝑡) and
𝐺(𝑥, 𝑡) are given as follows.

𝐻(𝐹) : 𝐹 : Ω×R → R is a function such that𝐹(𝑥, 0) =
0 almost everywhere on Ω and satisfies the following
facts:

(1) for all 𝑡 ∈ R, 𝑥 󳨃→ 𝐹(𝑥, 𝑡) is measurable;

(2) for almost all 𝑥 ∈ Ω, 𝑡 󳨃→ 𝐹(𝑥, 𝑡) is locally
Lipschitz.

𝐻(𝐺) : 𝐺 : 𝜕Ω × R → R is a function such that
𝐺(𝑥, 0) = 0 almost everywhere on 𝜕Ω and satisfies
the following facts:

(1) for all 𝑡 ∈ R, 𝑥 󳨃→ 𝐺(𝑥, 𝑡) is measurable;

(2) for almost all 𝑥 ∈ 𝜕Ω, 𝑡 󳨃→ 𝐺(𝑥, 𝑡) is locally
Lipschitz.

We consider the energy function𝜑 : 𝑋 → R for problem
(2), defined by

𝜑 (𝑢) = ∫
Ω

1

𝑝 (𝑥)
[|∇𝑢|

𝑝(𝑥)
+ |𝑢|

𝑝(𝑥)
] 𝑑𝑥

− ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 − ∫
𝜕Ω

𝐺 (𝑥, 𝑢) 𝑑𝜎, 𝑢 ∈ 𝑋,

(13)

where 𝑑𝜎 is the surface measure on 𝜕Ω.

Lemma 6. Suppose that 𝐻(𝐹), 𝐻(𝐺), and the following con-
ditions hold:

(𝑓
1
) there exist 𝑐

1
> 0, 𝛼 ∈ 𝐶(Ω) with 1 < 𝛼(𝑥) ≤ 𝛼

+
< 𝑝

−

such that

|𝑤| ≤ 𝑐
1|𝑡|

𝛼(𝑥)−1 (14)

for almost all 𝑥 ∈ Ω, all 𝑡 ∈ R and 𝑤 ∈ 𝜕𝐹(𝑥, 𝑡);
(𝑔

1
) there exist 𝑐

2
> 0, 𝛽 ∈ 𝐶(𝜕Ω) with 1 < 𝛽(𝑥) ≤ 𝛽

+
<

𝑝
−
< 𝑝

∗
(𝑥) such that

|𝑤| ≤ 𝑐
2|𝑡|

𝛽(𝑥)−1 (15)

for almost all 𝑥 ∈ 𝜕Ω, all 𝑡 ∈ R and 𝑤 ∈ 𝜕𝐺(𝑥, 𝑡).

Then, 𝜑 is locally Lipschitz in𝑋.

Proof. By 𝐽 ∈ 𝐶1(𝑋,R), we have 𝐽(𝑢
1
) − 𝐽(𝑢

2
) = 𝐽

󸀠
(𝑢) ⋅ (𝑢

1
−

𝑢
2
), where 𝑢 = 𝑡𝑢

1
+ (1 − 𝑡)𝑢

2
, 𝑡 ∈ (0, 1).

Let 𝐵
𝑟
= {𝑥 ∈ 𝑋 : ‖𝑢 − 𝑢

0
‖
𝑋
≤ 𝑟}.

Note that 𝐵
𝑟
is 𝑤-compact. Then, we obtain that there

exists a positive constant 𝑀, such that ‖𝐽󸀠(𝑢)‖
𝑋
∗ ≤ 𝑀 for

sufficiently small 𝑟.
Therefore, for any 𝑢

1
, 𝑢

2
∈ 𝐵

𝑟
, we have

󵄨󵄨󵄨󵄨𝐽 (𝑢1) − 𝐽 (𝑢2)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨𝐽 (𝑢) ⋅ (𝑢1 − 𝑢2)
󵄨󵄨󵄨󵄨

≤
󵄩󵄩󵄩󵄩󵄩
𝐽
󸀠
(𝑢)

󵄩󵄩󵄩󵄩󵄩𝑋∗
󵄩󵄩󵄩󵄩𝑢1 − 𝑢2

󵄩󵄩󵄩󵄩𝑋

≤ 𝑀
󵄩󵄩󵄩󵄩𝑢1 − 𝑢2

󵄩󵄩󵄩󵄩𝑋.

