Research Article

F-Expansion Method and New Exact Solutions of the Schrödinger-KdV Equation

Ali Filiz, 1 Mehmet Ekici, 2 and Abdullah Sonmezoglu 2

1 Department of Mathematics, Faculty of Science and Arts, Adnan Menderes University, 09010 Aydın, Turkey
2 Department of Mathematics, Faculty of Science and Arts, Bozok University, 66100 Yozgat, Turkey

Correspondence should be addressed to Ali Filiz; afiliz@adu.edu.tr

Received 17 August 2013; Accepted 27 October 2013; Published 29 January 2014

Academic Editors: A. K. Sharma and C. Yiu

F-expansion method is proposed to seek exact solutions of nonlinear evolution equations. With the aid of symbolic computation, we choose the Schrödinger-KdV equation with a source to illustrate the validity and advantages of the proposed method. A number of Jacobi-elliptic function solutions are obtained including the Weierstrass-elliptic function solutions. When the modulus \(m \) of Jacobi-elliptic function approaches to 1 and 0, soliton-like solutions and trigonometric-function solutions are also obtained, respectively. The proposed method is a straightforward, short, promising, and powerful method for the nonlinear evolution equations in mathematical physics.

1. Introduction

Nonlinear evolution equations are widely used to describe complex phenomena in many scientific and engineering fields, such as fluid dynamics, plasma physics, hydrodynamics, solid state physics, optical fibers, and acoustics. Therefore, finding solutions of such nonlinear evolution equations is important. However, determining solutions of nonlinear evolution equations is a very difficult task and only in certain cases one can obtain exact solutions. Recently, many powerful methods to obtain exact solutions of nonlinear evolution equations have been proposed, such as the inverse scattering method [1], the Bäcklund transformation method [2, 3], the Hirota bilinear scheme [4, 5], the Painlevé expansion [6], the homotopy perturbation method [7, 8], the homogenous balance method [9], the variational method [10–12], the tanh function method [13–16], the trial function and the sine-cosine method [17], \((G'/G)\)-expansion method [18, 19], the trial equation method [20–28], the auxiliary equation method [29], the Jacobian-elliptic function method [30–33], the F-expansion method [34–38], and the Exp-function method [39–42].

In the present research, we shall apply the the F-expansion method to obtain 52 types of exact solution: six for the Weierstrass-elliptic function solutions and the rest for Jacobian-elliptic function solutions of the Schrödinger-KdV equation:

\[
iu_t = uu_{xx} + uv, \quad v_t + 6vv_x + v_{xxx} = |u|^2_x, \tag{1}\]

Among the methods mentioned above, the auxiliary equation method [29] is based on the assumption that the travelling wave solutions are in the form

\[
u(\eta) = \sum_{i=0}^{n} a_i z^i(\eta), \quad \eta = \alpha (x - \beta t), \tag{2}\]

where \(z(\eta) \) satisfies the following auxiliary ordinary differential equation:

\[
\left(\frac{dz}{d\eta} \right)^2 = az^2(\eta) + bz^3(\eta) + cz^4(\eta), \tag{3}\]

where \(a, b, \) and \(c \) are real parameters. Although many exact solutions were obtained in [29] via the auxiliary equation (3), all these solutions are expressed only in terms of hyperbolic and trigonometric functions. In this paper, we want to generalize the work in [29]. We propose a new auxiliary
equation which has more general exact solutions in terms of Jacobian-elliptic and the Weierstrass-elliptic functions. Moreover, many exact solutions in terms of hyperbolic and trigonometric functions can be also obtained when the modulus of Jacobian-elliptic functions tends to one and zero, respectively.

The rest of the paper is arranged as follows. In Section 2, we briefly describe the auxiliary equation method (F-expansion method) for nonlinear evolution equations. By using the method proposed in Section 2, Jacobian-elliptic and the Weierstrass-elliptic functions solutions are presented in Sections 3 and 4, respectively. Some conclusions are given in Section 7. The paper is ended by Appendices A–D which play an important role in obtaining the solutions.

2. Description of the F-Expansion Method

Consider a nonlinear partial differential equation (PDE) with independent variables \(x, t\) and dependent variable \(u\):

\[
N(u, u_t, u_x, u_{xx}, \ldots) = 0. \tag{4}
\]

Assume that \(u(x, t) = u(\xi)\), where the wave variable \(\xi = x + ct\). By this, the nonlinear PDE (4) reduces to an ordinary differential equation (ODE):

\[
N(u, cu_t, u', u'', \ldots) = 0. \tag{5}
\]

Then we seek its solutions in the form

\[
u(\xi) = \sum_{i=0}^{m} a_i F^i(\xi), \tag{6}\]

where \(a_i, i = 0, 1, 2, \ldots, m\), are constants to be determined, \(m\) is a positive integer which can be evaluated by balancing the highest order nonlinear term(s) and the highest order partial derivative of \(u\) in (4), and \(F(\xi)\) satisfies the following auxiliary equation:

\[
F'(\xi) = \sigma \sqrt{PF^3(\xi) + QF^2(\xi) + R}, \tag{7}\]

where \(\sigma = \pm 1\) and \(P, Q, R\) are constants. The last equation hence holds for \(F(\xi)\):

\[
F'' = 2PF^3 + QF, \quad F''' = (6P^2 + Q)F', \quad F^{(4)} = 24P^2F^5 + 20PQF^3 + (12PR + Q^2)F, \quad F^{(5)} = (120P^3F^4 + 60PQF^2 + 12PR + Q^2)F'. \tag{8}\]

In Appendices A and B, we present 52 types of exact solution for (7) (see [34–37, 43] for details). In fact, these exact solutions can be used to construct more exact solutions for (1).

3. New Exact Jacobian-Elliptic Function Solutions of the Schrödinger-KdV Equation

The coupled Schrödinger-KdV equation

\[
iu_t - u_{xx} - uv = 0, \quad v_t + 6vv_x + v_{xxx} - (\sqrt{|u|})_{xx} = 0 \tag{9}\]

is known to describe various processes in dusty plasma, such as Langmuir, dust-acoustic wave, and electromagnetic waves [44–47]. Exact solution of (9) was studied by many authors [48–51]. Here the F-expansion method is applied to system (9) and gives some new solutions. Let

\[
u = e^{\theta} U(\xi), \quad v = V(\xi), \quad \theta = \alpha x + \beta t, \quad \xi = x + ct, \tag{10}\]

where \(\alpha, \beta,\) and \(c\) are constants.

