Research Article

Bifurcations of Orbit and Inclination Flips Heteroclinic Loop with Nonhyperbolic Equilibria

Fengjie Geng and Junfang Zhao

School of Science, China University of Geosciences (Beijing), Beijing, 100083, China

Correspondence should be addressed to Fengjie Geng; gengfengjie@cugb.edu.cn

Received 10 October 2013; Accepted 16 January 2014; Published 23 March 2014

Academic Editors: M. Han, Z. Jin, and Y. Xia

Copyright © 2014 F. Geng and J. Zhao. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The bifurcations of heteroclinic loop with one nonhyperbolic equilibrium and one hyperbolic saddle are considered, where the nonhyperbolic equilibrium is supposed to undergo a transcritical bifurcation; moreover, the heteroclinic loop has an orbit flip and an inclination flip. When the nonhyperbolic equilibrium does not undergo a transcritical bifurcation, we establish the coexistence and noncoexistence of the periodic orbits and homoclinic orbits. While the nonhyperbolic equilibrium undergoes the transcritical bifurcation, we obtain the noncoexistence of the periodic orbits and homoclinic orbits and the existence of two or three heteroclinic orbits.

1. Introduction

In recent years, a great deal of mathematical efforts has been devoted to the bifurcation problems of homoclinic and heteroclinic orbits with high codimension, for example, the bifurcations of homoclinic or heteroclinic loop with orbit flip, the bifurcations of homoclinic or heteroclinic loop with inclination flip, and so forth; see [1–5] and the references therein. However, most of these papers considered the bifurcation problems of orbits connecting hyperbolic equilibria, and limited work has been done in the corresponding problems with nonhyperbolic equilibria; see [6–8]. To fill this gap, we investigate the bifurcations of orbit and inclination flip heteroclinic orbits with one nonhyperbolic equilibrium and one hyperbolic saddle. The method is using the fundamental solution matrix of the linear variational system to obtain the Poincaré map, which is easier to get the bifurcation equations.

Consider the following C^r ($r \geq 5$) system

$$\dot{z} = g(z, \lambda, \mu)$$

and its unperturbed system

$$\dot{z} = f(z),$$

where $z \in \mathbb{R}^4$, the vector field g depends on the parameters (λ, μ), $\lambda \in \mathbb{R}$, $\mu \in \mathbb{R}^l$, $l \geq 2$, $0 \leq \lambda$, $|\mu| \ll 1$, $g(z, 0, 0) = f(z)$, $g(p_1, 0, \mu) = 0$, and $g(p_2, \lambda, \mu) = 0$. Moreover, the parameter λ governs bifurcation of the nonhyperbolic equilibrium, while μ controls bifurcations of the heteroclinic orbits.

Assuming system (2) has a heteroclinic loop Γ connecting its two equilibria p_1, p_2, where $\Gamma = \Gamma^1 \cup \Gamma^2$, $\Gamma^i = \{ z = r_i(t) : t \in \mathbb{R} \}, r_i(+\infty) = r_{i+1}(-\infty) = p_{i+1}, i = 1, 2, r_1(t) = r_1(t)$, and $p_3 = p_1$. Furthermore, the linearization $DF(p_i)$ has real eigenvalues $0, \lambda_1^i, -\rho_1^i, -\rho_2^i$ satisfying $-\rho_2^i < -\rho_1^i < \lambda_1^i$. $DF(p_2)$ has simple real eigenvalues $\lambda_2^i, -\rho_2^i$ and $-\rho_2^i$ fulfilling $-\rho_2^i < -\rho_1^i < 0 < -\rho_1^i < \lambda_1^i$. $DF(p_1)$ has the following conditions hold in the whole paper:

$$(H_1)$$

$$e_i^\pm = \lim_{t \to \pm \infty} \frac{r_i(t)}{|r_i(t)|},$$

where $e_1^+ \in T_{p_1} W^s_{c_1}$, $e_1^- \in T_{p_2} W^u_{c_2}$, $e_2^+ \in T_{p_1} W^u_{c_1}$, $e_2^- \in T_{p_1} W^s_{c_2}$, $e_3^+ \in T_{p_2} W^s_{c_1}$, and $e_3^- \in T_{p_2} W^u_{c_2}$ mean that Γ^i is a heteroclinic orbit with
orbit flip, W_u^{cu} is the center unstable manifold of p_1, W_u^{cu} (resp., W_s^{cu}) is the unstable (resp., stable) manifold of p_1, and W_s^{cu} (resp., W_s^{cu}) is the strong unstable (resp., stable) manifold of p_i, $i = 1, 2$. Moreover,

$$\dim \left(T_{r_i}(W_u^{cu} \cap T_{r_i}(W_u^{cu}) \right) = \dim \left(T_{r_i}(W_u^{cu} \cap T_{r_i}(W_u^{cu}) \right) = 1.$$ \((H_2) \)

Let $t \to -\infty$ is of inclination flip as $\cdots \cdots$

If we assume $\dim(W_u^{cu}) = \dim(W_s^{cu}) = m$ and $\dim(W_0^{cu}) = n$, then all the results achieved in this paper are still valid.

Let $\lambda \in \mathbb{R}$ be a parameter to control the transcritical bifurcation of system (1), let the x-axis be the tangent space of the center manifold at p_1, and let $\theta(x, \lambda, \mu)$ be the vector field defined on the center manifold; then by [9], we may assume

$$(H_3) \quad \theta(x_{p_1}, \lambda, \mu) = 0, \quad (\partial \theta/\partial x)(x_{p_1}, 0, 0) = 0,$$

where x_{p_1} is the x component of p_1.

If (H3) is true, then system (1) exhibits the transcritical bifurcation, that is, when $\lambda > 0 \ (\text{or} \ \lambda < 0)$; in this paper, we only consider the case $\lambda > 0$; for the case $\lambda < 0$, one may discuss it similarly; there are two hyperbolic saddles p_1^0 and p_1^1 bifurcated from p_1. Denote by p_1^0 and p_1^1 the stable and unstable manifolds of p_1. Moreover, $\dim(W_s^{cu}_{p_1^0}) = 3$, $\dim(W_u^{cu}_{p_1^0}) = 1$, and $\dim(W_s^{cu}_{p_1^1}) = \dim(W_u^{cu}_{p_1^1}) = 2$.

