Hindawi Publishing Corporation

The Scientific World Journal

Volume 2014, Article ID 171574, 8 pages
http://dx.doi.org/10.1155/2014/171574

Hindawi

Research Article

Evaluating the Power of GPU Acceleration
for IDW Interpolation Algorithm

Gang Mei

Institute of Earth and Environmental Science, University of Freiburg, Albertstrafle 23B, 79104 Freiburg im Breisgau, Germany
Correspondence should be addressed to Gang Mei; gang.mei@geologie.uni-freiburg.de

Received 18 December 2013; Accepted 20 January 2014; Published 23 February 2014

Academic Editors: Q. Yang and J. Zhang

Copyright © 2014 Gang Mei. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We first present two GPU implementations of the standard Inverse Distance Weighting (IDW) interpolation algorithm, the tiled
version that takes advantage of shared memory and the CDP version that is implemented using CUDA Dynamic Parallelism
(CDP). Then we evaluate the power of GPU acceleration for IDW interpolation algorithm by comparing the performance of CPU
implementation with three GPU implementations, that is, the naive version, the tiled version, and the CDP version. Experimental
results show that the tilted version has the speedups of 120x and 670x over the CPU version when the power parameter p is set to 2
and 3.0, respectively. In addition, compared to the naive GPU implementation, the tiled version is about two times faster. However,
the CDP version is 4.8x~6.0x slower than the naive GPU version, and therefore does not have any potential advantages in practical

applications.

1. Introduction

Spatial interpolation is a fundamental task in Geosciences,
where a number of data points with some kinds of known
values such as elevations are used to predict unknown quan-
tities of a continuous phenomenon for the prediction points.
The computational cost of the underlying algorithms usually
grows with the number of data entering the interpolation and
the number of locations for which interpolated values are
needed. Typically, the implementation of spatial interpolation
within the conventional sequential programming patterns
is computationally expensive for a large number of data
sets and thus calls for scalable computing solutions such as
parallelization.

The Inverse Distance Weighting (IDW) algorithm is one
of the most commonly used spatial interpolation methods in
Geosciences mainly due to its straightforward implementa-
tion. Shepard [1] proposed a two-dimensional interpolation
function for irregularly spaced data; this function is the
basis for IDW-based interpolations. In the basic form of the
Shepard’s method, all data points are used to calculate the
interpolated values. In order to reduce computational cost,
some efficient implementations of the IDW interpolation

have been carried out in various massively parallel computing
environments on multicore CPUs and/or GPUs platforms.

By taking advantage of the power of traditional CPU-
based parallel programming models, Armstrong and Mar-
ciano [2, 3] implemented the IDW interpolation algorithm
in parallel using FORTRAN 77 on shared-memory parallel
supercomputers and achieved an efficiency close to 0.9. Guan
and Wu [4] performed their parallel IDW algorithms and
used open multiprocessing (OpenMP) running on an Intel
Xeon 5310, achieving an excellent efficiency of 0.92. Huang
et al. [5] designed a parallel IDW interpolation algorithm
with message passing interface (MPI) by incorporating single
process, multiple data (SPMD), and master/slave (M/S)
programming modes and attained a speedup factor of almost
6 and an efficiency greater than 0.93 under a Linux cluster
linked with six independent PCs.

Since that general purpose computing on modern Graph-
ics Processor Units (GPUs) can significantly reduce com-
putational cost by performing massively parallel computing,
current research efforts are being devoted to parallel IDW
algorithms on GPU computing architectures such as CUDA
[6] and OpenCL [7]. For example, Huraj et al. [8, 9] have
deployed IDW on GPUs to accelerate snow cover depth

prediction. Hennebohl et al. [10] studied the behavior of
IDW on a single GPU depending on the number of data
values, the number of prediction locations, and different
ratios of data size and prediction locations. Hanzer [11]
implemented the standard IDW algorithm using Thrust,
PGI Accelerator, and OpenCL. Xia et al. [12, 13] developed
the GPU implementations of an optimized IDW algorithm
proposed by them and obtained 13- to 33-fold speedups in
computational time over the sequential version.