Substituting (10) into (9), we find that \(c = 2\alpha\) and \(V, U\) satisfy the following coupled nonlinear ordinary differential system:

\[
U'' + (\beta - \alpha^2) U + UV = 0, \quad 2\alpha V' + 6vv' + U'' - (U^2)' = 0. \tag{11}\]

Balancing the highest nonlinear terms and the highest order derivative terms in (11), we find \(m = 2\) and \(n = 2\). Therefore, we suppose that the solution of (11) can be expressed by

\[
U(\xi) = a_0 + a_1 F(\xi) + a_2 F^2(\xi), \quad V(\xi) = b_0 + b_1 F(\xi) + b_2 F^2(\xi), \tag{12}\]

where \(a_0, a_1, a_2, b_0, b_1,\) and \(b_2\) are constants to be determined later and \(F(\xi)\) is a solution of ODE (7). Inserting (12) into (11) with the aid of (7), the left-hand side of (11) becomes polynomials in \(F(\xi)\) if canceling \(F^2\) and setting the coefficients of the polynomial to zero yields a set of algebraic equations, \(a_0, a_1, a_2, b_0, b_1,\) and \(b_2\). Solving the system of algebraic equations with the aid of Mathematica, we obtain

\[
a_0 = 0, \quad a_1 = \pm 2 \sqrt{P(Q - \alpha - 3\alpha^2 + 3\beta)}, \quad a_2 = 0, \quad b_0 = \alpha^2 - \beta - Q, \quad b_1 = 0, \quad b_2 = -2P. \tag{13}\]

Substituting these results into (12), we have the following formal solution of (11):

\[
U = \pm 2 \sqrt{P(Q - \alpha - 3\alpha^2 + 3\beta)} F(\xi), \quad V = \alpha^2 - \beta - Q - 2P F^2(\xi), \quad \text{where} \quad \xi = x + ct. \tag{14}\]

With the aid of Appendix A and from the formal solution of (14) along with (10), one can deduce more general combined Jacobian-elliptic function solutions of (1). Hence, the following exact solutions are obtained.
Case 1. \(P = m^2, Q = -(1 + m^2), R = 1, F(\xi) = sn\xi, \)
\[
u_1 = e^{i\theta}\left\{ \pm 2m\sqrt{-1 - m^2 - \alpha - 3\alpha^2 + 3\beta sn\xi} \right\},
\]
\[v_1 = \alpha^2 - \beta + 1 + m^2 - 2m^2 sn^2\xi.\]

Case 2. \(P = m^2, Q = -(1 + m^2), R = 1, F(\xi) = cd\xi, \)
\[
u_2 = e^{i\theta}\left\{ \pm 2m\sqrt{-1 - m^2 - \alpha - 3\alpha^2 + 3\beta cd\xi} \right\},
\]
\[v_2 = \alpha^2 - \beta + 1 + m^2 - 2m^2 cd^2\xi.\]

Case 3. \(P = -m^2, Q = 2m^2 - 1, R = 1 - m^2, F(\xi) = cn\xi, \)
\[
u_3 = e^{i\theta}\left\{ \pm 2m\sqrt{-2m^2 + 1 + \alpha + 3\alpha^2 - 3\beta cn\xi} \right\},
\]
\[v_3 = \alpha^2 - \beta - 2m^2 + 1 + 2m^2 cn^2\xi.\]

Case 4. \(P = -1, Q = 2 - m^2, R = m^2 - 1, F(\xi) = dn\xi, \)
\[
u_4 = e^{i\theta}\left\{ \pm 2\sqrt{-2 + m^2 + \alpha + 3\alpha^2 - 3\beta dn\xi} \right\},
\]
\[v_4 = \alpha^2 - \beta - 2 + m^2 + 2dn^2\xi.\]

Case 5. \(P = 1, Q = -1 + m^2, R = m^2, F(\xi) = ns\xi, \)
\[
u_5 = e^{i\theta}\left\{ \pm 2\sqrt{-1 - m^2 - \alpha - 3\alpha^2 + 3\beta ns\xi} \right\},
\]
\[v_5 = \alpha^2 - \beta + 1 + m^2 - 2ns^2\xi.\]

Case 6. \(P = 1, Q = -1 + m^2, R = m^2, F(\xi) = dc\xi, \)
\[
u_6 = e^{i\theta}\left\{ \pm 2\sqrt{-1 - m^2 - \alpha - 3\alpha^2 + 3\beta dc\xi} \right\},
\]
\[v_6 = \alpha^2 - \beta + 1 + m^2 - 2dc^2\xi.\]

Case 7. \(P = 1 - m^2, Q = 2m^2 - 1, R = -m^2, F(\xi) = nc\xi, \)
\[
u_7 = e^{i\theta}\left\{ \pm 2\sqrt{(1 - m^2) (2m^2 - 1 - \alpha - 3\alpha^2 + 3\beta) nc\xi} \right\},
\]
\[v_7 = \alpha^2 - \beta - 2m^2 + 1 - 2 (1 - m^2) nc^2\xi.\]

Case 8. \(P = m^2 - 1, Q = 2 - m^2, R = -1, F(\xi) = nd\xi, \)
\[
u_8 = e^{i\theta}\left\{ \pm 2\sqrt{(m^2 - 1) (2 - m^2 - \alpha - 3\alpha^2 + 3\beta) nd\xi} \right\},
\]
\[v_8 = \alpha^2 - \beta - 2 + m^2 - 2 (m^2 - 1) nd^2\xi.\]

Case 9. \(P = 1 - m^2, Q = 2 - m^2, R = 1, F(\xi) = sc\xi, \)
\[
u_9 = e^{i\theta}\left\{ \pm 2\sqrt{(1 - m^2) (2 - m^2 - \alpha - 3\alpha^2 + 3\beta) sc\xi} \right\},
\]
\[v_9 = \alpha^2 - \beta - 2 + m^2 - 2 (1 - m^2) sc^2\xi.\]
Case 17. $P = m^2/4, Q = (m^2 - 2)/2, R = m^2/4, F(\xi) = \sqrt{1 - m^2}sd\xi \pm cd\xi$,

$$u_{17} = e^{i\theta} \left\{ \pm m \sqrt{\frac{m^2 - 2 - 2\alpha - 6\alpha^2 + 6\beta}{2}} \right. \right.
\times \left(\sqrt{1 - m^2}sd\xi \pm cd\xi \right),$$

$$v_{17} = \frac{1}{2} \left\{ 2\alpha^2 - 2\beta - m^2 + 2 - m^2 \left(\sqrt{1 - m^2}sd\xi \pm cd\xi \right)^2 \right\}. \quad (31)$$

Case 18. $P = 1/4, Q = (1 - m^2)/2, R = 1/4, F(\xi) = mcd\xi \pm i\sqrt{1 - m^2}nd\xi$,

$$u_{18} = e^{i\theta} \left\{ \pm \sqrt{\frac{1 - m^2 - 2\alpha - 6\alpha^2 + 6\beta}{2}} \right.
\times \left(mcd\xi \pm i\sqrt{1 - m^2}nd\xi \right),$$

$$v_{18} = \frac{1}{2} \left\{ 2\alpha^2 - 2\beta - 1 + m^2
\right.
\left. - \left(mcd\xi \pm i\sqrt{1 - m^2}nd\xi \right)^2 \right\}. \quad (32)$$