The present paper is built up as follows. In Section 2, we devote it to deriving the successor functions by constructing a suitable Poincaré Map. The analysis to the bifurcations of system (2) is presented in Section 3, where we establish the existence of the heteroclinic loop, the homoclinic orbits, and the three or two heteroclinic orbits and the coexistence of a periodic orbit and a homoclinic loop, and the difference between the heteroclinic loop with hyperbolic equilibria and nonhyperbolic equilibria is revealed.

2. Normal Form and Poincaré Map

Let the neighborhood U_i of p_i be small enough and straight the local manifolds of W_u^{cu}, W_s^{cu}, W_u^{cu}, and $i = 1, 2$ in the neighborhood U_i. And then by virtue of the invariance of these manifolds and a scale transformation $x \to \theta(x_{p_i}, 0, 0) \lambda$, system (1) has the following expression in U_i:

$$\begin{align*}
\dot{x} &= -\lambda p x + x^2 + O(u) \left[O(y) + O(v) \right] + O(x) \left[O(x) + O(u) \right], \\
\dot{y} &= \left[-p_1^0 (\alpha) + \cdots \right] y + O(v) \left[O(y) + O(u) \right], \\
\dot{u} &= \left[p_1^0 (\alpha) + \cdots \right] u + O(x) \left[O(x) + O(u) + O(y) \right], \\
\dot{v} &= \left[-p_2^0 (\alpha) + \cdots \right] v + O(y) \left[O(y) + O(y) + O(u) \right],
\end{align*}$$

and in U_2 it takes the following form:

$$\begin{align*}
\dot{x} &= \left[-\lambda_2^0 (\alpha) + \cdots \right] x + O(u) \left[O(y) + O(v) \right], \\
\dot{y} &= \left[p_2^0 (\alpha) + \cdots \right] y + O(v) \left[O(x) + O(u) \right], \\
\dot{u} &= \left[-\lambda_2^0 (\alpha) + \cdots \right] u + O(x) \left[O(x) + O(y) + O(v) \right], \\
\dot{v} &= \left[-\lambda_2^0 (\alpha) + \cdots \right] v + O(y) \left[O(x) + O(y) + O(u) \right],
\end{align*}$$

where $\alpha = (\lambda, \mu)$, $\lambda_p = \lambda + O(\lambda^2)$, $\lambda_{p_1} (0) = \lambda_1^0$, $\lambda_{p_1} (1) = \lambda_2^0$. From the normal form (6), (7), and the condition (H1), we may select $-T_i$ and T_i such that

$$\begin{align*}
r_i \left(-T_1 \right) &= (\delta, 0, 0, 0)^T, \quad r_1 \left(T_1 \right) = (0, 0, 0, \delta)^T, \\
r_1 \left(-T_2 \right) &= (\delta, 0, 0, \delta_u)^T, \quad r_2 \left(T_2 \right) = (0, 0, 0, \delta_u)^T,
\end{align*}$$

where $\delta > 0$ is small enough such that $\{x, y, u, v) : |x|, |y|, |u|, |v| < 2\delta \} \subset U_1$ and $|\delta_u| = o(\delta), |\delta_u| = o(\delta)$.

Consider the linear variational system

$$\dot{z} = Df (r_i (t)) z$$

and its adjoint system

$$\dot{\phi} = -(Df (r_i (t)))^* \phi,$$

where $\phi = (Df (r_i (t)))^*$ is the transposed matrix of $Df (r_i (t))$.

Supposing $Z_i(t) = (z_i^1(t), z_i^2(t), z_i^3(t), z_i^4(t))$ is a fundamental solution matrix of (9), then, we arrive at the following lemma.
Lemma 1. If conditions (H1)–(H3) are satisfied, then
(1) there exists a fundamental solution matrix of (9), satisfying
\[
\begin{align*}
 z_1^1(t) &\in \left(T_{\tau(t)} W_{1\alpha}^s \right)^c \cap \left(T_{\tau(t)} W_{2\beta}^s \right)^c, \\
 z_1^2(t) &\in T_{\tau(t)} W_{1\alpha}^s \cap T_{\tau(t)} W_{2\beta}^s, \\
 z_1^3(t) &\in T_{\tau(t)} W_{1\alpha}^c \cap T_{\tau(t)} W_{2\beta}^c, \\
 z_1^4(t) &\in T_{\tau(t)} W_{1\alpha}^c \cap T_{\tau(t)} W_{2\beta}^c
\end{align*}
\]
\[
\text{such that}
\]
\[
\begin{align*}
 Z_1(-T_1) &= \begin{pmatrix} w_{11} & w_{12} & 0 & w_{14} \\ w_{12} & 0 & 0 & w_{13} \\ w_{13} & w_{14} & 1 & w_{15} \\ 0 & 0 & 0 & w_{16} \end{pmatrix}, \\
 Z_1(T_1) &= \begin{pmatrix} 1 & 0 & w_{11}^{31} & 0 \\ w_{12} & 0 & w_{13}^{32} & 1 \\ 0 & 0 & w_{14}^{33} & 0 \\ 0 & 1 & w_{15}^{34} & 1 \end{pmatrix};
\end{align*}
\]
\[(11)\]
\[(12)\]
\[(13)\]
\[
\text{(2) (9) has a fundamental solution matrix fulfilling}
\]
\[
\begin{align*}
 z_2^1(t) &\in \left(T_{\tau(t)} W_{2\alpha}^s \right)^c \cap \left(T_{\tau(t)} W_{1\beta}^s \right)^c, \\
 z_2^2(t) &\in T_{\tau(t)} W_{2\alpha}^s \cap T_{\tau(t)} W_{1\beta}^s, \\
 z_2^3(t) &\in T_{\tau(t)} W_{2\alpha}^c \cap T_{\tau(t)} W_{1\beta}^c, \\
 z_2^4(t) &\in T_{\tau(t)} W_{2\alpha}^c \cap T_{\tau(t)} W_{1\beta}^c
\end{align*}
\]
\[
\text{such that}
\]
\[
\begin{align*}
 Z_2(-T_2) &= \begin{pmatrix} w_{21} & w_{22} & 0 & w_{24} \\ 0 & 0 & w_{23} \end{pmatrix}, \\
 Z_2(T_2) &= \begin{pmatrix} 1 & 0 & w_{21}^{31} & 0 \\ 0 & 1 & w_{22}^{32} & 0 \\ 0 & 0 & w_{23}^{33} & 0 \\ 0 & 0 & w_{24}^{34} & 1 \end{pmatrix};
\end{align*}
\]
\[(14)\]