When intending to profit from massively parallel com-
puting on GPUs, algorithms are needed to be carefully imple-
mented according to the inherent features of GPU computing
architectures. For example, shared memory is expected to
be much faster than global memory; thus any opportunity
to replace global memory access by shared memory access
should therefore be exploited [6].

In this paper, we first develop a GPU implementation
of the IDW algorithm according to the strategy “tiling” [14]
for reducing global memory access by taking advantages
of shared memory. This implementation is called the tiled
version. We also perform the implementation of IDW inter-
polation algorithm by exploring one of the latest features of
CUDA architecture, the Dynamic Parallelism (CDP) on a sin-
gle GPU. The feature CDP allows nested levels of parallelism
and thus is highly suitable to be used to implement the IDW
algorithm. We finally carry out several experimental tests
to evaluate the performance of our tiled version and CDP
version when compared to the CPU version and the naive
GPU version.

The paper is organized as follows. Section2 gives a
brief introduction to the CUDA architecture and Dynamic
Parallelism and the principle of the IDW algorithm. Section 3
concentrates mainly on our GPU implementations of the
standard IDW algorithm using the strategy “tiling” and
the feature CUDA Dynamic Parallelism. Section 4 presents
several experimental tests and discusses the results. Finally,
Section 5 draws some conclusions.

2. Backgrounds

2.1. CUDA and Dynamic Parallelism. CUDA (Compute
Unified Device Architecture) is a general purpose parallel
computing platform and programming model created by
NVIDIA and implemented by the NVIDIA GPUs, which
leverages the power of parallel computing on GPUs to solve
complex computational problems in a more efficient way than
on a CPU. CUDA comes with a software environment that
allows developers to use C as a high level programming lan-
guage. More details of the CUDA architecture are presented
in [6].

Dynamic Parallelism in CUDA is an extension to the
CUDA programming model that enables a CUDA kernel to
create and synchronize new nested work by launching nested
kernels [6]; see Figure 1. In those CUDA systems that do not
support the Dynamic Parallelism, multiple kernels can only
be launched from the host code in sequence. However, the
Dynamic Parallelism allows CUDA kernels to dynamically
launch other kernels without burdening the host.

The Scientific World Journal

— Host (CPU) thread

Grid A

launch Grid A completes

Grid A Grid A threads —,

(parent) l‘|

Grid B launch Grid B completes

Grid B Grid B threads—/——;
(child)

FIGURE 1: Parent-child launch nesting (derived from Figure 12 in

(61).

Dynamic Parallelism introduces the concepts of “parent”
and “child” grids. A parent grid is one that has launched new
nested grid(s), that is, the child grid(s). A child grid is one
that has been launched by a parent grid. A child grid must
be complete before its parent grid is considered complete; in
other words, the parent is not considered complete until all of
its launched child grids have also been completed [6].

There are several implementation limitations when pro-
gramming the Dynamic Parallelism. For example, global
memory, constant memory, and texture memory are visible
for both the parent and child grids and can be written
within the parent and child grids coherently. However, the
operations of above three types of memories in the parent
thread prior to the child thread’s invocation are visible to
the child grid; all memory operations of the child grid are
visible to the parent after the parent has synchronized on the
child grid’s competition. Shared memory and local memory
are private storage for a thread block or a thread, respectively,
which are not visible outside their scopes. It is illegal to pass
a pointer to shared memory or local memory as a launch
argument when launching a child kernel.

Dynamic Parallelism is introduced with the Kepler archi-
tecture that has the Compute Capability 3.5 or higher.

2.2. IDW Interpolation. The IDW algorithm is one of the
most commonly used spatial interpolation methods in Geo-
sciences, which calculates the interpolated values of unknown
points (prediction points) by weighting average of the values
of known points (data points). The name given to this type
of methods was motivated by the weighted average applied
since it resorts to the inverse of the distance to each known
point when calculating the weights. The difference between
different forms of IDW interpolation is that they calculate the
weights variously.