Case 19. $P = 1/4, Q = (1 - 2m^2)/2, R = 1/4, F(\xi) = msn\xi \pm idn\xi$,

$$u_{19} = e^{i\theta} \left\{ \pm \sqrt{\frac{1 - 2m^2 - 2\alpha - 6\alpha^2 + 6\beta}{2}} \right.
\times \left(msn\xi \pm idn\xi \right),$$

$$v_{19} = \frac{1}{2} \left\{ 2\alpha^2 - 2\beta - 1 + 2m^2 - (msn\xi \pm idn\xi)^2 \right\}. \quad (33)$$

Case 20. $P = 1/4, Q = (1 - m^2)/2, R = 1/4, F(\xi) = \sqrt{1 - m^2}sc\xi \pm ide\xi$,

$$u_{20} = e^{i\theta} \left\{ \pm \sqrt{\frac{1 - m^2 - 2\alpha - 6\alpha^2 + 6\beta}{2}} \right.
\times \left(\sqrt{1 - m^2}sc\xi \pm ide\xi \right),$$

$$v_{20} = \frac{1}{2} \left\{ 2\alpha^2 - 2\beta - 1 + m^2 \right.
\left. - \left(\sqrt{1 - m^2}sc\xi \pm ide\xi \right)^2 \right\}. \quad (34)$$

Case 21. $P = (m^2 - 1)/4, Q = (m^2 + 1)/2, R = (m^2 - 1)/4, F(\xi) = msd\xi \pm nd\xi$,

$$u_{21} = e^{i\theta} \left\{ \pm \sqrt{\frac{(m^2 - 1)(m^2 + 1 - 2\alpha - 6\alpha^2 + 6\beta)}{2}} \right.
\times (msd\xi \pm nd\xi),$$

$$v_{21} = \frac{1}{2} \left\{ 2\alpha^2 - 2\beta - m^2 - 1 - (m^2 - 1) \right.
\left. \times (msd\xi \pm nd\xi)^2 \right\}. \quad (35)$$

Case 22. $P = m^2/4, Q = (m^2 - 2)/2, R = 1/4, F(\xi) = sn\xi/(1 \pm dn\xi)$,

$$u_{22} = e^{i\theta} \left\{ \pm m \sqrt{\frac{m^2 - 2 - 2\alpha - 6\alpha^2 + 6\beta}{2}} \right.
\times \left(sn\xi \pm 1 \pm dn\xi \right),$$

$$v_{22} = \frac{1}{2} \left\{ 2\alpha^2 - 2\beta - m^2 + 2 - m^2 \left(sn\xi \pm 1 \pm dn\xi \right)^2 \right\}. \quad (36)$$

Case 23. $P = -1/4, Q = (m^2 + 1)/2, R = (1 - m^2)^2/4, F(\xi) = mc\xi \pm d\xi$,

$$u_{23} = e^{i\theta} \left\{ \pm \sqrt{\frac{-n^2 - 1 + 2\alpha + 6\alpha^2 - 6\beta}{2}} \right.
\times (mc\xi \pm d\xi),$$

$$v_{23} = \frac{1}{2} \left\{ 2\alpha^2 - 2\beta - m^2 - 1 + (mc\xi \pm d\xi)^2 \right\}. \quad (37)$$

Case 24. $P = (1 - m^2)^2/4, Q = (m^2 + 1)/2, R = 1/4, F(\xi) = ds\xi \pm cs\xi$,

$$u_{24} = e^{i\theta} \left\{ \pm \left(1 - m^2 \right) \sqrt{\frac{m^2 + 1 - 2\alpha - 6\alpha^2 + 6\beta}{2}} \right.
\times (ds\xi \pm cs\xi),$$

$$v_{24} = \frac{1}{2} \left\{ 2\alpha^2 - 2\beta - m^2 - 1 - (1 - m^2)^2 (ds\xi \pm cs\xi)^2 \right\}. \quad (38)$$
Case 25. \(P = m^4(1 - m^2)/(2(2 - m^2)), Q = 2(1 - m^2)/(m^2 - 2), R = (1 - m^2)/(2(2 - m^2)), F(\xi) = d\xi \pm \sqrt{1 - m^2}n\xi, \)
\[u_{25} = e^\theta \left\{ \pm \frac{\sqrt{3m^2}}{2 - m^2} \right. \]
\[\times \sqrt{(m^2 - 1)[2(1 - m^2) + (m^2 - 2)(-\alpha - 3\alpha^2 + 3\beta)]} \]
\[\times \left. (d\xi \pm \sqrt{1 - m^2}n\xi) \right\}, \]
\[v_{25} = \frac{1}{m^2 - 2} \left\{ (m^2 - 2)(\alpha^2 - \beta) + (1 - m^2) \right. \]
\[\times \left. [-2 + m'(d\xi \pm \sqrt{1 - m^2}n\xi)]^2 \right\}. \]

Case 26. \(P > 0, Q < 0, R = m^2Q^2/(1 + m^2)^2P, F(\xi) = \sqrt{-m^2Q/(1 + m^2)^2P}\text{sn}(\sqrt{-Q/(1 + m^2)}\xi), \)
\[u_{26} = e^\theta \left\{ \pm 2m \sqrt{Q \left(-Q + \alpha + 3\alpha^2 - 3\beta \right) \over 1 + m^2} \right. \]
\[\times sn \left(\sqrt{Q \over 1 + m^2} \xi \right) \left. \right\}, \]
\[v_{26} = \alpha^2 - \beta - Q + \frac{2m^2Q}{m^2 + 1}sn^2 \left(\sqrt{-Q \over 1 + m^2} \xi \right). \]

Case 27. \(P < 0, Q > 0, R = (1 - m^2)Q^2/(m^2 - 2)^2P, F(\xi) = \sqrt{-Q/(2 - m^2)}\text{dn}(\sqrt{Q/(2 - m^2)}\xi), \)
\[u_{27} = e^\theta \left\{ \pm 2 \sqrt{Q \left(-Q + \alpha + 3\alpha^2 - 3\beta \right) \over 2 - m^2} \right. \]
\[\times \left. dn \left(Q \over 2 - m^2 \xi \right) \right\}, \]
\[v_{27} = \alpha^2 - \beta - Q + \frac{2Q}{2 - m^2}dn^2 \left(Q \over 2 - m^2 \xi \right). \]

Case 28. \(P < 0, Q > 0, R = m^2(m^2 - 1)Q^2/(2m^2 - 1)^2P, F(\xi) = \sqrt{-m^2Q/(2m^2 - 1)^2P}\text{cn}(\sqrt{Q/(2m^2 - 1)}\xi), \)
\[u_{28} = e^\theta \left\{ \pm 2m \sqrt{Q \left(-Q + \alpha + 3\alpha^2 - 3\beta \right) \over 2m^2 - 1} \right. \]
\[\times \left. cn \left(Q \over 2m^2 - 1 \xi \right) \right\}, \]
\[v_{28} = \alpha^2 - \beta - Q + \frac{2m^2Q}{2m^2 - 1}cn^2 \left(Q \over 2m^2 - 1 \xi \right). \]
Case 34. \(P = -\frac{4}{m}, Q = 6m - m^2 - 1, R = -2m^3 + m^4 + m^2, F(\xi) = m cn d\xi/(msn^2\xi + 1), \)

\[
u_{34} = e^{i\theta} \left\{ \pm 4 \sqrt{m^2 - 6m + 1 + \alpha + 3\alpha^2 - 3\beta} \right. \}
\times \sqrt{m cn d\xi} \over msn^2\xi + 1 \} \right., \]

\[
u_{34} = \alpha^2 - \beta + m^2 - 6m + 1 + {8m cn^2 d\xi \over (msn^2\xi + 1)^2}. \] (48)