(16)

On the other hand, by (𝑓
1
) and Lebourg mean value

theorem, we have

󵄨󵄨󵄨󵄨𝐹 (𝑥, 𝑢1) − 𝐹 (𝑥, 𝑢2)
󵄨󵄨󵄨󵄨 ≤ 𝑐

1|𝑢|
𝛼(𝑥)−1 󵄨󵄨󵄨󵄨𝑢1 − 𝑢2

󵄨󵄨󵄨󵄨 . (17)

Hence,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝐹 (𝑥, 𝑢
1
) 𝑑𝑥 − ∫

Ω

𝐹 (𝑥, 𝑢
2
) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
1
∫
Ω

|𝑢|
𝛼(𝑥)−1 󵄨󵄨󵄨󵄨𝑢1 − 𝑢2

󵄨󵄨󵄨󵄨 𝑑𝑥

≤ 𝑐
2

󵄨󵄨󵄨󵄨󵄨
|𝑢|

𝛼(𝑥)−1󵄨󵄨󵄨󵄨󵄨𝐿𝛼
󸀠(𝑥)

(Ω)

󵄨󵄨󵄨󵄨𝑢1 − 𝑢2
󵄨󵄨󵄨󵄨𝐿𝛼(𝑥)(Ω),

(18)

where (1/𝛼󸀠(𝑥)) + (1/𝛼(𝑥)) = 1.
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Obviously, it is verified that

∫
Ω

(|𝑢|
𝛼(𝑥)−1

)
𝛼
󸀠
(𝑥)

𝑑𝑥 = ∫
Ω

|𝑢|
𝛼(𝑥)

𝑑𝑥

≤ {
|𝑢|

𝛼
+

𝛼(𝑥)
≤ 𝑐‖𝑢‖

𝛼
+

, |𝑢|𝛼(𝑥) > 1,

|𝑢|
𝛼
−

𝛼(𝑥)
≤ 𝑐‖𝑢‖

𝛼
−

, |𝑢|𝛼(𝑥) < 1

(19)

is bounded, since 𝑢 ∈ 𝐵
𝑟
.

So,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

𝐹 (𝑥, 𝑢
1
) 𝑑𝑥 − ∫

Ω

𝐹 (𝑥, 𝑢
2
) 𝑑𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
3

󵄨󵄨󵄨󵄨𝑢1 − 𝑢2
󵄨󵄨󵄨󵄨𝛼(𝑥) ≤ 𝑐

󵄩󵄩󵄩󵄩𝑢1 − 𝑢2
󵄩󵄩󵄩󵄩 ,

(20)

since𝑊1,𝑝(𝑥)
(Ω) 󳨅→ 𝐿

𝛼(𝑥)
(Ω) is a compact imbedding.

As above, there is a positive constant 𝑐
4
, such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝜕Ω

𝐺 (𝑥, 𝑢
1
) 𝑑𝜎 − ∫

𝜕Ω

𝐺 (𝑥, 𝑢
2
) 𝑑𝜎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
4

󵄨󵄨󵄨󵄨𝑢1 − 𝑢2
󵄨󵄨󵄨󵄨𝐿𝛽(𝑥)(𝜕Ω) ≤ 𝑐

󵄩󵄩󵄩󵄩𝑢1 − 𝑢2
󵄩󵄩󵄩󵄩 ,

(21)

since𝑊1,𝑝(𝑥)
(Ω) 󳨅→ 𝐿

𝛽(𝑥)
(𝜕Ω) is a compact imbedding.

Therefore, 𝜑 is locally Lipschitz.

Remark 7. If assumptions (𝑓
1
) and (𝑔

1
) in Lemma 6 are

replaced, respectively, by the following:

(𝑓
1
) there exist 𝑐

1
, 𝑐
1
> 0, 𝛼 ∈ 𝐶(Ω) with 1 < 𝛼(𝑥) ≤ 𝛼

+
<

𝑝
−
< 𝑝

∗
(𝑥) such that

|𝑤| ≤ 𝑐
1|𝑡|

𝛼(𝑥)−1
+ 𝑐

1
(22)

for almost all 𝑥 ∈ Ω, all 𝑡 ∈ R and 𝑤 ∈ 𝜕𝐹(𝑥, 𝑡);
(𝑔

1
) there exist 𝑐

2
, 𝑐
2
> 0, 𝛽 ∈ 𝐶(𝜕Ω)with 1 < 𝛽(𝑥) ≤ 𝛽

+
<

𝑝
−
< 𝑝

∗
(𝑥), such that

|𝑤| ≤ 𝑐
2|𝑡|

𝛽(𝑥)−1
+ 𝑐

2
(23)

for almost all 𝑥 ∈ 𝜕Ω, all 𝑡 ∈ R and𝑤 ∈ 𝜕𝐺(𝑥, 𝑡), then
the result of Lemma 6 is also correct.

Theorem 8. Let 𝐻(𝐹), 𝐻(𝐺), (𝑓
1
), (𝑔

1
), and the following

conditions (𝑓
2
)-(𝑓

3
), (𝑔

2
) hold:

(𝑓
2
) there exist 𝑐

5
> 0, 𝑥

0
∈ Ω and 0 < 𝑟 < 1, such that

𝑤 ≥ 𝑐
5|𝑡 − 𝛿|

𝛽0−1, ∀𝑥 ∈ 𝐵
2𝑟
(𝑥

0
) , 𝛿 < 𝑡 ≤ 1, (24)

where 1 < 𝛽
0
< 𝑝

−
, 𝑤 ∈ 𝜕𝐹(𝑥, 𝑡);