A general form of predicting an interpolated value Z at a
given point x based on samples Z; = Z(x;) fori = 1,2,...,n
using IDW is an interpolating function is

w; (x)z B 1
Z Z] 1 “wi = d(x,xi)p'

The above equation is a simple IDW weighting function,
as defined by Shepard [1], where x denotes a predication
location, x; is a data point, d is the distance from the known

@

The Scientific World Journal

data point x; to the unknown prediction point x, » is the
total number of data points used in interpolating, and p is
an arbitrary positive real number called the power parameter

(typically, p = 2).

3. GPU Implementations

3.1. The Naive Version. The naive implementation of the IDW
interpolation is straightforward. Assuming that there are m
data points used to evaluate the interpolated values for n
prediction points, each thread within a grid is invoked to
calculate the distances to all data points, the inverse weights,
and the weighted average (i.e., the interpolated value) of one
predication point. Obviously, it is needed to allocate n threads
within a thread grid.

The implemented CUDA kernel of this naive version can
be found in [8]. In this naive implementation, only registers
and global memory are used without profiting from the use
of shared memory.

3.2. The Tiled Version. The CUDA kernel presented in [8] is a
straightforward implementation of IDW algorithm that does
not take advantage of shared memory. Each thread needs to
read the coordinates of all data point from global memory.
Thus, the coordinates of all data points are needed to be read
n times, where 7 is the number of predication points.

In CUDA architecture, shared memory is expected to
be much faster than global memory; thus, any opportunity
to replace global memory access by shared memory access
should therefore be exploited [6]. A common optimization
strategy is called “tiling,” which partitions the data stored in
global memory into subsets called tiles so that each tile fits
into the shared memory [14].

This optimization strategy “tiling” is adopted to imple-
ment the IDW interpolation: the coordinates of data points is
first transferred from global memory to shared memory; then
each thread within a thread block can access the coordinates
stored in shared memory concurrently. Since shared memory
is limited per SM (Stream Multiprocessor), the data in global
memory, that is, the coordinates of data points, needs to be
first split/tiled into small pieces and then transferred to shared
memory.

In the tiled implementation, the tile size is set as the
same as the block size (ie., the number of threads per
block). Each thread within a thread block is responsible
for loading the coordinates of one data point from global
memory to shared memory and then computing the distances
and inverse weights to those data points stored in current
shared memory. After all threads within a block finished
computing these partial distances and weights, next piece of
data in global memory is loaded to shared memory and used
to calculate current wave of partial distances and weights.
Each thread accumulates the results of all partial weights and
all weighted values into two registers. Finally, the interpolated
value of each prediction point can be obtained according to
the sums of all partial weights and weighted values and then
written into global memory.

By blocking the computation this way, the access to global
memory can be reduced since the coordinates of data points
are only read (n/threadsPerBlock) times rather than » times
from global memory, where # is the number of predication
points and threadsPerBlock denotes the number of threads
per block.

3.3. The CDP Version. The basic idea behind implementing
the IDW interpolation using Dynamic Parallelism is as fol-
lows. There are two levels of parallelism in IDW interpolation.

(1) Level 1: for all prediction points, the interpolated
values can be calculated in parallel. The interpolating
for each unknown point does not depend on that
of any of other points and thus can be carried out
concurrently.

(2) Level 2: for each prediction point, it is needed to first
calculate the distances to all data points and then
the inverse weights. These distances and weights can
obviously be calculated in parallel.

The parent kernel is responsible for performing the first
level of parallelism, while the child kernel takes responsibility
for realizing the second level of parallelism. There are only
two levels of kernel launches.

In more details, the parent grid is responsible for calculat-
ing the interpolated values of all prediction points in parallel.
Each thread within the parent grid is designed to evaluate the
interpolated value of one prediction point by invoking the
child grid. Hence, there are at least n threads created in the
parent grid.

