Research Article

On the Maximum Estrada Index of 3-Uniform Linear Hypertrees

Faxu Li,1,2 Liang Wei,3 Jinde Cao,4,5 Feng Hu,1,2 and Haixing Zhao2

1 School of Computer Science, Shaanxi Normal University, Xian 710062, China
2 College of Computer, Qinghai Normal University, Xining 810008, China
3 Department of Mathematics, Qinghai Normal University, Xining 810008, China
4 Department of Mathematics, Southeast University, Nanjing 210096, China
5 Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia

Correspondence should be addressed to Haixing Zhao; h.x.zhao@163.com

Received 3 July 2014; Accepted 12 August 2014; Published 28 August 2014

Academic Editor: Jianlong Qiu

Copyright © 2014 Faxu Li et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For a simple hypergraph \(H \) on \(n \) vertices, its Estrada index is defined as
\[
EE(H) = \sum_{i=1}^{n} e^{\lambda_i},
\]
where \(\lambda_1, \lambda_2, \ldots, \lambda_n \) are the eigenvalues of its adjacency matrix. In this paper, we determine the unique 3-uniform linear hypertree with the maximum Estrada index.

1. Introduction

Let \(G = (V, E) \) be a simple graph, and let \(n \) and \(m \) be the number of vertices and the number of edges of \(G \), respectively. The characteristic polynomial of a graph \(G \) is written as \(P(G, \lambda) = \det(\lambda I - A(G)) \), where \(A(G) \) is the adjacency matrix of \(G \). The eigenvalues of \(G \) are the eigenvalues of its adjacency matrix \(A(G) \), which are denoted by \(\lambda_1, \lambda_2, \ldots, \lambda_n \). A graph-spectrum-based invariant, nowadays named Estrada index, proposed by Estrada in 2000, is defined as [1]
\[
EE(G) = \sum_{i=1}^{n} e^{\lambda_i}. \tag{1}
\]

Since then, the Estrada index has already found remarkable applications in biology, chemistry, and complex networks [2–5]. Some mathematical properties of the Estrada index, especially bounds for it have been established in [6–15]. For more results on the Estrada index, the readers are referred to recent papers [16–19].

Let \(H = (V, \mathcal{E}) \) be a simple and finite hypergraph with vertex set \(V(G) = \{v_1, v_2, \ldots, v_n\} \) and hyperedge set \(\mathcal{E}(G) = \{E_1, E_2, \ldots, E_m\} \). The hypergraph \(H \) is called linear if two hyperedges intersect in one vertex at most and also \(h \)-uniform if \(|E_i| = h \) for each \(E_i \) in \(\mathcal{E} \), \(i = 1, 2, \ldots, m \). An \(h \)-uniform hypertree is a connected linear \(h \)-hypergraph without cycles. An \(h \)-uniform linear hypertree is called 3-uniform linear hypertree if \(h \) is equal to 3. Denoted by \(\mathcal{S}_h \) an \(h \)-uniform linear star with \(m \) hyperedges. More details on hypergraphs can be found in [20].

Let \(A(H) \) denote a square symmetric matrix in which the diagonal elements \(a_{ii} \) are zero, and other elements \(a_{ij} \) represent the number of hyperedges containing both vertices \(v_i \) and \(v_j \) (for undirected hypergraphs, \(a_{ij} = a_{ji} \)). Let \(\lambda_1, \lambda_2, \ldots, \lambda_n \) be the eigenvalues of \(A(H) \) of \(H \). The subhypergraph centrality of a hypergraph \(H \), firstly put forward by Estrada and Rodriguez-Velázquez in 2006, is defined as [21]
\[
\langle C_{SH} \rangle = \frac{1}{n} \sum_{i=1}^{n} C_{SH}(i) = \frac{1}{n} \sum_{i=1}^{n} e^{\lambda_i}. \tag{2}
\]

They revealed that the subhypergraph centrality provides a measure of the centrality of complex hypernetworks (social, reaction, metabolic, protein, food web, etc). For convenience, we call the subhypergraph centrality of a hypergraph its Estrada index and define the Estrada index as
\[
EE(H) = \sum_{i=1}^{n} e^{\lambda_i}. \tag{3}
\]

Thus far, results on the Estrada index of hypergraph seem to be few although the Estrada index of graph has numerous applications. So our main goal is to investigate the Estrada index of 3-uniform linear hypertrees. In this paper,
we determine the unique 3-uniform linear hypertree with the maximum Estrada index among the set of 3-uniform linear hypertrees.