where $w_{ij}^{3j} < 0$, $w_{11}^{12} w_{33}^{21} w_{44}^{22} w_{42}^{24} \neq 0$, $|w_{11}^{33}|^{-1} w_{11}^{3j} \ll 1$, $j = 1, 2, 4$, $i = 1, 2, 4$.

Now that $q_i^0 \in S_i^0$ and $q_i^1 \in S_i^1$, then
\[
q_i^0 = \left(x_i^0, y_i^0, u_i^0, v_i^0 \right) = r_i(-T_i) + Z_i(-T_i) N_i(-T_i),
\]
\[
N_i(-T_i) = \left(n_i^{01}, 0, n_i^{03}, n_i^{04} \right)^*,
\]
\[
q_i^1 = \left(x_i^1, y_i^1, u_i^1, v_i^1 \right)^* = r_i(T_i) + Z_i(T_i) N_i(T_i),
\]
\[
N_i(T_i) = \left(n_i^{11}, 0, n_i^{13}, n_i^{14} \right)^*.
\]

Based on the expressions of $Z_i(-T_i)$ and $Z_i(T_i)$, we get their new coordinates of $q_i^0(n_i^{01}, 0, n_i^{03}, n_i^{04})^*$ and $q_i^1(n_i^{11}, 0, n_i^{13}, n_i^{14})^*$; that is,
\[
\begin{align*}
 n_i^{01} &= (w_i^{12})^{-1} y_i^0 - w_i^{42} (w_i^{44})^{-1} v_i^0, \\
 n_i^{03} &= u_i^0 - w_i^{13} (w_i^{11})^{-1} y_i^0, \\
 n_i^{04} &= (w_i^{44})^{-1} v_i^0, \\
 x_i^0 &= \delta + w_i^{11} n_i^{01} + w_i^{41} n_i^{04} = \delta, \\
 n_i^{11} &= x_i^1 - w_i^{31} (w_i^{33})^{-1} u_i^1, \\
 n_i^{13} &= (w_i^{33})^{-1} u_i^1, \\
 n_i^{14} &= y_i^1 - w_i^{12} x_i^1 + (w_i^{12} w_i^{31} - w_i^{12} w_i^{32}) (w_i^{33})^{-1} u_i^1, \\
 n_i^{14} &= y_i^1 - w_i^{12} x_i^1 + (w_i^{12} w_i^{31} - w_i^{12} w_i^{32}) (w_i^{33})^{-1} u_i^1.
\end{align*}
\]

$y_i^1 \approx \delta,$
\[
\begin{align*}
 n_i^{01} &= (w_i^{14})^{-1} v_i^0, \\
 n_i^{03} &= u_i^0 - w_i^{14} (w_i^{14})^{-1} v_i^0 - w_i^{43} (w_i^{42})^{-1} y_i^0, \\
 n_i^{04} &= (w_i^{42})^{-1} y_i^0, \\
 x_i^0 &= \delta. \\
 n_i^{11} &= x_i^0 - w_i^{31} (w_i^{33})^{-1} u_i^0, \\
 n_i^{13} &= (w_i^{33})^{-1} u_i^0, \\
 n_i^{14} &= y_i^0 - \delta v_i - w_i^{14} x_i^1 + (w_i^{14} w_i^{31} - w_i^{14} w_i^{32}) (w_i^{33})^{-1} u_i^0, \\
 y_i^0 &\approx \delta.
\end{align*}
\]