Case 35. \(P = 4/m, Q = -6m - m^2 - 1, R = 2m^3 + m^4 + m^2, F(\xi) = m cn d\xi/(msn^2\xi - 1), \)

\[
u_{35} = e^{i\theta} \left\{ \pm 4 \sqrt{-m^2 - 6m + 1 - \alpha - 3\alpha^2 + 3\beta} \right. \}
\times \sqrt{m cn d\xi} \over msn^2\xi - 1 \} \right., \]

\[
u_{35} = \alpha^2 - \beta + m^2 + 6m + 1 - {8m cn^2 d\xi \over (msn^2\xi - 1)^2}. \] (49)

Case 36. \(P = 1/4, Q = (1 - 2m^2)/2, R = 1/4, F(\xi) = sn \xi/(1 \pm cn \xi), \)

\[
u_{36} = e^{i\theta} \left\{ \pm \sqrt{2 - m^2 - 2\alpha - 6\alpha^2 + 6\beta} \right. \}
\times \frac{sn \xi}{1 \pm cn \xi} \right., \]

\[
u_{36} = 2 \left\{ 2\alpha^2 - 2\beta - 1 + 2m^2 - \frac{sn^2 \xi}{(1 \pm cn \xi)^2} \right. \} \right.. \] (50)

Case 37. \(P = (1 - m^2)/4, Q = (1 + m^2)/2, R = (1 - m^2)/4, F(\xi) = cn \xi/(1 \pm sn \xi), \)

\[
u_{37} = e^{i\theta} \left\{ \pm \sqrt{1 - m^2} \right. \}
\times \frac{(1 - m^2 - 2\alpha + 6\alpha^2 + 6\beta)}{2} \right., \]

\[
u_{37} = 2 \left\{ 2\alpha^2 - 2\beta - 1 - m^2 - \frac{cn^2 \xi}{(1 \pm sn \xi)^2} \right. \} \right.. \] (51)

Case 38. \(P = 4m_1, Q = 2 + 6m_1 - m^2, R = 2 + 2m_1 - m^2, F(\xi) = m^2 sn \xi cn \xi/(m_1 - d\xi), \)

\[
u_{38} = e^{i\theta} \left\{ \pm 4 \sqrt{m_1 \left(2 + 6m_1 - m^2 - \alpha - 3\alpha^2 + 3\beta \right) \right. \}
\times \frac{m^2 cn \xi}{m_1 - d\xi} \right., \]

\[
u_{38} = \alpha^2 - \beta - 2 + 6m_1 + m^4 - {8m_1 m^4 sn^2 \xi cn^2 \xi \over (m_1 - d\xi)^2}. \] (52)

Case 39. \(P = -4m_1, Q = 2 - 6m_1 - m^2, R = 2 - 2m_1 - m^2, F(\xi) = -m^2 sn \xi cn \xi/(m_1 + d\xi), \)

\[
u_{39} = e^{i\theta} \left\{ \pm 4 \sqrt{-m_1 \left(-2 + 6m_1 + m^2 + \alpha + 3\alpha^2 - 3\beta \right) \right. \}
\times \frac{m^2 sn \xi}{m_1 + d\xi} \right., \]

\[
u_{39} = \alpha^2 - \beta - 2 - 6m_1 + m^2 + {8m_1 m^4 sn^2 \xi cn^2 \xi \over (m_1 + d\xi)^2}. \] (53)

Case 40. \(P = (2 - m^2 - 2m_1)/4, Q = m^2/2 - 1 + 3m_1, R = (2 - m^2 - 2m_1)/4, F(\xi) = m^2 sn \xi cn \xi/(sn^2 \xi + (1 + m_1) d\xi - 1 - m_1), \)

\[
u_{40} = e^{i\theta} \left\{ \pm \sqrt{(2 - m^2 - 2m_1)(m^2 - 2 - 6m_1 - 2\alpha - 6\alpha^2 + 6\beta)} \right. \}
\times \frac{m^2 sn \xi}{sn^2 \xi + (1 + m_1) d\xi - 1 - m_1} \right., \]

\[
u_{40} = 2 \left\{ 2\alpha^2 - 2\beta - m^2 + 2 + 6m_1 \right. \}
\times \frac{-m^4 (2 - m^2 - 2m_1) sn^2 \xi cn^2 \xi \over [sn^2 \xi + (1 + m_1) d\xi - 1 - m_1]^2} \right.. \] (54)

Case 41. \(P = (2 - m^2 + 2m_1)/4, Q = m^2/2 - 1 + 3m_1, R = (2 - m^2 + 2m_1)/4, F(\xi) = m^2 sn \xi cn \xi/(sn^2 \xi + (-1 + m_1) d\xi - 1 - m_1), \)

\[
u_{41} = e^{i\theta} \left\{ \pm \sqrt{(2 - m^2 + 2m_1)(m^2 - 2 + 6m_1 - 2\alpha - 6\alpha^2 + 6\beta)} \right. \}
\times \frac{m^2 sn \xi}{sn^2 \xi + (-1 + m_1) d\xi - 1 - m_1} \right., \]

\[
u_{41} = 2 \left\{ 2\alpha^2 - 2\beta - m^2 + 2 - 6m_1 \right. \}
\times \frac{-m^4 (2 - m^2 + 2m_1) sn^2 \xi cn^2 \xi \over [sn^2 \xi + (-1 + m_1) d\xi - 1 - m_1]^2} \right.. \] (55)

Case 42. \(P = (C^2 m^4 - (B^2 + C^2) m^2 + B^2)/4, Q = (m^2 + 1)/2, R = (m^2 - 1)/(4(C^2 m^2 - B^2)), F(\xi) = (\sqrt{B^2 - C^2}/(B^2 - C^2 m^2) + sn \xi)/(B cn \xi + C d\xi), \)
\[u_{42} = e^{i\theta} \left\{ \pm \sqrt{\frac{(B^2 - C^2)}{(B^2 - C^2m^2) + cn^2}} \times \left(\frac{\sqrt{(B^2 - C^2m^2)/(B^2 + C^2m^2) + cn^2}}{Bn^2 + Cdn^2} \right)^2 \right\}. \]

\[v_{42} = \frac{1}{2} \left\{ 2\alpha^2 - 2\beta - m^2 - 1 - (C^2m - (B^2 + C^2)m^2 + B^2) \right\} \]