2. Preliminaries

For a hypergraph \(H \) of order \(n \), its completely connected graph, denoted by \(G_{H} \), is a graph which has the same order and in which two vertices are adjacent if they share one hyperedge. Obviously, \(G_{H} \) is a multigraph. For an \(h \)-uniform linear hypergraph \(H \), \(G_{H} \) is a simple graph. According to the definition of adjacency matrix of hypergraph, it is easy to see that both a 3-uniform linear hypertree \(H \) and its completely connected graph \(G_{H} \) have the same adjacency matrix; see Figure 1. Then, they have the identical Estrada index. Thus, we investigate the Estrada index of its completely connected graphs instead of the 3-uniform linear hypertrees in this paper.

We use \(M_k(G) = \sum_{i=1}^{n} \lambda_i^k \) to denote the \(k \)th spectral moment of the graph \(G \). It is well-known [22] that \(M_k(G) \) is equal to the number of closed walks of length \(k \) in \(G \). Obviously, for any graph \(G \), \(M_0(G) = n, M_1(G) = 0, M_2(G) = 2m, M_3(G) = 6t \), and \(M_4(G) = 2 \sum_{i=1}^{n} d_i^2 - 2m + 8q \), where \(t, q \), and \(d_i = d_G(v_i) \) are the number of triangles, the number of quadrangles, and the degree of vertex \(v_i \) in graph \(G \), respectively. Then

\[
EE(G) = \sum_{k=0}^{\infty} \frac{M_k(G)}{k!} = \sum_{k=0}^{\infty} \frac{\lambda_i^k}{k!}.
\]

For \(u, v \in V(G) \), denote by \(\mathcal{W}_k(G; u, v) \) the set of \((u, v)\)-walks of length \(k \) in \(G \). Obviously, \(M_k(G; u, v) = |\mathcal{W}_k(G; u, v)| \). For convenience, let \(\mathcal{W}_k(G; u) = \mathcal{W}_k(G; u, u) \) and \(M_k(G; u) = M_k(G; G; u, u) \). Let \(W \) be a \((u, v)\)-walk in graph \(G \); we denote by \(W^{-1} \) a \((v, u)\)-walk obtained from \(W \) by reversing \(W \).

For any two graphs \(G_1 \) and \(G_2 \), if \(M_k(G_1) \geq M_k(G_2) \) for all integers \(k > 0 \), then \(EE(G_1) \geq EE(G_2) \). Moreover, if the strict inequality \(M_k(G_1) > M_k(G_2) \) holds for at least one value \(k > 0 \), then \(EE(G_1) > EE(G_2) \).

Denote by \(\Gamma(n, m) \) the set of connected graphs on \(n \) vertices and \(m \) triangles such that any two triangles have a common vertex at most. Apparently, for a 3-uniform linear hypertree \(H \) on \(n \) vertices and \(m \) hyperedges, \(G_{H} \in \Gamma(n, m) \). Now we study the Estrada index of a graph in \(\Gamma(n, m) \).

3. Maximum Estrada Index of 3-Uniform Linear Hypertrees

In this section, we determine the maximum value of Estrada index among the set of 3-uniform linear hypertrees.