(𝑓
3
) 𝑤𝑡 ≤ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Ω, 𝑤 ∈ 𝜕𝐹(𝑥, 𝑡) and 0 < |𝑡| ≤ 𝛿;

(𝑔
2
) V𝑡 ≤ 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝜕Ω, V ∈ 𝜕𝐺(𝑥, 𝑡) and 0 < |𝑡| ≤ 𝛿,
where

0 < 𝛿

<min
{

{

{

1

2
[
𝑐
5

𝛽
0

𝑟
𝑝
+

𝑝
−
𝛼
−

2𝑁+𝛽0 [𝛼−(𝑟𝑝
+

+2𝑝
+

)+2𝑐
1
𝑝−𝑟𝑝

+

]
]

1/(𝑝
−
−𝛽0)

,
1

2

}

}

}

.

(25)

Then, the problem (2) has at least two nontrivial solutions.

Proof. The proof is divided into four steps as follows.

Step 1.We will show that 𝜑 is coercive in this step.
Firstly, for almost all 𝑥 ∈ Ω, by 𝐻(𝐹) (2), 𝑡 󳨃→ 𝐹(𝑥, 𝑡) is

differentiable almost everywhere onR and we have

𝑑

𝑑𝑡
𝐹 (𝑥, 𝑡) ∈ 𝜕𝐹 (𝑥, 𝑡) . (26)

Moreover, from (𝑓
1
), we have

𝐹 (𝑥, 𝑡) = 𝐹 (𝑥, 0) + ∫

𝑡

0

𝑑

𝑑𝑠
𝐹 (𝑥, 𝑠) 𝑑𝑠 ≤

𝑐
1

𝛼 (𝑥)
|𝑡|

𝛼(𝑥)
, (27)

for almost all 𝑥 ∈ Ω and 𝑡 ∈ R.
Note that 1 < 𝛼(𝑥) ≤ 𝛼

+
< 𝑝

−
< 𝑝

∗
(𝑥) and 1 < 𝛽(𝑥) ≤

𝛽
+
< 𝑝

−
< 𝑝

∗
(𝑥); then by Lemma 1, we have𝑊1,𝑝(𝑥)

(Ω) 󳨅→

𝐿
𝛼(𝑥)

(Ω) and𝑊1,𝑝(𝑥)
(Ω) 󳨅→ 𝐿

𝛽(𝑥)
(𝜕Ω) (compact imbedding).

Furthermore, there exist 𝑐
6
, 𝑐
6
such that

|𝑢|
𝐿
𝛼(𝑥)

(Ω)
≤ 𝑐

6 ‖𝑢‖ , |𝑢|
𝐿
𝛽(𝑥)

(𝜕Ω)
≤ 𝑐

6 ‖𝑢‖ . (28)

So, for any |𝑢|
𝐿
𝛼(𝑥)

(Ω)
> 1, |𝑢|

𝐿
𝛽(𝑥)

(𝜕Ω)
> 1 and ‖𝑢‖ > 1, we

have

∫
Ω

|𝑢|
𝛼(𝑥)

𝑑𝑥 ≤ |𝑢|
𝛼
+

𝐿
𝛼(𝑥)

(Ω)
≤ 𝑐

𝛼
+

6
‖𝑢‖

𝛼
+

,

∫
𝜕Ω

|𝑢|
𝛽(𝑥)

𝑑𝑥 ≤ |𝑢|
𝛽
+

𝐿
𝛽(𝑥)

(𝜕Ω)
≤ 𝑐

𝛽
+

6
‖𝑢‖

𝛽
+

.

(29)

Hence,

𝜑 (𝑢) = ∫
Ω

1

𝑝 (𝑥)
(|∇𝑢|

𝑝(𝑥)
+ |𝑢|

𝑝(𝑥)
) 𝑑𝑥

− ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 − ∫
𝜕Ω

𝐺 (𝑥, 𝑢) 𝑑𝜎

≥
1

𝑝+
‖𝑢‖

𝑝
−

−
𝑐
1

𝛼−
𝑐
𝛼
+

6
‖𝑢‖

𝛼
+

−
𝑐
2

𝛽−
𝑐
𝛽
+

6
‖𝑢‖

𝛽
+

󳨀→ ∞, as ‖𝑢‖ 󳨀→ ∞.

(30)

Step 2.We will show that the 𝜑 is weakly lower semicontinu-
ous.