The launch arguments of the parent kernel mainly include
the coordinates of data points and prediction points. Sev-
eral arrays are allocated in global memory to store these
coordinates. In addition, another array, sum [#], is needed
to be allocated to store the intermediate value, that is,
the accumulation of m inverse weights, where m is the
number of all data points. Similarly, the array pz[n], which
is originally allocated to store the final interpolated values
of all predication points, is temporarily used to store the
accumulation of the weighted values. Therefore, the final
interpolated value of the ith prediction point is the division
of pz[i] and sum [i], that is, pz[i] = pz[i]/sum [i].

In the child grid, each thread within a block is responsible
for computing the distance of one data point to the prediction
point specified by the parent thread. The distance is first
stored as a register in each thread, and then transferred to
the shared memory. After finishing computing all distances,
the parallel reduction introduced by Harris [15] is carried out
within each thread block to obtain the partial accumulations
of the inversed distances and the weighted values. Finally,
all partial accumulations that are temporarily stored as two
registers are wrote back to global memory.

The arguments of the child kernel are almost the same as
those of the parent kernel. The only difference is that there is
an additional argument, the unique index of the thread in the
parent grid. This argument is used to indicate which thread
in the parent grid invokes the child kernel.

4
100000
10000
1000
100
Y 10
= 1
0.1
0.01
0.001
10k 50k 100k 500k 1000k
Data size (1k = 1024)
—— CPU —a— Tiled
—— Naive —— CDP
(@) p=2

The Scientific World Journal

100000
10000
1000
100
= 1
0.1
0.01
0.001
10k 50k 100k 500k 1000k
Data size (1k = 1024)
—o— CPU —a— Tiled
—— Naive —>— CDP
(b) p=3.0

FIGURE 2: Execution times in the test case when the numbers of prediction points and data points are identical. (a) The form in which the
power parameter is set to 2. (b) The form in which the power parameter is set to 3.0.

4. Results and Discussion

4.1. Experimental Results. We evaluate the GPU implementa-
tions using the NVIDIA GeForce GT640 (GDDRS5) graphics
cards with CUDA 5.5. Note that the GeForce GT640 card
with memory GDDR5 has the Compute Capability (CC) 3.5,
while it only has Compute Capability 2.1 with the memory
DDR3. The CPU experiments were performed on Windows 7
SP1 with a dual Intel i5 3.2 GHz processor and 8 GB of RAM
memory. For each set of the testing data, we carry out one
CPU implementation and three GPU implementations only
on single precision.

For each implementation, we perform two different forms
that have different values of the power parameter p: in the first
form, the power p, see (1), is set to an integer value 2, while
this value is set to 3.0 in the second form.

Different specifications of the power p lead to different
designs of each implementation: when p is set to 2, the
distance from the ith prediction point to the jth data point
can be simply obtained via the formulation, dis = (px[i] —
dx[jl) « (pxlil — dx[jl) + (pyli] — dy[jD) * (pylil -
dylj]), where px and py and dx and dy are the coordinates
of prediction points and data points; according to above
formulation, it is not needed to calculate the square root
of the value dis. In contrast, when the power p is given
as 3.0, it is needed to first calculate the square root (i.e.,
the distance) and then the powered value dis”. In practical
implementations, in order to avoid calculating square roots,
we use the following formulation to calculate the powered
distance, dis? = powf(dis, 0.5 *p).

The input of the IDW interpolation is obviously the
coordinates of the data points and prediction points. The
performance of the CPU and GPU implementations may
differ due to different sizes of input data [10, 11]. Hence, we
perform the tests in three cases in terms of the numbers of
the data points and prediction points as follows:

(1) the numbers of prediction points and data points are
identical;

(2) the number of data points is fixed, and the number of
prediction points differs;

(3) the number of prediction points is fixed, and the
number of data points differs.