Next, we divide our establishment of the Poincaré map in the new coordinate system in three steps.
First, consider the map $F_1^1 : S_0^1 \mapsto S_1^1$. Put $z = h_i(t)$ into (1); we have
\[
\dot{r}_i(t) + Z_i(t) N_i(t) + Z_i(t) \dot{N}_i(t) \\
g = g \left(r_i(t) + Z_i(t) N_i(t), \lambda, \mu \right) \\
= g \left(r_i(t), 0, 0 \right) + g_2 \left(r_i(t), 0, 0 \right) Z_i(t) N_i(t) \\
+ g_3 \left(r_i(t), 0, 0 \right) \lambda + g_\mu \left(r_i(t), 0, 0 \right) \mu + \text{o.h.t.} \\
\tag{18}
\]
with $f \left(r_i(t) \right) = Df \left(r_i(t) \right) Z_i(t) N_i(t) \\
+ g_3 \left(r_i(t), 0, 0 \right) \lambda + g_\mu \left(r_i(t), 0, 0 \right) \mu + \text{o.h.t.}
\]
According to the fact $\dot{r}_i(t) = f \left(r_i(t) \right)$ and $\dot{Z}_i(t) = Df \left(r_i(t) \right) Z_i(t)$, it then yields that
\[
\dot{N}_i(t) = Z_i^{-1}(t) \left[g_3 \left(r_i(t), 0, 0 \right) \lambda + g_\mu \left(r_i(t), 0, 0 \right) \mu \right] \\
+ \text{o.h.t.}
\tag{19}
\]
Integrating the above equation from $-T_i$ to T_i, we arrive at
\[
N_i \left(T_i \right) = N_i \left(-T_i \right) + \int_{-T_i}^{T_i} Z_i^{-1}(t) g_3 \left(r_i(t), 0, 0 \right) \lambda dt \\
+ \int_{-T_i}^{T_i} Z_i^{-1}(t) g_\mu \left(r_i(t), 0, 0 \right) \mu dt + \text{o.h.t.}
\tag{20}
\]
Noticing that $\Phi_i^* \left(t \right) = Z_i^{-1}(t)$, then
\[
n_{i,j}^{1,j} = n_{i,j}^{0,j} + M_{i,k}^{1} \lambda + M_{i,k}^{1} \mu + \text{o.h.t.}, \quad j = 1, 3, 4
\tag{21}
\]
where
\[
M_{i,k}^{1} = \int_{-T_i}^{T_i} \phi_i^{j*} g_3 \left(r_i(t), 0, 0 \right) dt, \\
M_{i,k}^{j} = \int_{-T_i}^{T_i} \phi_i^{j*} g_\mu \left(r_i(t), 0, 0 \right) dt, \quad j = 1, 3, 4.
\tag{22}
\]
Together with (17) and (21), (22), then defines the map $F_i^0 : S_0^1 \mapsto S_i^1$,
\[(n_{i,1}^{0,1}, n_{i,0}^{0,3}, n_{i,3}^{0,4}) \mapsto (n_{i,1}^{1,1}, n_{i,0}^{1,3}, n_{i,3}^{1,4}).\]
Next, to construct the map $F_0^0 : S_{i-1}^1 \mapsto S_i^0$ (where $S_0^0 = S_1^1$). Let $r_i, i = 1, 2$ be the flying time from $q_{i-1}^{-1} \left(x_{i-1}, y_{i-1}, u_{i-1}, v_{i-1} \right)$ to $q_{i} \left(x_{i}, y_{i}, u_{i}, v_{i} \right)$; set $s_{1} = e^{-\rho \left(\alpha \right) \rho \left(\alpha \right)}$ and $s_{2} = e^{-\rho \left(\alpha \right) \rho \left(\alpha \right)}$. By virtue of the approximate solution of system (6) and (7), if we neglect the higher terms, then the expression of $F_0^0 : S_0^0 \mapsto S_1^0$ is
\[
x_0^1 = \frac{x_0^0}{h \left(s_1 \right)}, \quad y_0^0 = s_1 y_0^1, \\
u_0^1 = s_1^{\rho \left(\alpha \right) \rho \left(\alpha \right)} u_0^1, \quad v_0^1 = s_1^{\rho \left(\alpha \right) \rho \left(\alpha \right)} v_0^1
\tag{23}
\]
and $F_0^1 : S_1^1 \mapsto S_2^1$ is
\[
x_1^1 = s_2^{\rho \left(\alpha \right) \rho \left(\alpha \right)} x_2^1, \quad y_1^0 = s_2 y_1^1, \\
u_1^1 = s_2^{\rho \left(\alpha \right) \rho \left(\alpha \right)} u_2^1, \quad v_1^0 = s_2^{\rho \left(\alpha \right) \rho \left(\alpha \right)} v_1^1
\tag{24}
\]
where ($s_i, u_i^{0,1}, v_{i-1}^{1}$), $i = 1, 2$ are called Shilnikov coordinates, and
\[
h \left(s \right) = \begin{cases} \left(\lambda_p \right)^{-1} \left[x_0^0 - \left(x_0^1 - \lambda_p \right) s_1^{\rho \left(\alpha \right) \rho \left(\alpha \right)} \right], & \lambda_p \neq 0, \\
1 - \left(\rho_1^0 \left(\alpha \right) \right)^{-1} x_0^1, & \lambda_p = 0. \end{cases}
\tag{25}
\]
Since the nonhyperbolic equilibrium p_1 undergoes a transcritical bifurcation based on the structure of orbits in U_1, we may see that the equation $x_0^1 = x_0^1(h(s))$ holds only for $s_1 \geq \lambda_p$. While for $s_1 \in \left[-\beta, \lambda_p \right]$, the map F_0^0 is well defined only if $s_1 = 0$ (see Figure 1). So, we extend the domain of F_0^0, defining
\[
x_1^0 = \delta, \quad s_1 = 0, \quad \text{if } x_1^0 \in \left[-\beta, \lambda_p \right].
\tag{26}
\]
The final step is to compose the maps F_0^0 and F_1^1, and then
\[
F_1 = F_1^1 \circ F_0^0 : S_0^0 \mapsto S_1^0
\]
and
\[
F_2 = F_2^1 \circ F_0^0 : S_1^0 \mapsto S_1^0 \mapsto S_1^0 = S_0^0
\]
and
\[
F_0^0 = \begin{cases} \left(u_2^{14} \right)^{-1} s_2 \left(x_2^{1} \right), & x_1^0 \in \left[-\beta, \lambda_p \right], \\
\left(u_2^{14} \right)^{-1} s_2 \left(x_2^{1} \right) + M_{2,2} \lambda + M_{2,4} \mu + \text{o.h.t.,} & x_1^0 \in \left(-\beta, -\beta \right), \\
\left(u_2^{14} \right)^{-1} s_2 \left(x_2^{1} \right) - M_{2,2} \lambda - M_{2,4} \mu + \text{o.h.t.,} & x_1^0 \in \left(-\beta, -\beta \right), \\
\left(u_2^{14} \right)^{-1} s_2 \left(x_2^{1} \right), & x_1^0 \in \left(-\beta, -\beta \right).
\end{cases}
\tag{27}
\]
and
\[
F_2 = F_2^1 \circ F_0^0 : S_1^0 \mapsto S_1^0 = S_0^0
\]
and
\[
F_2 = F_2^1 \circ F_0^0 : S_1^0 \mapsto S_1^0 \mapsto S_1^0 = S_0^0
\]
and
\[
F_2 = F_2^1 \circ F_0^0 : S_1^0 \mapsto S_1^0 = S_0^0
\]
and
\[
F_2 = F_2^1 \circ F_0^0 : S_1^0 \mapsto S_1^0 = S_0^0
\]
and
\[
F_2 = F_2^1 \circ F_0^0 : S_1^0 \mapsto S_1^0 = S_0^0
\]
and
\[
F_2 = F_2^1 \circ F_0^0 : S_1^0 \mapsto S_1^0 = S_0^0
\]
and
\[
F_2 = F_2^1 \circ F_0^0 : S_1^0 \mapsto S_1^0 = S_0^0
\]
and
\[
F_2 = F_2^1 \circ F_0^0 : S_1^0 \mapsto S_1^0 = S_0^0
\]
and
\[
F_2 = F_2^1 \circ F_0^0 : S_1^0 \mapsto S_1^0 = S_0^0
\]
and
\[
F_2 = F_2^1 \circ F_0^0 : S_1^0 \mapsto S_1^0 = S_0^0
\]
Set $G_i = F_i(q_{i-1}^0) - q_i^0, i = 1, 2$. Combining (21), (23), (24), (27), and (28), we derive the successor functions G_i^j:

$G_1^1 = (w_1^{12})^{-1} \delta s_1 - \delta s_2^{1/2} + M_{11}^1 \lambda + M_{1 \mu}^1 + \text{h.o.t.}$

$G_1^2 = u_1^0 - w_1^{13} (w_1^{12})^{-1} \delta s_1 - (w_1^{31})^{-1} \delta s_2^{1/2} + M_{11}^1 \lambda + M_{1 \mu}^1 + \text{h.o.t.}$

$G_1^3 = (w_2^{44})^{-1} s_1^{\lambda_1/\rho_1} - y_1^1 + w_2^{12} \delta s_1^{\lambda_1/\rho_1} + M_{11}^1 \lambda + M_{1 \mu}^1 + \text{h.o.t.}$

$G_2^1 = (w_1^{14})^{-1} \delta s_2^{\rho_1/\rho_2} - \delta h(s_1)

Finally, we consider the case $\lambda = 0$, which means the transcritical bifurcation does not happen. By (23) and (25), (31) turns to

$$
\begin{align*}
(\lambda_1^1)^{-1} \delta s_1 &= \delta s_2^{1/2} + M_{1 \mu}^1 + \text{h.o.t.}, \\
(\lambda_1^2)^{-1} \delta s_2^{1/2} &= \frac{\delta}{1 - (p_1^1)^{-1} \delta \ln s_1} + M_{1 \mu}^1 + \text{h.o.t.}, \\
\end{align*}
$$

Noticing that $\lambda_1^1/\rho_1 > 0$, which shows $\lim_{s_1 \to 0} \lambda_1^1/\rho_1 (1 - (p_1^1)^{-1} \delta \ln s_1) = 0$, it then follows that

$$
\begin{align*}
\left(\lambda_1^2\right)^{-1} s_2^{\rho_1/\rho_2} &= \frac{1}{1 - (p_1^1)^{-1} \delta \ln s_1} + \delta^{-1} M_{1 \mu}^1 + \text{h.o.t.}.
\end{align*}
$$

From the above bifurcation equations, we obtain the following results immediately.

Theorem 2. Let the conditions $(H_1)-(H_2)$ be true and $M_{1 \mu}^1 \neq 0$, $i = 1, 2$. Then, for $\lambda = 0$ and $0 < |\mu| \ll 1$, one has

(i) for $\text{rank}(M_{1 \nu}^1, M_{2 \mu}^2) = 2$, there exists a codimension 2 surface

$$
L_{12} = \left\{ \mu : M_{1 \nu}^1 + \text{h.o.t.} = M_{1 \mu}^1 + \text{h.o.t.} = 0 \right\}
$$

such that system (1) has a unique heteroclinic loop near Γ if and only if $\mu \in L_{12}$, where the surface L_{12} has a normal plane span$[M_{1 \nu}^1, M_{2 \mu}^2]$ at $\mu = 0$.

(ii) there exists an $(l - 1)$-dimensional surface

$$
L_1^2 = \left\{ \mu : \delta^{-1} w_1^{12} M_{2 \mu}^2 + \left(\delta^{-1} M_{1 \mu}^1 + \text{h.o.t.} = 0, \\
M_{1 \nu}^1 > 0 \right) \right\}
$$

such that system (1) has a unique homoclinic loop connecting p_1 (resp., connecting p_2) near Γ if and only if $\mu \in L_1^2$ (resp., $\mu \in L_2^1$).
Proof. The result (i) will be proved by putting $s_1 = s_2 = 0$ into (33).

If we assume $s_1 = 0$ and $s_2 > 0$ in (33), then

$$s_2^{\lambda_2/\mu} = \delta^{-1} M_{1p}^1 \mu + \text{h.o.t.,}$$

$$(w_2^{12})^{-1} s_2^{\lambda_2/\mu} + \delta^{-1} M_{1p}^2 \mu + \text{h.o.t.} = 0,$$ \hspace{1cm} (37)

which means

$$\left(w_2^{12} \right)^{-1} s_2^{\lambda_2/\mu} + \delta^{-1} M_{2p} \mu + \text{h.o.t.} = 0. \hspace{1cm} (38)$$

It follows that there exists an $(l - 1)$-dimensional surface L_1^2 given by (35) such that (33) has a unique solution $s_1 = 0$, $s_2 = s_2(\mu) > 0$ as $\mu \in L_1^2$ and $0 < |\mu| \ll 1$. This implies system (1) has a homoclinic loop connecting p_1. The existence of L_1^2 can be obtained similarly.

This completes the proof. \hfill \Box

Remark 3. There is no difficulty to see that L_1^2 has a normal vector $M_{1p}^1 \mu$ at $\mu = 0$ as $\rho_2^2 > \lambda_2^2$, while for $\rho_2^2 < \lambda_2^2$ (resp., $\rho_2^2 > \lambda_2^2$) it has a normal vector $M_{1p}^1 \mu$ (resp., $M_{1p}^1 \mu + w_2^{12} M_{1p}^1 \mu$) at $\mu = 0$.

Theorem 4. Assume the conditions (H1)–(H3) hold and $M_{1p}^i \neq 0$, $i = 1, 2$. Then for $\lambda = 0$, $\mu \in L_1^2$, and $0 < |\mu| \ll 1$, the periodic orbit and homoclinic loop with p_1 of system (1) cannot coexist.