\[u_{43} = e^{i\theta} \left\{ \pm \sqrt{\frac{(B^2 + C^2m^2)(1 - 2m^2 - 2\alpha - 6\alpha^2 + 6\beta)}{2}} \times \left(\frac{\sqrt{(B^2 + C^2m^2)/(B^2 + C^2m^2) + cn^2}}{Bn^2 + Cdn^2} \right)^2 \right\}. \]

\[v_{43} = \frac{1}{2} \left\{ 2\alpha^2 - 2\beta - 1 + 2m^2 - (B^2 + C^2m^2) \right\} \]

\[u_{44} = e^{i\theta} \left\{ \pm \sqrt{\frac{(B^2 + C^2m^2) - 2m^2 - 2\alpha - 6\alpha^2 + 6\beta}{2}} \times \left(\frac{\sqrt{(B^2 + C^2m^2)/(B^2 + C^2m^2) + dn^2}}{Bn^2 + Cdn^2} \right)^2 \right\}. \]

\[v_{44} = \frac{1}{2} \left\{ 2\alpha^2 - 2\beta - m^2 + 2 - (B^2 + C^2m^2) \right\} \]

\[u_{45} = e^{i\theta} \left\{ \pm 2 \frac{(m + 1)}{\sqrt{2m^2 - 2 + m + 3\alpha^2 - 3\beta}} \times \frac{\text{sn}^2 \xi - 1}{\text{sn}^2 \xi + 1} \right\} . \]

\[v_{45} = \alpha^2 - \beta - 2m^2 - 2 + 2(m + 1)^2 \]

\[u_{46} = e^{i\theta} \left\{ \pm 2 \frac{(m + 1)}{\sqrt{2m^2 - 2 + 3\alpha^2 - 3\beta}} \times \frac{\text{sn}^2 \xi + 1}{\text{sn}^2 \xi - 1} \right\} . \]

\[v_{46} = \alpha^2 - \beta - 2m^2 - 2 + 2(m + 1)^2 \]

We note that there is much duplication in the list of 46 solutions in terms of Jacobian-elliptic functions. Here are some examples, using the well-known identities relating Jacobian-elliptic functions (see 121.00, 129.01, 129.02, and 129.03 in [52], e.g.) reveals that \(u_1, u_3, \) and \(u_4 \) are identical; \(v_1, v_3, \) and \(v_4 \) are identical; \(u_5, u_6, \) and \(u_{10} \) are identical; \(v_5, v_9, \) and \(v_{10} \) are identical; \(u_{11}, u_{11}, \) and \(u_{12} \) are identical; \(v_3, v_{11}, \) and \(v_{12} \) are identical; \(u_6, u_7, \) and \(u_9 \) are identical; \(v_6, v_7, \) and \(v_9 \) are identical. Use of 162.01 in [52] reveals that \(u_{27} \) and \(u_{28} \) are equivalent and \(v_{27} \) and \(v_{28} \) are equivalent.

4. The New Weierstrass-Elliptic Function Solutions of the Schrödinger-Kdv Equation

On using the solutions given in [43], mentioned in Appendix B, and from the formal solution (14) along with (10), we get then the following exact solutions.

\[u_{47} = e^{i\theta} \left\{ \pm 2 \sqrt{P - 3/4} \right\} \]

\[v_{47} = \alpha^2 - \beta - Q - 2 \left\{ \sqrt{P} (\xi; g_2, g_3) - \frac{1}{3} Q \right\} . \]
Case 48. \(g_2 = (4/3)(Q^2 - 3PR), g_3 = (4Q/27)(-2Q^2 + 9PR), \)
\(F(\xi) = \sqrt{3R/(3\wp(\xi; g_2, g_3) - Q)}, \)
\(u_{48} = e^{i\theta} \left\{ \pm 2 \sqrt{P(Q - \alpha - 3\alpha^2 + 3\beta)} \right. \)
\(\times \left. \sqrt{\frac{3R}{3\wp(\xi; g_2, g_3) - Q}} \right\}, \) \((62) \)
\(v_{48} = \alpha^2 - \beta - Q - \frac{6PR}{3\wp(\xi; g_2, g_3) - Q}. \)

Case 49. \(g_2 = -(5DQ + 4Q^2 + 33PQR)/12, g_3 = (21Q^2 - 63PRD + 20Q^3 - 27PQR)/216, \)
\(F(\xi) = \sqrt{12R\wp(\xi; g_2, g_3) + 2R(2Q + D)/(12\wp(\xi; g_2, g_3) + D)}, \)
\(u_{49} = e^{i\theta} \left\{ \pm 2 \sqrt{P(Q - \alpha - 3\alpha^2 + 3\beta)} \right. \)
\(\times \left. \sqrt{12R\wp(\xi; g_2, g_3) + 2R(2Q + D)} \right\}, \) \((63) \)
\(v_{49} = \alpha^2 - \beta - Q - \frac{4PR[6\wp(\xi; g_2, g_3) + 2Q + D]}{(12\wp(\xi; g_2, g_3) + D)^2}. \)

Case 50. \(g_2 = (1/12)Q^2 + PR, g_3 = (1/1216)Q(36PR - Q^2), \)
\(F(\xi) = \sqrt{R[6\wp(\xi; g_2, g_3) + Q]/3\wp(\xi; g_2, g_3)}, \)
\(u_{50} = e^{i\theta} \left\{ \pm 2 \sqrt{PR(Q - \alpha - 3\alpha^2 + 3\beta)} \right. \)
\(\times \left. \sqrt{6\wp(\xi; g_2, g_3) + Q} \right\}, \) \((64) \)
\(v_{50} = \alpha^2 - \beta - Q - \frac{2PR[6\wp(\xi; g_2, g_3) + Q]^2}{9[\wp(\xi; g_2, g_3)]^2}. \)

Case 51. \(g_2 = (1/12)Q^2 + PR, g_3 = (1/1216)Q(36PR - Q^2), \)
\(F(\xi) = 3\wp(\xi; g_2, g_3)/\sqrt{R[6p(\xi; g_2, g_3) + Q]}, \)
\(u_{51} = e^{i\theta} \left\{ \pm 2 \sqrt{Q - \alpha - 3\alpha^2 + 3\beta} \right. \)
\(\times \left. \frac{3\wp(\xi; g_2, g_3)}{6\wp(\xi; g_2, g_3) + Q} \right\}, \) \((65) \)
\(v_{51} = \alpha^2 - \beta - Q - \frac{18[\wp(\xi; g_2, g_3)]^2}{6\wp(\xi; g_2, g_3) + Q}. \)

Case 52. \(R = 5Q^2/36P, g_2 = 2Q^2/9, g_3 = Q^2/54, \)
\(F(\xi) = Q\sqrt{-15Q/2P\wp(\xi; g_2, g_3)/(3\wp(\xi; g_2, g_3) + Q)}, \)
\(u_{52} = e^{i\theta} \left\{ \pm 2 \sqrt{P(Q - \alpha - 3\alpha^2 + 3\beta)} \right. \)
\(\times \left. \frac{Q\sqrt{-15Q/2P\wp(\xi; g_2, g_3)}}{3\wp(\xi; g_2, g_3) + Q} \right\}, \) \((66) \)
\(v_{52} = \alpha^2 - \beta - Q + \frac{15Q^3\wp(\xi; g_2, g_3)}{[3\wp(\xi; g_2, g_3) + Q]^2}. \)

It should be noted that any solution that can be expressed in terms of a Weierstrass-type elliptic function can be also converted into a solution in terms of a Jacobian-type elliptic function (for more details, see [53]). Consequently, Cases 47–52 are already covered in Cases 1–46. For example, using 1031.01 in [52] reveals that, with the \(P, Q, \) and \(R \) values for Case 1, \(u_1 \) and \(u_{48} \) are identical and \(v_1 \) and \(v_{48} \) are identical.