Let 𝑢
𝑛
⇀ 𝑢 weakly in𝑊1,𝑝(𝑥)

(Ω); by Lemma 1, we obtain
the following results:

𝑊
1,𝑝(𝑥)

(Ω) 󳨅→ 𝐿
𝑝(𝑥)

(Ω) ,

𝑊
1,𝑝(𝑥)

(Ω) 󳨅→ 𝐿
𝑝(𝑥)

(𝜕Ω) ;

𝑢
𝑛
󳨀→ 𝑢 in 𝐿

𝑝(𝑥)
(Ω) ,

𝑢
𝑛
󳨀→ 𝑢 in 𝐿

𝑝(𝑥)
(𝜕Ω) ;

𝑢
𝑛
(𝑥) 󳨀→ 𝑢 (𝑥) a.a. 𝑥 ∈ Ω,

𝑢
𝑛
(𝑦) 󳨀→ 𝑢 (𝑦) a.a. 𝑦 ∈ 𝜕Ω;

𝐹 (𝑥, 𝑢
𝑛
(𝑥)) 󳨀→ 𝐹 (𝑥, 𝑢 (𝑥)) a.a. 𝑥 ∈ Ω,

𝐺 (𝑥, 𝑢
𝑛
(𝑦)) 󳨀→ 𝐺 (𝑥, 𝑢 (𝑦)) a.a. 𝑦 ∈ 𝜕Ω.

(31)
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By Fatou’s lemma, we have

lim sup
𝑛→∞

∫
Ω

𝐹 (𝑥, 𝑢
𝑛
(𝑥)) 𝑑𝑥 ≤ ∫

Ω

𝐹 (𝑥, 𝑢 (𝑥)) 𝑑𝑥,

lim sup
𝑛→∞

∫
𝜕Ω

𝐺 (𝑥, 𝑢
𝑛
(𝑥)) 𝑑𝜎 ≤ ∫

𝜕Ω

𝐺 (𝑥, 𝑢 (𝑥)) 𝑑𝜎.

(32)

Thus,

lim inf
𝑛→∞

𝜑 (𝑢
𝑛
) = lim inf

𝑛→∞
𝐽 (𝑢

𝑛
) − lim sup

𝑛→∞

∫
Ω

𝐹 (𝑥, 𝑢
𝑛
) 𝑑𝑥

− lim sup
𝑛→∞

∫
𝜕Ω

𝐺 (𝑥, 𝑢
𝑛
) 𝑑𝜎 ≥ 𝐽 (𝑢)

− ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 − ∫
𝜕Ω

𝐺 (𝑥, 𝑢) 𝑑𝜎 = 𝜑 (𝑢) .

(33)

Hence, by Weierstrass theorem, we deduce that there
exists a global minimizer 𝑢

0
∈ 𝑊

1,𝑝(𝑥)
(Ω) such that

𝜑 (𝑢
0
) = min

𝑢∈𝑊
1,𝑝(𝑥)

(Ω)

𝜑 (𝑢) . (34)

Step 3. In this step, we prove that 𝜑(𝑢
0
) < 0.

By (𝑓
2
), we have

𝐹 (𝑥, 𝑡)≥
𝑐
5

𝛽
0

|𝑡 − 𝛿|
𝛽0 −

𝑐
1

𝛼−
𝛿
𝛼(𝑥)

, ∀𝑥∈𝐵
2𝑟
(𝑥

0
) , 𝛿 < 𝑡 ≤ 1.

(35)

Suppose that 𝑥
0
∈ Ω and 𝐵

2𝑟
(𝑥

0
) ⊆ Ω with 2𝑟 < 1. Let

𝜂 ∈ 𝐶
∞

0
(𝐵

2𝑟
(𝑥

0
)) such that 𝜂 = 1, 𝑥 ∈ 𝐵

𝑟
(𝑥

0
); 0 ≤ 𝜂(𝑥) ≤ 1

and |∇𝜂| ≤ 2/𝑟. Denote 𝑠 = 2𝛿; then

𝜑 (𝑠𝜂) = ∫
Ω

1

𝑝 (𝑥)
(
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑠
𝑝(𝑥)

+
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑠
𝑝(𝑥)

) 𝑑𝑥

− ∫
Ω

𝐹 (𝑥, 𝑠𝜂) 𝑑𝑥 − ∫
𝜕Ω

𝐺 (𝑥, 𝑠𝜂) 𝑑𝜎

= ∫
𝐵2𝑟(𝑥0)

1

𝑝 (𝑥)
(
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑠
𝑝(𝑥)

+
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑠
𝑝(𝑥)

) 𝑑𝑥

− ∫
𝐵2𝑟(𝑥0)

𝐹 (𝑥, 𝑠𝜂) 𝑑𝑥

= ∫
𝐵2𝑟(𝑥0)

1

𝑝 (𝑥)
(
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑠
𝑝(𝑥)

+
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑠
𝑝(𝑥)

) 𝑑𝑥

− [∫
𝐵2𝑟(𝑥0)∩{𝑥|0<𝜂≤(1/2)}

𝐹 (𝑥, 𝑠𝜂) 𝑑𝑥

+∫
𝐵2𝑟(𝑥0)∩{𝑥|(1/2)<𝜂≤1}

𝐹 (𝑥, 𝑠𝜂) 𝑑𝑥]

≤
1

𝑝−
[(

2

𝑟
)

𝑝
+

+ 1]∫
𝐵2𝑟(𝑥0)

𝑠
𝑝(𝑥)

