Research Article
On Rationality of Kneading Determinants

Sheng Chen and Chao Xia
Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
Correspondence should be addressed to Sheng Chen; schenhit@gmail.com
Received 30 August 2013; Accepted 10 October 2013; Published 18 February 2014

Academic Editors: J. N. Alonso Alvarez, S. Deng, and J. Hoff da Silva
Copyright © 2014 S. Chen and C. Xia. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In this section, R denotes a ring with identity I. We study conditions under which $I-\lambda A$ and $I-\lambda B$ are left coprime or right coprime, where $A, B \in R$. As applications, we get sufficient conditions under which the Kneading determinant of a finite rank pair of operators on an infinite dimensional space is rational.

1. Introduction

If A is a $k \times k$ matrix with rational coefficients, one has the well-known identity between formal power series:

$$\exp \sum_{n \geq 1} -\frac{\text{tr}(A^n)}{n} z^n = \det(I-zA),$$

where $\text{tr}(A^n)$ denotes the trace of matrix A^n (matrix A raised to the nth power) and I denotes the $k \times k$ identity matrix. This identity plays a significant role in the discussion of an important problem in dynamical systems theory. For more details see [1, 2].

We denote by H the infinite dimension vector space over Q, the space of linear forms on H will be denoted, as usual, by H^*, and the space of all linear endomorphisms on H will be denoted by $L(H)$. If $\psi \in L(H)$ and n is a nonnegative integer, the nth iterate ψ^n is defined recursively by $\psi^0 = 1d_H \in L(H)$, $\psi^n = \psi \circ \psi^{n-1}$, for $n \geq 1$.

The subspace of $L(H)$ whose elements are the linear endomorphism on H with finite rank will be denoted by $L_{FR}(H)$.

Let q be a positive integer; we use the symbol \bar{h} to denote an element of $H^q = H \times H \times \cdots \times H$ (q times) and the symbol $\bar{\alpha}$ to denote an element of H^q; that is

$$\bar{h} = (h_1, \ldots, h_q), \quad \bar{\alpha} = (\alpha_1, \ldots, \alpha_q). \quad (2)$$

Given $\bar{h} \in H^q$ and $\bar{\alpha} \in H^{q}$, we define the finite rank endomorphism $\bar{\alpha} \circ \bar{h} \in L_{FR}(H)$ and the matrix $M(\bar{\alpha}, \bar{h}) \in Q^{q \times q}$ by setting

$$\bar{\alpha} \circ \bar{h} = \sum_{p=1}^{q} \alpha_p \circ h_p, \quad (3)$$

with the usual notation

$$\alpha \in H^*, h \in H : (\alpha \circ h)(x) = \alpha(x) \ u, \quad x \in H,$$

$$M(\bar{\alpha}; \bar{h}) = \begin{pmatrix} \alpha_1(h_1) & \cdots & \alpha_1(h_q) \\ \vdots & \ddots & \vdots \\ \alpha_q(h_1) & \cdots & \alpha_q(h_q) \end{pmatrix}. \quad (4)$$

Definition 1 (see [3]). A pair $(\varphi, \psi) \in L(H) \times L(H)$ is said to have finite rank if $\psi - \varphi \in L_{FR}(H)$.

Notice that if a pair (φ, ψ) has finite rank, then the pair (φ^n, ψ^n) also has finite rank for all $n \geq 1$, and therefore the trace of $\varphi^n - \psi^n$ is defined.

Definition 2 (see [3]). For any pair $(\varphi, \psi) \in L(H) \times L(H)$ with finite rank, we define the Kneading determinant of (φ, ψ) as the following invertible element of $Q[[z]]$:

$$\Delta_{(\varphi, \psi)} = \exp \sum_{n \geq 1} -\frac{\text{tr}(\varphi^n - \psi^n)}{n} z^n. \quad (5)$$
Remark 3. Kneading determinant was first studied by Milnor and Thurston in [4].

Let $\mathbb{Q}[z]^{|q|}$ be the ring of the $q \times q$ matrices whose entries lie in $\mathbb{Q}[z]$. If $\varphi \in L(\mathcal{H})$, $\nu \in \mathcal{H}^q$, and $\alpha \in \mathcal{H}^q$, we define the matrix $M_\varphi(\alpha; \nu) \in \mathbb{Q}[z]^{|q|}$ by

$$
M_\varphi(\alpha; \nu) = \left(\begin{array}{ccccc}
\sum_{n=0}^d \alpha_1^n (u_1) z^n & \cdots & \sum_{n=0}^d \alpha_{q_1^n} (u_{q_1}) z^n \\
\vdots & \ddots & \vdots \\
\sum_{n=0}^d \alpha_2^n (u_2) z^n & \cdots & \sum_{n=0}^d \alpha_{q_2^n} (u_{q_2}) z^n
\end{array} \right).
$$

Lemma 4 (see [3]). Let $(\varphi, \psi) \in L(\mathcal{H}) \times L(\mathcal{H})$, $\nu \in \mathcal{H}^q$, and $\alpha \in \mathcal{H}^q$ such that $\psi - \varphi$ has finite rank. Denote by I the $q \times q$ identity matrix. Then,

$$
\Delta_{(\varphi, \psi)} = \det \left(I - z M_\varphi(\alpha; \nu) \right)
$$

holds in $\mathbb{Q}[z]$. In general, any power series can be the Kneading determinant of some pair (φ, ψ) with finite rank (see [3]). So it is interesting to study conditions under which the Kneading determinant is a rational power series.