5. New Soliton-Like Solutions of the Schrödinger-KdV Equation

Some soliton-like solutions of (1) can be obtained in the limited case when the modulus \(m \to 1 \) (see Appendix C), as follows:

\(u_4 = e^{i\theta} \left\{ \pm 2 \sqrt{-2 - \alpha - 3\alpha^2 + 3\beta \tanh \xi} \right\}, \)
\(v_1 = \alpha^2 - \beta + 2 \text{sech}^2 \xi, \)
\(u_5 = e^{i\theta} \left\{ \pm 2 \sqrt{1 + \alpha + 3\alpha^2 - 3\beta \text{sech}^2 \xi} \right\}, \)
\(v_3 = \alpha^2 - \beta - 1 + 2 \text{sech}^2 \xi, \)
\(u_5 = e^{i\theta} \left\{ \pm 2 \sqrt{-2 - \alpha - 3\alpha^2 + 3\beta \text{coth} \xi} \right\}, \)
\(v_5 = \alpha^2 - \beta - 2 \text{csch}^2 \xi, \)
\(u_{11} = e^{i\theta} \left\{ \pm 2 \sqrt{1 - \alpha - 3\alpha^2 + 3\beta \text{csch} \xi} \right\}, \)
\(v_{11} = \alpha^2 - \beta - 1 - 2 \text{csch}^2 \xi, \)
\(u_{13} = e^{i\theta} \left\{ \pm \sqrt{-1 - 2\alpha - 6\alpha^2 + 6\beta} \right\} \left(\coth \xi \pm \text{csch} \xi \right), \)
\(v_{13} = \frac{1}{2} \left(2\alpha^2 - 2\beta + 1 - (\coth \xi \pm \text{csch} \xi)^2 \right), \)
\(u_{16} = e^{i\theta} \left\{ \pm \sqrt{-1 - 2\alpha - 6\alpha^2 + 6\beta} \right\} \left(\tanh \xi \pm i \text{sech} \xi \right), \)
\(v_{16} = \frac{1}{2} \left(2\alpha^2 - 2\beta + 1 - (\tanh \xi \pm i \text{sech} \xi)^2 \right). \)
Here, it should be noted that each exact solution given in (67) can be split into two solutions if one chooses the (+ve) and (−ve) signs, respectively, but they have not been calculated. Also, all the exact solutions given by (67) can be verified by substitution. The main feature for some of these exact solutions is the inclusion of the free parameters \(Q\), \(B\), and \(C\).

Some trigonometric-function solutions of (1) can be obtained in the limited case when the modulus \(m \to 0\). For example,

\[
u_5 = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \csc^2 \xi} \right\},
\]

\[
u_6 = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \sec^2 \xi} \right\},
\]

\[
u_7 = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \cot^2 \xi} \right\},
\]

\[
u_8 = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \cot^2 \xi} \right\},
\]

\[
u_9 = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \cot^2 \xi} \right\},
\]

\[
u_{10} = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \cot^2 \xi} \right\},
\]

\[
u_{11} = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \cot^2 \xi} \right\},
\]

\[
u_{12} = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \cot^2 \xi} \right\},
\]

\[
u_{13} = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \cot^2 \xi} \right\},
\]

\[
u_{14} = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \cot^2 \xi} \right\},
\]

\[
u_{15} = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \cot^2 \xi} \right\},
\]

\[
u_{16} = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \cot^2 \xi} \right\},
\]

\[
u_{17} = e^{i\theta} \left\{ \pm 2\sqrt{-1 - \alpha - 3\alpha^2 + 3\beta \cot^2 \xi} \right\},
\]
Appendices

A. Relations between Values of \((P, Q, R)\) and Corresponding \(F(\xi)\) in (7)

Relations between values of \((P, Q, R)\) and corresponding \(F(\xi)\) in (7), where \(A, B,\) and \(C\) are arbitrary constants and \(m_1 = \sqrt{1 - m^2}\). As shown in Table 1.

B. The Weierstrass-Elliptic Function Solutions for (7)

The Weierstrass-elliptic function solutions for (7), where \(D = (1/2)(-5Q \pm \sqrt{9Q^2 - 36PR})\) and \(p'(\xi; g_2, g_3) = d\varphi(\xi; g_2, g_3)/d\xi\). As shown in Table 2.

C. Relations between Jacobian-Elliptic Functions and Hyperbolic Functions

The Jacobian-elliptic functions degenerate into hyperbolic functions when \(m \to 1\) as follows:

\[\begin{align*}
\text{sn} \xi & \to \text{tanh} \xi, & \text{cn} \xi & \to \text{sech} \xi, & \text{dn} \xi & \to \text{sech} \xi, \\
\text{sc} \xi & \to \text{sinh} \xi, & \text{sd} \xi & \to \text{sinh} \xi, & \text{cd} \xi & \to 1, \\
\text{ns} \xi & \to \text{coth} \xi, & \text{nc} \xi & \to \text{cosh} \xi, & \text{nd} \xi & \to \text{cosh} \xi, \\
\text{cs} \xi & \to \text{csch} \xi, & \text{ds} \xi & \to \text{csch} \xi, & \text{dc} \xi & \to 1. \\
\end{align*}\]

(C.1)

The Jacobian-elliptic functions degenerate into trigonometric functions when \(m \to 0\) as follows:

\[\begin{align*}
\text{sn} \xi & \to \text{sin} \xi, & \text{cn} \xi & \to \text{cos} \xi, & \text{dn} \xi & \to 1, \\
\text{sc} \xi & \to \text{tan} \xi, & \text{sd} \xi & \to \text{sin} \xi, & \text{cd} \xi & \to \text{cos} \xi, \\
\text{ns} \xi & \to \text{cs} \xi, & \text{nc} \xi & \to \text{sec} \xi, & \text{nd} \xi & \to 1, \\
\text{cs} \xi & \to \text{cot} \xi, & \text{ds} \xi & \to \text{cs} \xi, & \text{dc} \xi & \to \text{sec} \xi. \\
\end{align*}\]

(C.2)