Proof. Theorem 2 shows that if $\mu \in L_1^2$ and $0 < |\mu| \ll 1$, then system (1) has a homoclinic loop with p_1. Setting $s_1 = 0$, $s_2^{\lambda_2/\mu} = (w_2^{12})^{-1} s_1 + \delta^{-1} M_{1p}^1 \mu + \text{h.o.t.} > 0$, and $\mu \in L_1^2$, then (33) is reduced to

$$V_1(s_1) = \left((w_2^{12})^{-1} s_1 + \delta^{-1} M_{1p}^1 \mu \right)^{\rho_2^2/\mu} + \delta^{-1} w_2^{12} M_{2p} \mu$$

$$+ \text{h.o.t.} = \frac{w_2^{12}}{1 - (\rho_1^{-1}) \delta \ln s_1} \Rightarrow N_1(s_1).$$ \hspace{1cm} (39)

Notice that $V_1(0) = N_1(0)$ and

$$V_1'(s_1) = \frac{\rho_2^2}{\lambda_2^2} (w_2^{12})^{-1} \left[(w_2^{12})^{-1} s_1 + \delta^{-1} M_{1p}^1 \mu \right]^{\rho_2^2/\lambda_2^2 - 1},$$

$$N_1'(s_1) = \frac{w_2^{12} (\rho_1^{-1})^{-1} \delta}{1 - (\rho_1^{-1})^{-1} \ln s_1} \frac{s_1^{\lambda_2/\mu} - \delta^{-1} M_{1p}^1 \mu}{s_1^2}.$$

If $w_2^{12} \mu < 0$, then $V_1'(s_1) N_1'(s_1) < 0$; it is obvious that $V_1(s_1) = N_1(s_1)$ has no sufficiently small positive solutions.

While $\rho_2^2 > \lambda_2^2$, then $|V_1'(s_1)| \ll 1$ and $|N_1'(s_1)| \gg 1$ hold for $0 < s_1 \ll 1$, which shows that $V_1(s_1) = N_1(s_1)$ has no sufficiently small positive solution.

Next, we only consider the case $\rho_2^2 < \lambda_2^2$ and $w_2^{12} \mu > 0$. As $\mu \in L_1^2$, we have $M_{1p}^1 \mu > 0$, and then, for $w_2^{12} \mu > 0$, $i = 1, 2$ we see that

$$V_1'(s_1) \leq (w_2^{12})^{-1} s_1^{\lambda_2/\mu} - \delta^{-1} M_{1p}^1 \mu$$

$$< N_1'(s_1) \text{ for } 0 < s_1 \ll 1.$$

(41)

In fact, $\rho_2^2 < \lambda_2^2$ yields that $\lim_{s_1 \to 0} s_1^{\lambda_2/\mu} = +\infty$, $\lim_{s_1 \to 0} s_1^{\lambda_2/\mu} \delta^{-1} M_{1p}^1 \mu = +\infty$, and $\lim_{s_1 \to 0} s_1^{\lambda_2/\mu} \delta^{-1} M_{1p}^1 \mu = 0$, which shows $V_1(s_1) = N_1(s_1)$ has no sufficiently small positive solutions. Obviously, the conclusion is correct as $\rho_2^2 = \lambda_2^2$.

Similarly, for $\rho_2^2 < \lambda_2^2$, $w_2^{12} \mu < 0$, $i = 1, 2$, there does not exist a small positive solution for $V_1(s_1) = N_1(s_1)$.

The proof is then completed. \hfill \Box

Theorem 5. Assume that the conditions (H1)–(H3) hold and $M_{1p}^i \neq 0$, $i = 1, 2$. Let $\lambda = 0$, $\mu \in L_1^2$, and $0 < |\mu| \ll 1$; then

(i) the periodic orbit and the homoclinic loop connecting p_2 of system (1) cannot coexist as $\rho_2^2 > \lambda_2^2$ or $w_2^{12} \mu < 0$;

(ii) at least one periodic orbit and the homoclinic loop connecting p_2 of system (1) coexist as $\rho_2^2 < \lambda_2^2$, $w_2^{12} > 0$, and $w_2^{12} > 0$;

(iii) a unique periodic orbit and the homoclinic loop connecting p_2 of system (1) coexist as $\rho_2^2 < \lambda_2^2$, $w_2^{12} < 0$, and $w_2^{12} < 0$.

Proof. By Theorem 2, the condition $\mu \in L_1^2$ for $0 < |\mu| \ll 1$ implies that system (1) has a homoclinic loop connecting p_2.

(i) Let $s_2 = e^{-\rho_2^2/\mu}$ and eliminating s_1 in (33), we derive

$$V_2(s_2) = s_2 + \delta^{-1} w_2^{12} M_{1p}^1 \mu + \text{h.o.t.}$$

$$= \frac{w_2^{12}}{1 - (\rho_1^{-1}) \delta \ln (w_2^{12} (s_2^{\lambda_2/\rho_2^2} - \delta^{-1} M_{1p}^1 \mu))} \Rightarrow N_2(s_2).$$

Note that $V_2(0) = N_2(0)$ as $\mu \in L_1^2$. Moreover,

$$V_2'(s_2) = 1,$$

$$N_2'(s_2) = \frac{w_2^{12} (\rho_1^{-1})^{-1} \delta}{1 - (\rho_1^{-1})^{-1} \ln (s_2^{\lambda_2/\rho_2^2} - \delta^{-1} M_{1p}^1 \mu))}$$

$$\cdot \frac{(\lambda_2^2/\rho_2^2) s_2^{\lambda_2/\rho_2^2} - \delta^{-1} M_{1p}^1 \mu}{s_2^{\lambda_2/\rho_2^2} - \delta^{-1} M_{1p}^1 \mu}.$$

(43)

For $\rho_2^2 \geq \lambda_2^2$ and $N_2(s_2) \ll 1 = V_2(s_2)$, this means $V_2(s_2) = N_2(s_2)$ has no sufficiently small positive solutions.