𝑑𝑥

+
𝑐
1

𝛼−
∫
𝐵2𝑟(𝑥0)∩{𝑥|0<𝜂≤(1/2)}

|𝑠|
𝛼(𝑥)󵄨󵄨󵄨󵄨𝜂

󵄨󵄨󵄨󵄨
𝛼(𝑥)

𝑑𝑥

+
𝑐
1

𝛼−
∫
𝐵2𝑟(𝑥0)∩{𝑥|(1/2)<𝜂(𝑥)≤1}

𝛿
𝛼(𝑥)

𝑑𝑥

− ∫
𝐵2𝑟(𝑥0)∩{𝑥|(1/2)<𝜂≤1}

𝑐
5

𝛽
0

𝑠
𝛽0(𝜂 −

1

2
)

𝛽0

𝑑𝑥

≤ {
1

𝑝−
[(

2

𝑟
)

𝑝
+

+ 1] 𝑠
𝑝
−

+
𝑐
1

𝛼−
𝑠
𝛼
−

+
𝑐
1

𝛼−
𝛿
𝛼
−

}

×meas (𝐵
2𝑟
(𝑥

0
)) − ∫

𝐵𝑟(𝑥0)

𝑐
5

𝛽
0

𝑠
𝛽0(

1

2
)

𝛽0

𝑑𝑥

≤ {
1

𝑝−
[(

2

𝑟
)

𝑝
+

+ 1] 𝑠
𝛼
−

+
𝑐
1

𝛼−
𝑠
𝛼
−

+
𝑐
1

𝛼−
𝛿
𝛼
−

}

×meas (𝐵
2𝑟
(𝑥

0
)) −

𝑐
5

𝛽
0

(
1

2
)

𝛽0

meas (𝐵
𝑟
(𝑥

0
))

= meas (𝐵
𝑟
(𝑥

0
))

× {[
1

𝑝−
[(

2

𝑟
)

𝑝
+

+ 1] 𝑠
𝛼
−

+
𝑐
1

𝛼−
𝑠
𝛼
−

+
𝑐
1

𝛼−
𝛿
𝛼
−

] 2
𝑁

−
𝑐
5

𝛽
0

(
1

2
)

𝛽0

𝑠
𝛽0}

= meas (𝐵
𝑟
(𝑥

0
))

× {[
1

𝑝−
[(

2

𝑟
)

𝑝
+

+ 1] 𝑠
𝛼
−

+
𝑐
1

𝛼−
𝑠
𝛼
−

+
𝑐
1

𝛼−

𝑠
𝛼
−

2𝛼
−
] 2

𝑁

−
𝑐
5

𝛽
0

(
1

2
)

𝛽0

𝑠
𝛽0}

< 𝑠
𝛽0 meas (𝐵

𝑟
(𝑥

0
))

× {[
1

𝑝−
[(

2

𝑟
)

𝑝
+

+ 1] +
𝑐
1

𝛼−
+
𝑐
1

𝛼−
] 𝑠

𝛼
−
−𝛽02

𝑁

−
𝑐
5

𝛽
0

(
1

2
)

𝛽0

} < 0.

(36)

Step 4.Wewill show that there exists another nontrivial weak
solution of problem (2).

Let 𝜌 ∈ 𝐶(Ω) and 𝑝+ < 𝜌
−
≤ 𝜌

+
< 𝑝

∗
(𝑥).

For 𝑢 ∈ 𝑋 with ‖𝑢‖ < 1, by Lemma 1, we have

∫
Ω

|𝑢|
𝜌(𝑥)

𝑑𝑥 ≤ 𝑐
7‖𝑢‖

𝜌
−

, ∫
𝜕Ω

|𝑢|
𝜌(𝑥)

𝑑𝑥 ≤ 𝑐
7‖𝑢‖

𝜌
−

, (37)

where 𝑐
7
and 𝑐

7
are two positive constants.

By (𝑓
3
), we have

0 ∈ 𝜕𝐹 (𝑥, 0) , ∀𝑥 ∈ Ω. (38)

From Lebourg’s mean value theorem and (𝑓
3
), we obtain

𝐹 (𝑥, 𝑡) − 𝐹 (𝑥, 0) ∈ ⟨𝜕𝐹 (𝑥, 𝜆𝑡) , 𝑡⟩

=
1

𝜆
⟨𝜕𝐹 (𝑥, 𝜆𝑡) , 𝜆𝑡⟩ ≤ 0,

(39)

where 𝜆 ∈ (0, 1), 0 < |𝑡| ≤ 𝛿.
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Thus,

𝐹 (𝑥, 𝑡) ≤ 𝐹 (𝑥, 0) = 0, ∀𝑥 ∈ Ω, 0 < |𝑡| ≤ 𝛿. (40)

Set
󵄩󵄩󵄩󵄩𝑢0

󵄩󵄩󵄩󵄩 = 𝑟
0
,

𝑑 = min
{

{

{

𝑟
0

2
,
1

2𝑐
7

,
1

2𝑐
7

,

(
𝛼
−
𝛽
−

2𝑝+ [𝑐
1
𝑐
7
𝛽− + 𝑐

2
𝑐
7
𝛼−] 𝛿(𝛼

−
−𝜌
+
)
)

1/(𝜌
−
−𝑝
−
)
}

}

}

.