D. Some Trigonometric and Hyperbolic Identities

Consider the following:

\[\begin{align*}
\text{coth} \theta - \text{csch} \theta &= \text{tanh} \frac{\theta}{2}, & \text{csc} \theta - \cot \theta &= \text{tan} \frac{\theta}{2}, \\
\text{coth} \theta + \text{csch} \theta &= \text{coth} \frac{\theta}{2}, & \text{csc} \theta + \cot \theta &= \text{cot} \frac{\theta}{2}, \\
\text{tanh} \theta + i \text{sech} \theta &= \text{tanh} \left[\frac{1}{2} \left(\theta + \frac{i\pi}{2} \right) \right], \\
\text{sec} \theta + \tan \theta &= \text{tan} \left[\frac{1}{2} \left(\theta + \pi \right) \right], \\
\text{tanh} \theta - i \text{sech} \theta &= \text{coth} \left[\frac{1}{2} \left(\theta + \frac{i\pi}{2} \right) \right], \\
\text{sec} \theta - \tan \theta &= \text{cot} \left[\frac{1}{2} \left(\theta + \frac{\pi}{2} \right) \right].
\end{align*}\]

(D.1)
<table>
<thead>
<tr>
<th>Case</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>$F(\xi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>m^2</td>
<td>$-(1 + m^2)$</td>
<td>1</td>
<td>$sn\xi$</td>
</tr>
<tr>
<td>2</td>
<td>m^2</td>
<td>$-(1 + m^2)$</td>
<td>1</td>
<td>$cd\xi = \frac{cn\xi}{dn\xi}$</td>
</tr>
<tr>
<td>3</td>
<td>$-m^2$</td>
<td>$2m^2 - 1$</td>
<td>$1 - m^2$</td>
<td>$cn\xi$</td>
</tr>
<tr>
<td>4</td>
<td>-1</td>
<td>$2 - m^2$</td>
<td>$m^2 - 1$</td>
<td>$dn\xi$</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>$-(1 + m^2)$</td>
<td>m^2</td>
<td>$ns\xi = (sn\xi)^{-1}$</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>$-(1 + m^2)$</td>
<td>m^2</td>
<td>$dc\xi = \frac{dn\xi}{cn\xi}$</td>
</tr>
<tr>
<td>7</td>
<td>$1 - m^2$</td>
<td>$2m^2 - 1$</td>
<td>$-m^2$</td>
<td>$nc\xi = (cn\xi)^{-1}$</td>
</tr>
<tr>
<td>8</td>
<td>$m^2 - 1$</td>
<td>$2 - m^2$</td>
<td>-1</td>
<td>$na\xi = (dn\xi)^{-1}$</td>
</tr>
<tr>
<td>9</td>
<td>$1 - m^2$</td>
<td>$2 - m^2$</td>
<td>1</td>
<td>$sc\xi = \frac{sn\xi}{cn\xi}$</td>
</tr>
<tr>
<td>10</td>
<td>$-m^2(1 - m^2)$</td>
<td>$2m^2 - 1$</td>
<td>1</td>
<td>$sd\xi = \frac{sn\xi}{dn\xi}$</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>$2 - m^2$</td>
<td>$1 - m^2$</td>
<td>$cs\xi = \frac{cn\xi}{sn\xi}$</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>$2m^2 - 1$</td>
<td>$-m^2(1 - m^2)$</td>
<td>$ds\xi = \frac{dn\xi}{sn\xi}$</td>
</tr>
<tr>
<td>13</td>
<td>$\frac{1}{4}$</td>
<td>$1 - 2m^2$</td>
<td>$\frac{1}{4}$</td>
<td>$ns\xi \pm cs\xi$</td>
</tr>
<tr>
<td>14</td>
<td>$\frac{1 - m^2}{4}$</td>
<td>$\frac{1 + m^2}{2}$</td>
<td>$\frac{1 - m^2}{4}$</td>
<td>$nc\xi \pm sc\xi$</td>
</tr>
<tr>
<td>15</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{m^2 - 2}{4}$</td>
<td>$\frac{m^2}{4}$</td>
<td>$ns\xi \pm ds\xi$</td>
</tr>
<tr>
<td>16</td>
<td>$\frac{m^2}{4}$</td>
<td>$\frac{m^2 - 2}{4}$</td>
<td>$\frac{m^2}{4}$</td>
<td>$sn\xi \pm ic\xi$</td>
</tr>
<tr>
<td>17</td>
<td>$\frac{m^2}{4}$</td>
<td>$\frac{m^2 - 2}{4}$</td>
<td>$\frac{m^2}{4}$</td>
<td>$\sqrt{1 - m^2}sd\xi \pm cd\xi$</td>
</tr>
<tr>
<td>18</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1 - m^2}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$mcd\xi \pm i\sqrt{1 - m^2}nc\xi$</td>
</tr>
<tr>
<td>19</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1 - 2m^2}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$msn\xi \pm idn\xi$</td>
</tr>
<tr>
<td>20</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{1 - m^2}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$\sqrt{1 - m^2}sc\xi \pm dc\xi$</td>
</tr>
<tr>
<td>21</td>
<td>$\frac{m^2 - 1}{4}$</td>
<td>$\frac{m^2 + 1}{2}$</td>
<td>$\frac{m^2 - 1}{4}$</td>
<td>$msd\xi \pm na\xi$</td>
</tr>
<tr>
<td>22</td>
<td>$\frac{m^2}{4}$</td>
<td>$\frac{m^2 - 2}{4}$</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{sn\xi}{1 \pm dn\xi}$</td>
</tr>
<tr>
<td>23</td>
<td>$\frac{1}{4}$</td>
<td>$\frac{m^2 + 1}{2}$</td>
<td>$\frac{(1 - m^2)^2}{4}$</td>
<td>$mcn\xi \pm dn\xi$</td>
</tr>
<tr>
<td>24</td>
<td>$\frac{(1 - m^2)^2}{4}$</td>
<td>$\frac{m^2 + 1}{2}$</td>
<td>$\frac{1}{4}$</td>
<td>$ds\xi \pm cs\xi$</td>
</tr>
<tr>
<td>25</td>
<td>$\frac{m^2(1 - m^2)}{2(2 - m^2)}$</td>
<td>$\frac{2(1 - m^2)}{m^2 - 2}$</td>
<td>$\frac{1 - m^2}{2(2 - m^2)}$</td>
<td>$dc\xi \pm \sqrt{1 - m^2}nc\xi$</td>
</tr>
<tr>
<td>26</td>
<td>$P > 0$</td>
<td>$Q < 0$</td>
<td>$\frac{m^2Q^2}{(1 + m^2)^2P} \sqrt{\frac{-m^4Q^2}{(1 + m^2)^4P} \left(\frac{-Q}{1 + m^2} \right)}$</td>
<td></td>
</tr>
<tr>
<td>Case</td>
<td>P</td>
<td>Q</td>
<td>R</td>
<td>F(ξ)</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>27</td>
<td>P < 0</td>
<td>Q > 0</td>
<td>(1 - m^2)</td>
<td>(Q^2)</td>
</tr>
<tr>
<td>28</td>
<td>P < 0</td>
<td>Q > 0</td>
<td>(m^2(m^2 - 1))</td>
<td>(Q^2)</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>2 - 4(m^2)</td>
<td>1</td>
<td>(\text{sn}^2\xi)</td>
</tr>
<tr>
<td>30</td>
<td>(m^4)</td>
<td>2</td>
<td>1</td>
<td>(\text{sn}^2\xi)</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>(m^2 + 2)</td>
<td>1 - 2(m^2)</td>
<td>(m^4)</td>
</tr>
<tr>
<td>32</td>
<td>(\frac{A^2(m - 1)^3}{4})</td>
<td>(\frac{m^2 + 1}{2} + 3m)</td>
<td>(\frac{(m - 1)^2}{4A^2})</td>
<td>(\text{dn}^2\xi)</td>
</tr>
<tr>
<td>33</td>
<td>(\frac{A^2(m + 1)^3}{4})</td>
<td>(\frac{m^2 + 1}{2} - 3m)</td>
<td>(\frac{(m + 1)^2}{4A^2})</td>
<td>(\text{dn}^2\xi)</td>
</tr>
<tr>
<td>34</td>
<td>(-\frac{4}{m})</td>
<td>(6m - m^2 - 1)</td>
<td>(-2m^3 + m^4 + m^2)</td>
<td>(\text{mcn}\xi)</td>
</tr>
<tr>
<td>35</td>
<td>(\frac{4}{m})</td>
<td>(-6m - m^2 - 1)</td>
<td>(2m^3 + m^4 + m^2)</td>
<td>(\text{mcn}\xi)</td>
</tr>
<tr>
<td>36</td>
<td>(\frac{1}{4})</td>
<td>(\frac{1 - 2m^2}{2})</td>
<td>(\frac{1}{4})</td>
<td>(\text{sn}\xi)</td>
</tr>
<tr>
<td>37</td>
<td>(\frac{1 - m^2}{4})</td>
<td>(\frac{1 + m^2}{2})</td>
<td>(\frac{1 - m^2}{4})</td>
<td>(\text{cn}\xi)</td>
</tr>
<tr>
<td>38</td>
<td>(4m_1)</td>
<td>(2 + 6m_1 - m^2)</td>
<td>(2 + 2m_1 - m^2)</td>
<td>(m^2\text{ sn}\xi)</td>
</tr>
<tr>
<td>39</td>
<td>(-4m_1)</td>
<td>(2 - 6m_1 - m^2)</td>
<td>(2 - 2m_1 - m^2)</td>
<td>(-m^2\text{ sn}\xi)</td>
</tr>
<tr>
<td>40</td>
<td>(\frac{2 - m^2 - 2m_1}{4})</td>
<td>(\frac{m^2}{2} - 1 - 3m_1)</td>
<td>(\frac{2 - m^2 - 2m_1}{4})</td>
<td>(m^2\text{ sn}\xi)</td>
</tr>
<tr>
<td>41</td>
<td>(\frac{2 - m^2 + 2m_1}{4})</td>
<td>(\frac{m^2}{2} - 1 + 3m_1)</td>
<td>(\frac{2 - m^2 + 2m_1}{4})</td>
<td>(m^2\text{ sn}\xi)</td>
</tr>
<tr>
<td>42</td>
<td>(\frac{C^2m^4 - (B^2 + C^2)m^2 + B^2}{4})</td>
<td>(\frac{m^2 + 1}{2})</td>
<td>(\frac{m^3 - 1}{4(C^2m^4 - B^2)})</td>
<td>(\sqrt{(B^2 - C^2)(B^2 - C^2m^2)} + \text{sn}\xi)</td>
</tr>
<tr>
<td>43</td>
<td>(\frac{B^2 + C^2m^2}{4})</td>
<td>(\frac{1}{2} - m^2)</td>
<td>(\frac{1}{4(C^2m^4 + B^2)})</td>
<td>(\sqrt{(C^2m^4 + B^2 - C^2)(B^2 + C^2m^2)} + \text{cn}\xi)</td>
</tr>
<tr>
<td>44</td>
<td>(\frac{B^2 + C^2}{4})</td>
<td>(\frac{m^2}{2} - 1)</td>
<td>(\frac{m^4}{4(C^2 + B^2)})</td>
<td>(\sqrt{(B^2 + C^2m^2 - C^2)(B^2 + C^2m^2)} + \text{dn}\xi)</td>
</tr>
<tr>
<td>45</td>
<td>(-(m^2 + 2m + 1)B^2)</td>
<td>(2m^2 + 2)</td>
<td>(\frac{2m - m^2 - 1}{B^2})</td>
<td>(\text{msn}\xi - 1)</td>
</tr>
<tr>
<td>46</td>
<td>(-(m^2 - 2m + 1)B^2)</td>
<td>(2m^2 + 2)</td>
<td>(-\frac{2m + m^2 + 1}{B^2})</td>
<td>(\text{msn}\xi + 1)</td>
</tr>
</tbody>
</table>
Table 2