We create five groups of sizes, that is, 10K, 50K, 100 K,
500K, and 1000K (1K = 1024). When the number of
prediction points is identical to the number of data points,
five tests are performed by setting the numbers of both the
data points and prediction points as the above listed five
groups of sizes. The execution times of four implementations
and corresponding speedups are shown in Figures 2 and 3,
respectively.

In the second test case, the number of data points is fixed
as 100 K. Five tests are also carried out by setting the sizes
of the prediction points as the above listed five groups of
size. The experimental results in this case are presented in
Figures 4 and 5.

Different from the second test case, in the third case, the
number of the prediction points rather than the data points
is fixed as 100 K. And the number of data points is set to one
of the five groups of size. The results of five experimental tests
are shown in Figures 6 and 7.

According to the results generated in above three test
cases, we have found that when the power is set to 2, the
GPU implementations, that is, the naive version, the tiled
version, and the CDP version achieve the speedups of 60x,
120x, and 10x over the CPU implementation, respectively;
in contrast, when the power is set to 3.0, the speedups are
about 380x, 670x, and 78x for the naive, the title, and the CDP
implementations, respectively.

The Scientific World Journal

140
120 ././.—.—__.
100
g 80
o
b5
& 60 . . MHM -
40
20
A A A A A
0
10k 50k 100k 500k 1000 k

Data size (1k = 1024)

—o— Naive
—m- Tiled
—A— CDP

@@ p=2

700

500
5 400 e e g
=]
2 ,/////‘ '
& 300 D
200
e e e §
0
10k 50k 100k 500k 1000 k

Data size (1k = 1024)

—o— Naive
—m- Tiled
-4 CDP

(b) p=3.0

FIGURE 3: Speedups in the test case when the numbers of prediction points and data points are identical. (a) The form in which the power
parameter is set to 2. (b) The form in which the power parameter is set to 3.0.

10000
1000
100
510
£
H
1
0.1
0.01
10k 50k 100k 500k 1000 k
Data size (1k = 1024)
—— CPU —4— Tiled
—— Naive —— CDP
(@) p=2

10000
1000
100
T 10
g
I
1
0.1
0.01
10k 50k 100k 500k 1000 k
Data size (1k = 1024)
—— CPU —4— Tiled
—— Naive —>— CDP
(b) p=3.0

FIGURE 4: Execution times in the test case when the number of data points is fixed and the number of prediction points differs. (a) The form
in which the power parameter is set to 2. (b) The form in which the power parameter is set to 3.0.

4.2. Discussion. Several GPU implementations of the IDW
interpolation are presented in the literature [8, 10-12]. And
the comparable results of those GPU implementations over
corresponding CPU ones are also reported. For example,
Xia et al. [12] implemented their optimized IDW algorithm
and obtained 13- to 33-fold speedups in computation time
over the sequential version. Hanzer [11] implemented the
standard IDW algorithm using different approaches (Thrust,
PGI Accelerator, and OpenCL) and achieved a peak speedup
of 140x.

In this paper, we develop two GPU implementations of
IDW interpolation, the tiled version and the CDP version, by
taking advantage of the fast shared memory and the CUDA
Dynamic Parallelism. To the best of our knowledge, the

above two GPU implementations have not been introduced
in existing literatures.

In the tiled version, the coordinates of data points
originally stored in global memory are divided into small
pieces/tiles that fit the size of shared memory and then loaded
from slow global memory to fast shared memory. These
coordinates stored in shared memory can be accessed quite
fast by all threads within a thread block when calculating
the distances. By blocking the computation this way, we
take advantage of fast shared memory and reduce the global
memory access: the coordinates of data points are only read
(n/threadsPerBlock) times from global memory, where # is
the number of prediction points.