(41)

Divide Ω into two parts: Ω
1
= {𝑥 ∈ Ω : 0 < |𝑢(𝑥)| ≤ 𝛿}

andΩ
2
= {𝑥 ∈ Ω : |𝑢(𝑥)| ≥ 𝛿}.

For any 𝑢 ∈ 𝑋 such that ‖𝑢‖ = 𝑑, we have

∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 = ∫
Ω1

𝐹 (𝑥, 𝑢) 𝑑𝑥 + ∫
Ω2

𝐹 (𝑥, 𝑢) 𝑑𝑥

≤ ∫
Ω2

𝐹 (𝑥, 𝑢) 𝑑𝑥 ≤
𝑐
1

𝛼−
∫
Ω2

|𝑢|
𝛼(𝑥)

𝑑𝑥

=
𝑐
1

𝛼−
∫
Ω2

|𝑢|
𝜌(𝑥)

|𝑢|
𝛼(𝑥)−𝜌(𝑥)

𝑑𝑥

≤
𝑐
1

𝛼−
𝛿
(𝛼
−
−𝜌
+
)
∫
Ω2

|𝑢|
𝜌(𝑥)

𝑑𝑥

≤
𝑐
1

𝛼−
𝛿
(𝛼
−
−𝜌
+
)
∫
Ω

|𝑢|
𝜌(𝑥)

𝑑𝑥.

(42)

As above, we have

∫
𝜕Ω

𝐺 (𝑥, 𝑢) 𝑑𝜎 ≤
𝑐
2

𝛽−
𝛿
(𝛽
−
−𝜌
+
)
∫
𝜕Ω

|𝑢|
𝜌(𝑥)

𝑑𝑥. (43)

Hence,

𝜑 (𝑢) = ∫
Ω

1

𝑝 (𝑥)
(|∇𝑢|

𝑝(𝑥)
+ |𝑢|

𝑝(𝑥)
) 𝑑𝑥

− ∫
Ω

𝐹 (𝑥, 𝑢) 𝑑𝑥 − ∫
𝜕Ω

𝐺 (𝑥, 𝑢) 𝑑𝜎

≥
1

𝑝+
‖𝑢‖

𝑝
−

−
𝑐
1

𝛼−
𝑐
7
𝛿
(𝛼
−
−𝜌
+
)
‖𝑢‖

𝜌
−

−
𝑐
2

𝛽−
𝑐
7
𝛿
(𝛼
−
−𝜌
+
)
‖𝑢‖

𝜌
−

≥
1

𝑝+
‖𝑢‖

𝑝
−

(1 − [
𝑐
1

𝛼−
𝑐
7
+

𝑐
2

𝛽−
𝑐
7
] 𝛿

(𝛼
−
−𝜌
+
)
𝑝
+
‖𝑢‖

𝜌
−
−𝑝
−

)

≥
1

2𝑝+
𝑑
𝑝
−

> 0.

(44)

Note that 𝜑 is coercive; hence, it satisfies the nonsmooth
𝐶-condition. So by the nonsmooth Mountain Pass theorem

(consequence of Theorem 5), there exists a 𝑢
1
∈ 𝑊

1,𝑝(𝑥)
(Ω)

such that

𝜑 (𝑢
1
) = 𝑐 > 0, 𝑚 (𝑢

1
) = 0, (45)

which means that 𝑢
1
is another nontrivial critical point of 𝜑.

Using the similar and simpler arguments, we can prove
the following theorems.

Theorem 9. Let 𝐻(𝐹), 𝐻(𝐺), (𝑓
1
), (𝑓

2
), (𝑔

1
), and the follow-

ing conditions (𝑓󸀠
3
), (𝑔

󸀠

2
) hold:

(𝑓
󸀠

3
) 𝐹(𝑥, 𝑡) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ Ω, 0 < |𝑡| ≤ 𝛿;

(𝑔
󸀠

2
) 𝐺(𝑥, 𝑡) = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ 𝜕Ω, 0 < |𝑡| ≤ 𝛿,
where

0 < 𝛿 < min
{

{

{

1

2
[

𝑐
5
𝑟
𝑝
+

𝑝
−

𝛽
0
2𝑁+𝛽0 (𝑟𝑝

+

+ 2𝑝
+

)
]

1/(𝑝
−
−𝛽0)

,
1

2

}

}

}

.

(46)

Then, the problem (2) has at least two nontrivial solutions.

Proof. The steps are similar to those of Theorem 8. In fact,
we only need to modify Step 3 as follows: (3󸀠) show that the
𝜑(𝑢

0
) < 0 under the assumptions of Theorem 9. Then, from

Steps 1, 2, 3󸀠, and 4 above, the problem (2) has at least two
nontrivial solutions.