Remark 3. In this section, R denotes a ring with identity I. We discuss conditions under which $I - A\lambda$ and $I - B\lambda$ are left coprime or right coprime, where $A, B \in R$.

We say $I - A\lambda$ and $I - B\lambda$ are left coprime if there exist polynomials $X(\lambda), Y(\lambda) \in R[\lambda]$ such that

$$
X(\lambda)(I - A\lambda) + Y(\lambda)(I - B\lambda) = I. \tag{8}
$$

Proposition 6. $I - A\lambda$ and $I - B\lambda$ are left coprime if and only if there exist $X_0, X_1, \ldots, X_m \in R$ such that

$$
X_m H + X_{m-1} H B + X_{m-2} H B^2 + \cdots + X_2 H B^m + B^{m+1} = 0, \tag{9}
$$

for $H = A - B$.

Proof. If $I - A\lambda$ and $I - B\lambda$ are left coprime, there exist $X(\lambda) = X_0 + X_1 \lambda + \cdots + X_m \lambda^m$ and $Y(\lambda) = Y_0 + Y_1 \lambda + \cdots + Y_m \lambda^m$ such that

$$
X(\lambda)(I - A\lambda) + Y(\lambda)(I - B\lambda) = I. \tag{10}
$$

We can assume that s equals m. And we have

$$
X_0 + Y_0 = I,
$$

$$
X_i A + Y_i B - X_{i+1} - Y_{i+1} = 0, \quad i = 1, 2, \ldots, m - 1, \tag{11}
$$

$$
X_m A + Y_m B = 0.
$$

So,

$$
Y_0 = I - X_0. \tag{12}
$$

If we write $H = A - B$, then,

$$
Y_1 = -X_1 + X_0 H + B,
$$

$$
Y_2 = -X_2 + X_1 H + X_0 H B + B^2, \tag{13}
$$

and let

$$
Y_m = -X_m + X_{m-1} H + \cdots + X_0 H B^{m-1} + B^m.
$$

So,

$$
X_m H + X_{m-1} H B + X_{m-2} H B^2 + \cdots + X_0 H B^m + B^{m+1} = 0. \tag{14}
$$

Conversely, if there exist $X_0, X_1, \ldots, X_m \in R$ such that

$$
X_m H + X_{m-1} H B + X_{m-2} H B^2 + \cdots + X_0 H B^m + B^{m+1} = 0, \tag{15}
$$

let

$$
X(\lambda) = X_0 + X_1 \lambda + \cdots + X_m \lambda^m,
$$

$$
Y(\lambda) = Y_0 + Y_1 \lambda + \cdots + Y_m \lambda^m. \tag{17}
$$

Then,

$$
X(\lambda)(I - A\lambda) + Y(\lambda)(I - B\lambda) = I. \tag{18}
$$

Now we give the definition of right coprime. We say $I - A\lambda$ and $I - B\lambda$ are right coprime if there exist polynomials $X(\lambda), Y(\lambda) \in R[\lambda]$ such that

$$
(I - A\lambda) X(\lambda) + (I - B\lambda) Y(\lambda) = I. \tag{19}
$$

Proposition 7. $I - A\lambda$ and $I - B\lambda$ are right coprime if and only if there exist $X_0, X_1, \ldots, X_s \in R$ such that

$$
H X_s + B H X_{s-1} + B^2 H X_{s-2} + \cdots + B^s H X_0 + B^{s+1} = 0, \tag{20}
$$

for $H = A - B$.

Proof. It is similar to the proof of Proposition 6. \qed
3. Proof of the Main Theorem

In this section, $\varphi, \psi \in L(\mathcal{H})$, where \mathcal{H} is an infinite dimensional vector space over \mathbb{Q}, and we denote by $L(\mathcal{H})$ the ring of linear transforms on \mathcal{H}.