140
120 ./l/‘l%.—_.
100
80
o g o

40

Speedup

20

100k 500k 1000 k

Data size (1k = 1024)

10k 50k

—o— Naive
—m- Tiled
—A— CDP

(@ p=2

The Scientific World Journal

700

600

R . T T Sy

100k 500k 1000 k

Data size (1k = 1024)

10k 50k

—o— Naive
—m- Tiled
—A— CDP

(b) p=3.0

FIGURE 5: Speedups in the test case when the number of data points is fixed and the number of prediction points differs. (a) The form in
which the power parameter is set to 2. (b) The form in which the power parameter is set to 3.0.

10000
1000
100
510
£
H
1
0.1
0.01
10k 50k 100k 500k 1000 k
Data size (1k = 1024)
—— CPU —4— Tiled
—— Naive —— CDP
(@) p=2

10000
1000
100
T 10
g
I
1
0.1
0.01
10k 50k 100k 500k 1000 k
Data size (1k = 1024)
—— CPU —4— Tiled
—— Naive —>— CDP
(b) p=3.0

FIGURE 6: Execution times in the test case when the number of prediction points is fixed, and the number of data points differs. (a) The form
in which the power parameter is set to 2. (b) The form in which the power parameter is set to 3.0.

Experimental tests show that the tilted version has the
speedups of 120x and 670x over the CPU version when the
power parameter pis set to 2 and 3.0, respectively. In addition,
compared to the naive GPU version, the tiled implementation
is about two times faster.

The basic idea behind implementing the IDW interpo-
lation using Dynamic Parallelism is simple. There are two
levels of parallelism in IDW interpolation: (1) level 1: for all
prediction points, the interpolated values can be calculated in
parallel; (2) level 2: for each prediction point, the distances to
all data points can be calculated in parallel. The parent kernel
is responsible for performing the first level of parallelism,

while the child kernel takes responsibility for realizing the
second level of parallelism.

In the standard IDW interpolation, it needs to calculate
m = n distances and corresponding weights when there are
m data points and n prediction points. The two levels of
parallelism in the CDP version theoretically allows the IDW
interpolation operator to calculate all of these m % n distances
in parallel and thus reduce the computational cost.

However, we obtain a negative result in practice.
Although the CDP version is about 10x and 78x times
faster than the CPU version when the power p is set to 2
and 3.0, respectively, it is 4.8x~6.0x slower than the naive

The Scientific World Journal

140
120 ._/_.___-———.’/4.
100

80

Speedup

60 *r O —— ¢
40

20

100k 500k 1000 k

Data size (1k = 1024)

10k 50k

—o— Naive
—m— Tiled
CDP

(@ p=2

700

600

100k 500k 1000 k

Data size (1k = 1024)

10k 50k

—o— Naive
—m— Tiled
CDP

(b) p=3.0

FIGURE 7: Speedups in the test case when the number of prediction points is fixed, and the number of data points differs. (a) The form in
which the power parameter is set to 2. (b) The form in which the power parameter is set to 3.0.

GPU version. Therefore, the CDP version does not have any
potential advantages in practical applications.

We analyze the CDP implementation carefully to explain
the negative behavior and find that there are probably two
main causes.

(1) No Optimization in the Use of Global Memory. When
programming Dynamic Parallelism, global memory, constant
memory, and texture memory are visible for both the parent
and child grids and can be written within the parent and
child grids coherently. Shared memory and local memory are
private storage for a thread block or a thread, respectively,
which are not visible outside their scopes. It is illegal to pass
a pointer to shared memory or local memory as a launch
argument when launching a child kernel.

In the CDP version, the input data are the coordinates of
data points and prediction points, which is originally stored
in global memory. When a thread within the child grid is
invoked to calculate the distances of one prediction point
to all data points, only those coordinates stored in global
memory can be passed as a launch argument from the parent
kernel to the child kernel. The “tiling” optimization strategy
described in the tiled version cannot be accepted to reduce
the global memory access since the coordinates that are first
divided and then loaded to shared memory cannot be passed
as a launch argument when launching a child kernel.