Step 3󸀠. By (𝑓
2
), we have

𝐹 (𝑥, 𝑡) ≥
𝑐
5

𝛽
0

|𝑡 − 𝛿|
𝛽0 , ∀𝑥 ∈ 𝐵

2𝑟
(𝑥

0
) , 𝛿 < 𝑡 ≤ 1. (47)

Suppose that 𝑥
0
∈ Ω and 𝐵

2𝑟
(𝑥

0
) ⊆ Ω with 2𝑟 < 1.

Let 𝜂 ∈ 𝐶
∞

0
(𝐵

2𝑟
(𝑥

0
)) such that 𝜂 = 1, 𝑥 ∈ 𝐵

𝑟
(𝑥

0
); 0 ≤

𝜂(𝑥) ≤ 1 and |∇𝜂| ≤ (2/𝑟). Denote 𝑠 = 2𝛿; then

𝜑 (𝑠𝜂) = ∫
Ω

1

𝑝 (𝑥)
(
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑠
𝑝(𝑥)

+
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑠
𝑝(𝑥)

) 𝑑𝑥

− ∫
Ω

𝐹 (𝑥, 𝑠𝜂) 𝑑𝑥 − ∫
𝜕Ω

𝐺 (𝑥, 𝑠𝜂) 𝑑𝜎

= ∫
𝐵2𝑟(𝑥0)

1

𝑝 (𝑥)
(
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑠
𝑝(𝑥)

+
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑠
𝑝(𝑥)

) 𝑑𝑥

− ∫
𝐵2𝑟(𝑥0)

𝐹 (𝑥, 𝑠𝜂) 𝑑𝑥

= ∫
𝐵2𝑟(𝑥0)

1

𝑝 (𝑥)
(
󵄨󵄨󵄨󵄨∇𝜂

󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑠
𝑝(𝑥)

+
󵄨󵄨󵄨󵄨𝜂
󵄨󵄨󵄨󵄨
𝑝(𝑥)

𝑠
𝑝(𝑥)

) 𝑑𝑥

− [∫
𝐵2𝑟(𝑥0)∩{𝑥|0<𝜂≤(1/2)}

𝐹 (𝑥, 𝑠𝜂) 𝑑𝑥

+∫
𝐵2𝑟(𝑥0)∩{𝑥|(1/2)<𝜂≤1}

𝐹 (𝑥, 𝑠𝜂) 𝑑𝑥]
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≤
1

𝑝−
[(

2

𝑟
)

𝑝
+

+ 1]∫
𝐵2𝑟(𝑥0)

𝑠
𝑝(𝑥)

𝑑𝑥

− ∫
𝐵2𝑟(𝑥0)∩{𝑥|(1/2)<𝜂≤1}

𝑐
5

𝛽
0

𝑠
𝛽0(𝜂 −

1

2
)

𝛽0

𝑑𝑥

≤
1

𝑝−
[(

2

𝑟
)

𝑝
+

+ 1] 𝑠
𝑝
−

meas (𝐵
2𝑟
(𝑥

0
))

− ∫
𝐵𝑟(𝑥0)

𝑐
5

𝛽
0

𝑠
𝛽0(

1

2
)

𝛽0

𝑑𝑥

=
1

𝑝−
[(

2

𝑟
)

𝑝
+

+ 1] 𝑠
𝑝
−

meas (𝐵
2𝑟
(𝑥

0
))

−
𝑐
5

𝛽
0

(
1

2
)

𝛽0

meas (𝐵
𝑟
(𝑥

0
))

= meas (𝐵
𝑟
(𝑥

0
))

× {[
1

𝑝−
(
2

𝑟
)

𝑝
+

+ 1] 𝑠
𝑝
−

2
𝑁
−
𝑐
5

𝛽
0

(
1

2
)

𝛽0

𝑠
𝛽0}

= 𝑠
𝛽0 meas (𝐵

𝑟
(𝑥

0
))

× {
1

𝑝−
[(

2

𝑟
)

𝑝
+

+ 1] 𝑠
𝑝
−
−𝛽02

𝑁
−
𝑐
5

𝛽
0

(
1

2
)

𝛽0

} < 0.

(48)

This is the end.

Corollary 10. Let𝐻(𝐹),𝐻(𝐺), (𝑓
2
), (𝑓

1
), and (𝑔

1
) hold; then

the problem (2) has at least a nontrivial solution.

Proof. From Remark 7 and Steps 1–3, by Weierstrass theo-
rem, the functional 𝜑 has a critical point, which is just the
solution of problem (2).