Now we turn to the case $w_2^{12} \mu < 0$, since we are interested in sufficiently small positive solutions of (33), it suffices to consider the sufficiently small positive solutions of $V_2(s_2) = N_2(s_2)$ satisfying $w_2^{12} s_2^{\lambda_2/\rho_2^2} - \delta^{-1} M_{1p}^1 \mu > 0$, which implies $s_2^{\lambda_2/\rho_2^2} - \delta^{-1} M_{1p}^1 \mu > 0$ (resp., $s_2^{\lambda_2/\rho_2^2} - \delta^{-1} M_{1p}^1 \mu > 0$) for $w_2^{12} < 0$ (resp., $w_2^{12} > 0$). It is easy to see that $V_2(s_2) = N_2(s_2)$ has no sufficiently small positive solutions as $w_2^{12} < 0$.

The Scientific World Journal
(ii) For \(\rho_2^2 < \lambda_2 \), we have \(V_2'(0) = 1 > 0 = N_3'(0) \), which implies that there exists an \(0 < s_3 < s_2 \) such that \(V_2(s_2) > N_2(s_2) \) for \(0 < s < s_2 < s_3 \).

Choosing \(s_2 = \delta^{-1} \omega_{21}^2 M_{21}^\mu \mu > 0 \), then

\[
V_2(s_2) = 2\delta^{-1} \omega_2^2 M_{21}^\mu \mu + \text{h.o.t.}
\]

\[
N_2(s_2) = \frac{\omega_{21}^2}{1 - (\rho_1^2)^{-1} \delta \ln \left(\frac{\omega_{21}^2 (s_2^{\frac{1}{2}})^2}{\delta^{-1} M_{11}^\mu \mu} \right)} \tag{44}
\]

In view of \(\ln(\omega_{21}^2 (s_2^{\frac{1}{2}})^2) = \ln(\omega_{21}^2 (s_2^{\frac{1}{2}})^2 M_{21}^\mu \mu) (s_2^{\frac{1}{2}})^2 \) for \(s_2^2 > 0 \), so

\[
N_2(s_2) > \frac{\omega_{21}^2}{1 - (\rho_1^2)^{-1} \delta \ln \left(\omega_{21}^2 \left(\delta^{-1} \omega_{21}^2 M_{21}^\mu \mu \right)^{\frac{1}{2}} \right)} \Rightarrow 2\omega_{21}^2 \left(\delta^{-1} \omega_{21}^2 M_{21}^\mu \mu \right) = V_2(s_2)
\]

when \(\omega_{21}^2 > 0 \). As a result, \(N_2(s_2) = V_2(s_2) \) has at least one solution \(s_2 \) satisfying \(0 < s_2^2 < s_2^2 < s_2^2 \).

(iii) \(s_2 \) must fulfill \(0 < s_2 < (\delta^{-1} M_{11}^\mu \mu)^{\frac{1}{2}} \); with similar arguments in proof of (ii), we can prove that there exists a \(0 < s_2^2 < 1 \) such that \(V_2(s_2^2) = N_2(s_2^2) \) for \(0 < s_2 < (\delta^{-1} M_{11}^\mu \mu)^{\frac{1}{2}} \). It is easy to compute that \(N_2'(s_2^2) > 0 \) for \(\omega_{21}^2 < 0 \). Combining the fact \(V_2(0) = N_2(0), N_2'(s_2^2) > 0, \) and \(V_2'(s_2^2) = 1 \), we immediately know that \(s_2^2 \) is unique.

This completes the proof. \(\square \)

Now, we turn to discussing the bifurcations of the heteroclinic loop for \(\lambda > 0 \), when \(\rho_1 \) undergoes a transcritical bifurcation. From Figure 1, we know that when \(\lambda > 0 \), after the creation of the equilibria \(\rho_2^1 \) and \(\rho_1^1 \), there always exists a straight segment orbit heteroclinic to \(\rho_1^1 \) and \(\rho_1^0 \), its length is \(\lambda_0 \), and we denote this heteroclinic orbit by \(\gamma^* \). Moreover, \(\gamma_0^1 = \gamma_0^* \) is a critical position.

Firstly, we take into account the case \(x_0^1 \geq \lambda_0 \). In this case, (31) becomes

\[
\left(w_{11}^2 \right)^{-1} \delta s_1 - \delta s_2^{\frac{1}{2}} + M_{11}^\lambda \lambda + M_{11}^\mu \mu + \text{h.o.t.} = 0,
\]

\[
\left(w_{21}^2 \right)^{-1} \delta s_2^{\frac{1}{2}} + \delta \lambda_0 \left[\left(\delta - (\delta - \lambda_0)^{1/2} \right)^{-1} \right] + M_{21}^\lambda \lambda + M_{21}^\mu \mu + \text{h.o.t.} = 0,
\]

\[
\omega_{21}^{2} \left(w_{11}^{2} \right)^{-1} s_1^{1/2} M_{11}^\lambda \lambda \] + \left(w_{21}^{2} \right)^{-1} \delta s_2^{1/2} M_{21}^\mu \mu + \text{h.o.t.} = 0,
\]

Let \(s = s_1^1/\rho_1^1 \) (\(s = 0 \) means \(s_1 = 0 \) and vice versa); by virtue of Taylor’s development for \(\delta \lambda_0 / (\delta - (\delta - \lambda_0)^{1/2}) \), we have

\[
\left(w_{11}^2 \right)^{-1} s_1^{1/2} + \left(\delta - (\delta - \lambda_0)^{1/2} \right)^{-1} M_{11}^\lambda \lambda + \delta M_{11}^\mu \mu + \text{h.o.t.} = 0,
\]

\[
\left(w_{21}^2 \right)^{-1} \delta s_2^{1/2} - \lambda_0 \left(\delta - (\delta - \lambda_0)^{1/2} \right)^{-1} s_1^{1/2} + M_{21}^\mu \mu + \text{h.o.t.} = 0.
\]

(47)

With similar arguments to \(\lambda = 0 \), we may easily obtain the following results.