Due to above implementation limitations of Dynamic
Parallelism, there are currently no optimization approaches
to reducing global memory access. The coordinates of all data
points that are stored in global memory are needed to be
read n times, where n is the number of prediction points. The
amount of global memory access in the CDP version is the
same as that in the naive GPU implementation and greater
than that in the tiled GPU implementation. This is one of the
main causes that lead to the negative result.

(2) The Use of the Barrier cudaDeviceSynchronize(). “The
cudaDeviceSynchronize() function will synchronize on all
work launched by any thread in the thread-block up to the
point where cudaDeviceSynchronize() was called. When a
parent thread block launches a child grid, the child is not
guaranteed to begin execution until the parent thread block
reaches an explicit synchronization point (e.g., the calling of
cudaDeviceSynchronize())” [1].

In CDP version, we call the function cudaDeviceSynchro-
nize() after launching the child kernel to guarantee all child
grids completely executed. We have observed that, without
calling the barrier cudaDeviceSynchronize(), only part of the
threads within the parent kernel execute and return expected
interpolated values; in other words, the interpolation results
in this case are incorrect and uncompleted. However, the
execution time for the overall interpolation procedure is
much less than that when calling the barrier; see Figure 8.

As noted above, the barrier cudaDeviceSynchronize() is
needed to guarantee producing correct and complete interpo-
lating results but is time consuming. This is probably another
cause that makes the CDP implementation computationally
expensive.

For both the CPU and GPU implementations, the form
that has the power set to 3.0 is more computationally
expensive than the form where the power is set to 2. In
particular, this behavior can be clearly observed for the CPU
implementation: the form with the power set to 3.0 is 7.6x
slower than the other form. The above behavior is due to the
expensive sequential calculations of the powered distances.
For those GPU implementations, the deceleration is slight
because of the massively parallel computation of the powered
distances.

In this paper, both the tiled version and the CDP version
are the GPU implementations of the basic form of IDW
interpolation algorithm, which calculate the interpolated

1000000

100000

10000

1000

Time (s)

100

10

10k 50k 100k 500k 1000 k

Data size (1k = 1024)

—+— CDP p = 2 (with barrier)
—#- CDP p = 2 (without barrier)

FIGURE 8: Impact of the barrier cudaDeviceSynchronize() on execu-
tion times.

values using all data points (sample points). A practical
solution to reducing the computational cost is to use part of
rather than all data points to calculate the interpolated values.
The selecting of proper partial sets of data points can be
carried out by domain decomposition [12] and local searching
schemes such as searching the nearest neighbors [16]. Future
work should therefore include the implementation and eval-
uation of those modified IDW interpolation algorithms by
taking advantages of the optimization strategy “tiling” and the
feature CUDA Dynamic Parallelism.

5. Conclusions

We have developed two GPU implementations of the IDW
interpolation algorithm, the tiled version and the CDP
version, by taking advantage of shared memory and CUDA
Dynamic Parallelism. We have demonstrated that the tilted
version has the speedups of 120x and 670x over the CPU
version when the power parameter p is set to 2 and 3.0,
respectively. In addition, compared to the naive GPU version,
the tiled implementation is about two times faster. We also
find that, although the CDP version is about 10x and 78x
times faster than the CPU version when the power p is
set to 2 and 3.0, respectively, it is 4.8x~6.0x slower than
the naive GPU version. Therefore, the CDP version does
not have any potential advantages in practical applications.
It would be interesting to know the causes of the negative
performance of the CDP version and apply the CUDA
Parallelism Dynamic to the modified IDW interpolation or
other spatial interpolation algorithms.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

The Scientific World Journal

References

[1] D. Shepard, “A two-dimensional interpolation function for
irregularly-spaced data,” in Proceedings of the 23rd ACM
National Conference, pp. 517-524, 1968.

[2] M. P. Armstrong and R. J. Marciano, “Massively parallel strate-
gies for local spatial interpolation,” Computers and Geosciences,
vol. 23, no. 8, pp- 859-867, 1997.