Remark 11. Let 𝑝− > max{𝛼+, 𝛽+, 𝜃+} and consider the
following two nonsmooth locally Lipschitz functions:

𝐹 (𝑥, 𝑡) =

{{

{{

{

0, 0 ≤ |𝑡| < 𝛿,

max {|𝑡 − 𝛿|𝜃(𝑥), |𝑡 − 𝛿|𝛼(𝑥)} , 𝑡 ≥ 𝛿,

max {|𝑡 + 𝛿|𝜃(𝑥), |𝑡 + 𝛿|𝛼(𝑥)} , 𝑡 ≤ −𝛿,

𝐺 (𝑥, 𝑡) =

{{

{{

{

0, 0 ≤ |𝑡| < 𝛿,

max {|𝑡 − 𝛿|𝜃(𝑥), |𝑡 − 𝛿|𝛽(𝑥)} , 𝑡 ≥ 𝛿,

max {|𝑡 + 𝛿|𝜃(𝑥), |𝑡 + 𝛿|𝛽(𝑥)} , 𝑡 ≤ −𝛿,

(49)

where 0 < 𝛿 < 1, inf
𝑥∈Ω

(𝛼(𝑥) − 𝜃(𝑥)) > 0, inf
𝑥∈𝜕Ω

(𝛽(𝑥) −

𝜃(𝑥)) > 0 and 𝜃
−
> 1. In the following, we will show that

𝐹(𝑥, 𝑡) satisfies hypotheses 𝐻(𝐹) and (𝑓
1
)−(𝑓

3
), and 𝐺(𝑥, 𝑡)

satisfies hypotheses𝐻(𝐺) and (𝑔
1
)-(𝑔

2
).

Note that 𝑡 󳨃→ |𝑡 − 𝛿|
𝜃(𝑥) and 𝑡 󳨃→ |𝑡 − 𝛿|

𝛼(𝑥) are convex
functions; thus, 𝐹(𝑥, 𝑡) is also convex. Since 𝑡 󳨃→ |𝑡 − 𝛿|

𝜃(𝑥),
𝑡 → |𝑡 − 𝛿|

𝛼(𝑥) are locally Lipschitz, so 𝑡 󳨃→ 𝐹(𝑥, 𝑡) is locally
Lipschitz. Thus, 𝑡 󳨃→ 𝐹(𝑥, 𝑡) is regular. Then

𝜕𝐹 (𝑥, 𝑡)

=

{{{{{{{{{{{

{{{{{{{{{{{

{

0, 0 ≤ |𝑡| ≤ 𝛿,

𝜃 (𝑥) (𝑡 − 𝛿)
𝜃(𝑥)−1

, 𝛿 < 𝑡 < 1 + 𝛿,

{𝜆𝜃 (𝑥) + (1 − 𝜆) 𝛼 (𝑥) : 𝜆∈[0, 1]} , 𝑡 = 1 + 𝛿,

𝛼 (𝑥) (𝑡 − 𝛿)
𝛼(𝑥)−1

, 𝑡 > 1 + 𝛿,

−𝜃 (𝑥) (−𝑡 − 𝛿)
𝜃(𝑥)−1

, −1 − 𝛿<𝑡< −𝛿,

{−𝜆𝛼 (𝑥) − (1 − 𝜆) 𝜃 (𝑥) : 𝜆∈[0, 1]} , 𝑡 = −1 − 𝛿,

−𝛼 (𝑥) (−𝑡 − 𝛿)
𝛼(𝑥)−1

, 𝑡 < −1 − 𝛿.

(50)

Hence, for any 𝑤 ∈ 𝜕𝐹(𝑥, 𝑡), we have

|𝑤| ≤

{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{

{

0, 0 ≤ |𝑡| ≤ 𝛿,

𝜃
+
(𝑡 − 𝛿)

𝜃(𝑥)−1
< 𝜃

+

< 𝜃
+
(
1

𝛿
)

(𝛼
+
−1)

|𝑡|
𝛼(𝑥)−1

, 𝛿 < 𝑡 < 1 + 𝛿,

𝜃
+
(−𝑡 − 𝛿)

𝜃(𝑥)−1
< 𝜃

+

< 𝜃
+
(
1

𝛿
)

(𝛼
+
−1)

|𝑥|
𝛼(𝑥)−1

, −1 − 𝛿 < 𝑡 < −𝛿

𝛼
+
+ 𝜃

+
< (𝛼

+
+ 𝜃

+
) |𝑡|

𝛼(𝑥)−1
, |𝑡| = 1 + 𝛿,

𝛼
+
|𝑡|

𝛼(𝑥)−1
, |𝑡| > 1 + 𝛿.

(51)

Thus, we have

|𝑤|≤(𝛼
+
+ 𝜃

+
+ (

1

𝛿
)

(𝛼
+
−1)

) |𝑡|
𝛼(𝑥)−1

, ∀𝑤 ∈ 𝜕𝐹 (𝑥, 𝑡) ,

𝑤 = 𝜃 (𝑥) (𝑡 − 𝛿)
𝜃(𝑥)−1

≥ 𝜃
−
(𝑡 − 𝛿)

𝜃
+
−1
, ∀𝑡 ∈ (𝛿, 1] .

(52)

Therefore, conditions 𝐻(𝐹) and (𝑓
1
) − (𝑓

3
) hold. In a

similar fashion, we have that conditions 𝐻(𝐺) and (𝑔
1
)-(𝑔

2
)

hold.
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