<table>
<thead>
<tr>
<th>Case</th>
<th>g_2</th>
<th>g_3</th>
<th>$F(\xi)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>47</td>
<td>$\frac{4}{3}(Q^2 - 3PR)$</td>
<td>$\frac{4Q}{27}(-2Q^2 + 9PR)$</td>
<td>$\sqrt{\frac{1}{P}(p\xi;g_2,g_3) - \frac{1}{3}Q)$</td>
</tr>
<tr>
<td>48</td>
<td>$\frac{4}{3}(Q^2 - 3PR)$</td>
<td>$\frac{4Q}{27}(-2Q^2 + 9PR)$</td>
<td>$\sqrt{\frac{3R}{3P}(\xi;g_2,g_3) - Q}$</td>
</tr>
<tr>
<td>49</td>
<td>$-\frac{5QD + 4Q^3 + 33PQR}{12}$</td>
<td>$\frac{21Q^2D - 63PRD + 20Q^3 - 27PQR}{216}$</td>
<td>$\frac{\sqrt{12RP(\xi;g_2,g_3) + 2R(2Q + D)}}{12P(\xi;g_2,g_3) + D}$</td>
</tr>
<tr>
<td>50</td>
<td>$\frac{1}{12}Q^2 + PR$</td>
<td>$\frac{1}{216}Q(36PR - Q^2)$</td>
<td>$\sqrt{\frac{6P(\xi;g_2,g_3) + Q}{3P(\xi;g_2,g_3)}}$</td>
</tr>
<tr>
<td>51</td>
<td>$\frac{1}{12}Q^2 + PR$</td>
<td>$\frac{1}{216}Q(36PR - Q^2)$</td>
<td>$\frac{3P(\xi;g_2,g_3) + Q}{\sqrt{6P(\xi;g_2,g_3)}}$</td>
</tr>
<tr>
<td>52</td>
<td>$\frac{2Q^3}{9}$</td>
<td>$\frac{Q^3}{54}$</td>
<td>$\frac{Q\sqrt{15Q2/2P(\xi;g_2,g_3) + Q}}{3P(\xi;g_2,g_3)}$, $R = \frac{5Q^2}{36P}$</td>
</tr>
</tbody>
</table>

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

References