Theorem 6. Suppose the conditions (H1)–(H3) hold, \(0 < \lambda = 1 \); then

(i) if \(\text{rank}(M_{11}^\mu \mu, M_{21}^\mu \mu) = 2 \), there exists an \((l - 2)\)-dimensional surface

\[
L_{12} = \left\{ \mu(\lambda) : M_{11}^\mu \mu + M_{11}^\mu \lambda + \text{h.o.t.} = 0 \right\}
\]

such that system (1) has a unique heteroclinic loop if and only if \(\mu \in L_{12} \) and \(0 < |\mu| \ll 1 \);

(ii) there exists an \((l - 1)\)-dimensional surface

\[
L_{21} = \left\{ \mu(\lambda) : W_1^2(\lambda, \mu) = \left(\left(w_{21}^2 \right)^{-1} \right) \left[\delta^{-1} \left(M_{11}^\mu \mu + M_{11}^\mu \lambda \right) \right]^\delta - \delta \left(M_{21}^\mu \mu + M_{11}^\mu \lambda \right) \right] + \delta^{-1} \left(M_{21}^\mu \mu + M_{11}^\mu \lambda \right) - \delta \lambda_0 + \text{h.o.t.} = 0,
\]

\[
M_{11}^\mu \mu + M_{11}^\mu \lambda > 0 \}
\]

\[
\text{resp.,}
\]

\[
L_{21} = \left\{ \mu(\lambda) : W_1^2(\lambda, \mu) = \delta \lambda_0 + \delta \lambda_0 \left(\delta - (\delta - \lambda_0)^{1/2} \right), \right. \]

\[
\times \left[\left(M_{11}^\mu \mu + M_{11}^\mu \lambda \right) \right]^{1/2} - \delta M_{11}^\mu \lambda
\]

\[
- \delta M_{11}^\mu \mu + \text{h.o.t.} = 0,
\]

\[
\omega_{21}^2 \left(w_{11}^2 \right)^{-1} s_1^{1/2} M_{11}^\mu \mu + \text{h.o.t.} = 0 \}
\]

\[
(49)
\]

such that system (1) has one homoclinic loop connecting \(\rho_1 \) (resp., connecting \(p_2 \)) if and only if \(\mu \in L_{21} \) and \(0 < |\mu| \ll 1 \).

Theorem 7. Suppose hypotheses (H1)–(H3) hold, \(M_{11}^\mu \neq 0 \), \(i = 1, 2, 0 < \lambda, |\mu| \ll 1 \), and \(w_{11}^2 \omega_{21}^2 < 0 \). Then, except the
homoclinic loop connecting p^1_1 (resp., p^1_2), system (1) has no periodic orbits as $\mu \in L^1_{\pm1}$ (resp., $\mu \in L^1_{\pm1}$).

Remark 8. It is easy to see that homoclinic loop connecting p^0_0 and heteroclinic loop joining p^1_1, p^1_2 cannot be bifurcated from Γ, which is exactly determined by the generic condition (H_1).

Finally, we consider the case $-\beta \leq x^1_0 < \lambda_p$. Due to Figure 1 and (25), it follows from (31) that

$$s_2 = \left[\delta^{-1} \left(M^1_{1\lambda} \lambda + M^1_{1\mu} \mu \right) \right]^{\gamma_2/\gamma_1} + \text{h.o.t.},$$

$$x^1_0 = \left(w^1_{12} \right)^{-1} \delta s^2_2 / \gamma_1 + M^1_{2\lambda} \lambda + M^1_{2\mu} \mu + \text{h.o.t.}$$

Theorem 9. Assume the conditions (H_1)–(H_3) are true, rank($M^1_{1\lambda}, M^1_{1\mu}$) > 0 and rank($M^1_{2\lambda}, M^1_{2\mu}$) > 0. Then,

(i) there exists a surface

$$\Sigma_1 (\mu, \lambda) = \left\{ (\mu, \lambda) : \delta^{-1} \left(M^1_{1\lambda} \lambda + M^1_{1\mu} \mu \right) \right\}^{\gamma_2/\gamma_1} + \text{h.o.t.} = 0,$$

$$-\beta \leq M^1_{2\lambda} \lambda + M^1_{2\mu} \mu + \text{h.o.t.} < \lambda_p,$$

$$0 < |\mu|, \lambda \ll 1 \right\},$$

$$\Delta = \left\{ (\lambda, \mu) : -\beta \leq \left(w^1_{22} \right)^{-1} \delta (\lambda^2 - M^1_{1\mu} \mu) / \gamma_1 \right\}$$

$$\times \left(M^1_{1\lambda} \lambda + M^1_{1\mu} \mu \right)^{\gamma_2/\gamma_1}$$

$$+ M^1_{2\lambda} \lambda + M^1_{2\mu} \mu$$

$$+ \text{h.o.t.} < \lambda_p,$$

$$M^1_{1\lambda} \lambda + M^1_{1\mu} \mu > 0,$$

$$0 < |\mu|, \lambda \ll 1 \right\},$$

(ii) If $s_2 > 0$ in (50), one attains $M^1_{1\lambda} \lambda + M^1_{1\mu} \mu > 0$. Eliminating s_2 in (50), we achieve

$$x^1_0 = \left(w^1_{12} \right)^{-1} \delta (\lambda^2 - M^1_{1\mu} \mu) / \gamma_1 \left(M^1_{1\lambda} \lambda + M^1_{1\mu} \mu \right)^{\gamma_2/\gamma_1}$$

$$+ M^1_{2\lambda} \lambda + M^1_{2\mu} \mu + \text{h.o.t.},$$

which shows that there exists a region Δ such that when $(\lambda, \mu) \in \Delta$, system (1) has one heteroclinic orbit heteroclinic to p^1_1 and p^0_0.

Remark 10. All the heteroclinic orbits joining p^1_0 will go into p^0_1 in different ways according to different fields of x^1_0, see Figure 2.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This paper is supported by National Natural Science Foundation of China (nos. 1120192J, 11226133), the Fundamental Research Funds for the Central Universities (no. 2652012097), and the Beijing Higher Education Young Elite Teacher Project.

References

Submit your manuscripts at http://www.hindawi.com