[3] M. P. Armstrong and R.]. Marciano, “Inverse-distance-
weighted spatial interpolation using parallel supercomputers,”
Photogrammetric Engineering and Remote Sensing, vol. 60, no.
9, pp. 1097-1103, 1994.

[4] X. Guan and H. Wu, “Leveraging the power of multi-core plat-
forms for large-scale geospatial data processing: exemplified by
generating DEM from massive LiDAR point clouds,” Computers
and Geosciences, vol. 36, no. 10, pp. 1276-1282, 2010.

[5] E Huang, D. Liu, X. Tan, J. Wang, Y. Chen, and B. He, “Explo-
rations of the implementation of a parallel IDW interpolation
algorithm in a Linux cluster-based parallel GIS,” Computers and
Geosciences, vol. 37, no. 4, pp- 426-434, 2011.

[6] NVIDIA, CUDA C Programming Guide, Version 5.5, 2013,
http://docs.nvidia.com/cuda/cuda-c-programming-guide/.

[7]1 A. Munshi, The OpenCL Specification, Version 2.0, 2013,
http://www.khronos.org/registry/cl/specs/opencl-2.0.pdf.

[8] L. Huraj, V. Siladi, and J. Silaci, “Comparison of design and
performance of snow cover computing on GPUs and multi-core
processors,” WSEAS Transactions on Information Science and
Applications, vol. 7, no. 10, pp. 1284-1294, 2010.

[9] L. Huraj, V. Siladi, and J. Silac¢i, “Design and performance
evaluation of snow cover computing on GPUs,” in Proceedings of
the 14th WSEAS International Conference on Computers: Latest
Trends on Computers, pp. 674-677, July 2010.

[10] K.Hennebohl, M. Appel, and E. Pebesma, “Spatial interpolation
in massively parallel computing environments,” in Proceedings
of the 14th AGILE International Conference on Geographic
Information Science (AGILE ’11), 2011.

[11] E Hanzer, “Spatial interpolation of scattered geoscientific data,”
http://www.uni-graz.at/~haasegu/Lectures/ GPU_CUDA/WSI1/
hanzer_report.pdf.

[12] Y. Xia, L. Kuang, and X. Li, “Accelerating geospatial analysis on
GPUs using CUDA;” Journal of Zhejiang University Science C,
vol. 12, no. 12, pp- 990-999, 2011.

[13] Y.Xia, X. Shi, L. Kuang, and J. Xuan, “Parallel geospatial analysis
on windows HPC platform,” in Proceedings of the International
Conference on Environmental Science and Information Applica-
tion Technology (ESIAT ’10), pp. 210-213, Wuhan, China, July
2010.

[14] D. B. Kirk and W. m. Hwu, Programming Massively Parallel
Processors: A Hands-on Approach, Morgan Kaufmann, Boston,
Mass, USA, 2nd edition, 2013.

[15] M. Harris, “Optimizating parallel reduction in CUDA,” http://
developer.download.nvidia.com/assets/cuda/files/reduction
.pdf.

[16] H. Huang, C. Cui, L. Cheng, Q. Liu, and J. Wang, “Grid
interpolation algorithm based on nearest neighbor fast search,”
Earth Science Informatics, vol. 5, no. 3-4, pp. 181-187, 2012.

Advances in k& - - . Journal of

o 0 Industrial Engineerin
. WNultimedia J .

Applied
Computational
Intelligence and Soft
. g nternational Journal of T P - Com tll'lg"
The Scientific Dieenel Qumalof e iR e

World Journal Sensor Networks

Advances in

Fuzzy
Systems

Modelling &
Simulation
in Engineering

e

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Computer Networks
and Communications

Advances in »
Artificial
Intelligence

i ‘ Advances in
Biomedica ‘H'\{'ii Artificial
‘ & NS Neural Systems

International Journal of
Computer Games in
Technology S re Engineering

Intel ional J na
Reconfigurable
Computing

Computational i

Ad S
uman-Computer Intelligence and 2y Electrical and Computer
Interaction Neuroscience Engineering

Journal of

Robotics