Lemma 8. Suppose that $I - \varphi \lambda$ and $I - \psi \lambda$ are left coprime or right coprime, $h = \psi - \varphi$ is of finite rank, and $W = \text{Im}(h)$. Then there exists a finite dimensional space \bar{W} containing W such that $(\psi^k - \varphi^k)(\mathcal{H}) \subset \bar{W}$ with $k = 1, 2, \ldots$

Proof. First we assume that if $I - \varphi \lambda$ and $I - \psi \lambda$ are right coprime, then by Proposition 7 we have $X_0, X_1, \ldots, X_s \in L(\mathcal{H})$ such that

$$
hX_m + \varphi hX_{m-1} + \varphi^2 hX_{m-2} + \cdots + \varphi^m hX_0 + \varphi^{m+1} = 0.
$$

(21)

Write $\bar{W} = W + \varphi W + \varphi^2 W + \cdots + \varphi^m W$; \bar{W} is an invariant subspace of \mathcal{H} under h. It is not very hard to check that $\psi(\bar{W}) = \varphi^{m+1} W + \varphi W + \varphi^2 W + \cdots + \varphi^m W \subset \bar{W}$. So \bar{W} is invariant under the operator φ.

We use induction to prove the conclusion.

If $k = 1$, then $(\varphi^k - \psi^k)(\mathcal{H}) = W$.

Suppose that for $k \leq l$ we have $(\varphi^k - \psi^k)(\mathcal{H}) \subset W + \varphi W + \cdots + \varphi^m W$. Then for $k = l + 1$, we have $(\varphi^k - \psi^k)(\mathcal{H}) = \psi(\varphi^l - \psi^l)(\mathcal{H}) - h\psi^l(\mathcal{H}) \subset \phi(\bar{W}) + W \subset \bar{W}$. We get the conclusion in this case.

Now we assume that $I - \varphi \lambda$ and $I - \psi \lambda$ are left coprime; then there exist $s \in \mathbb{Z}$ and $x_0, x_1, \ldots, x_s \in L(\mathcal{H})$ such that

$$
x_s h + x_{s-1} h\varphi + x_{s-2} h\varphi^2 + \cdots + x_0 h\varphi^s + \varphi^{s+1} = 0.
$$

(22)

holds. Take

$$
\bar{W} = W + x_0 W + \cdots + x_s W,
$$

(23)

Notice when $l \geq s + 1$, $\varphi^l(\mathcal{H}) \subset x_0 W + x_1 W + \cdots + x_s W$.

We use induction to prove the conclusion.

If $k = 1$, then $(\varphi^k - \psi^k)(\mathcal{H}) = W$.

Suppose that for $k \leq l$ we have $(\varphi^k - \psi^k)(\mathcal{H}) \subset W + \varphi W + \cdots + \varphi^m W$. Then for $k = l + 1$, we have $(\varphi^k - \psi^k)(\mathcal{H}) = \psi(\varphi^l - \psi^l)(\mathcal{H}) - h\varphi^l(\mathcal{H}) \subset \psi(W) + W \subset \bar{W}$.

The proof is complete.

Now we will give the proof of Theorem 5.

Proof. If $I - \varphi \lambda$ and $I - \psi \lambda$ are coprime, by Lemma 8, there is a finite dimensional space \bar{W} such that

$$
(\psi^k - \varphi^k)(\mathcal{H}) \subset \bar{W},
$$

(24)

and we have $\varphi(\bar{W}) \subset \bar{W}$. Define

$$
\bar{\varphi} = \text{Pr}(\varphi)|_{\bar{W}} : \bar{W} \rightarrow \bar{W}.
$$

(25)

Suppose $q = \text{rank}(\varphi - \psi)$; we denote by I_q the identity operator. Then $p(z) = \det(I_q - z\bar{\varphi}) \in \mathbb{Q}[z]$. For any $i, j \in \{1, 2, \ldots, q\}$, we have $\sum_{n \geq 0} a_n z^n = f_{ij}(z)/p(z)$ for some $f_{ij}(z) \in \mathbb{Q}[z]$. For more details see [5]. So by Lemma 4, $\det(I - zM_q(\bar{\varphi}))$ is rational; we get the conclusion.

Example 9. Suppose \mathcal{H} is the ring of countable infinite matrix with finite nonzero entries in each column.

Let

$$
\varphi = \begin{pmatrix}
\alpha_1 & \alpha_2 & \alpha_3 & \cdots \\
A & 0 & 0 & \cdots \\
0 & A & 0 & \cdots \\
\vdots & \vdots & \ddots & \ddots \\
\end{pmatrix},
$$

$$
h = \begin{pmatrix}
\alpha_1 & \alpha_2 & \alpha_3 & \cdots \\
0 & 0 & 0 & \cdots \\
0 & 0 & 0 & \cdots \\
\vdots & \vdots & \ddots & \ddots \\
\end{pmatrix},
$$

(26)

where $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ and $\alpha_1, \alpha_2, \alpha_3, \ldots$ are three-dimensional row vectors. We see that $(\varphi - h)^3 = 0$. So $I - \psi \lambda$ and $I - \varphi \lambda$ are left coprime. It is easy to check that

$$
\Delta_{(\varphi, \psi)} = \frac{1 - 2z}{1 - z}.
$$

(27)

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This paper was supported by National Natural Science Foundation of China (Grant nos. 11010105 and 11001064), by the Fundamental Research Funds for the Central Universities (Grant no. HIT. NSRF. 2014085), and by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

References

Submit your manuscripts at http://www.hindawi.com