Lemma 1. Let \(S^3_m \) be star which is the completely connected graph of \(\delta^3_m \) with \(m \) hyperedges. It is easily found that the star \(S^3_m \) has \(n \) vertices labeled \(v_1, v_2, \ldots, v_n \) and \(m = (n - 1)/2 \) triangles. Let \(k \) be a positive integer; then there is an injection \(\xi \) from \(\mathcal{W}_k(S^3_m; v_2) \) to \(\mathcal{W}_k(S^3_m; v_1) \), and \(\xi \) is not surjective for \(n \geq 5, 2 \leq m \leq (n - 1)/2 \), and \(k > 1 \), where \(\mathcal{W}_k(S^3_m; v_2) \) and \(\mathcal{W}_k(S^3_m; v_1) \) are the sets of closed walks of length \(k \) of \(v_2 \) and \(v_1 \) in \(S^3_m \), respectively; see Figure 2.

Proof. Firstly, we construct a mapping \(\phi \) from \(\mathcal{W}_k(S^3_m; v_2) \) to \(\mathcal{W}_k(S^3_m; v_1) \). For \(W \in \mathcal{W}_k(S^3_m; v_2) \), let \(\phi(W) \) be the closed walk obtained from \(W \) by replacing \(v_1 \) by \(v_2 \) and \(v_2 \) by \(v_1 \). Obviously, \(\phi(W) \in \mathcal{W}_k(S^3_m; v_1) \) and \(\phi \) is a bijection.

Secondly, we construct a mapping \(\xi \) from \(\mathcal{W}_k(S^3_m; v_2) \) to \(\mathcal{W}_k(S^3_m; v_1) \). For \(W \in \mathcal{W}_k(S^3_m; v_2) \), we consider the following cases.

Case 1. Suppose \(W \) does not pass the edge \(v_1v_3 \) for \(t \geq 4 \); then \(\xi(W) = \phi(W) \).

Case 2. Suppose \(W \) passes the edge \(v_1v_3 \) for \(t \geq 4 \). For \(W \in \mathcal{W}_k(S^3_m; v_2) \), we may uniquely decompose \(W \) into three sections \(W_1W_2W_3 \), where \(W_1 \) is the longest \((v_1, v_3)\)-section of \(W \) without \(v_1 \), \(W_3 \) is the internal longest \((v_3, v_1)\)-section of \(W \) for \(t \geq 4 \), and the last \(W_3' \) is the remaining \((v_3, v_2)\)-section of \(W \) not containing \(v_1 \). We consider the following three subcases.
Case 2.1. If both W_1 and W_3 contain the vertex v_3, we may uniquely decompose W_1 into two sections $W_{11}W_{12}$ and decompose W_3 into two sections $W_{31}W_{32}$, where W_{11} is the shortest (v_2,v_3)-section of W_1, W_{12} is the remaining (v_3,v_1)-section of W_1, W_{31} is the longest (v_1,v_3)-section of W_3, and W_{32} is the remaining (v_1,v_3)-section of W_3.

Let $ξ(W) = ξ(W_{11})ξ(W_{12})ξ(W_{2})ξ(W_{31})ξ(W_{32})$, where $ξ(W_{12}) = W_{12}, ξ(W_{2}) = W_{2}, ξ(W_{31}) = W_{31}, ξ(W_{11})$ is a (v_1,v_3)-walk obtained from W_{11} replacing v_1 by v_2 and v_3 by v_1, and $ξ(W_{32})$ is a (v_1,v_3)-walk obtained from W_{32} replacing v_1 by v_2 and v_2 by v_1.

Case 2.2. If W_1 contains the vertex v_3 and W_3 does not contain v_3, let $ξ(W) = ξ(W_{11})ξ(W_{31})ξ(W_{2})$, where $ξ(W_{2}) = W_{2}, ξ(W_{11})$ is a (v_1,v_3)-walk obtained from W_{11} replacing its first vertex v_2 by v_3 and v_3 by v_1, and $ξ(W_{31})$ is a (v_1,v_3)-walk obtained from W_{31} replacing its last two vertices v_1 by v_2.

For example, in star S_5^3 on 7 vertices and 3 triangles, $W = v_2v_3v_1v_3v_2v_1v_3v_2$ is a closed walk of length 6 of v_2 not passing the edge v_1v_3. By Case 1, we have

$$ξ(W) = v_1v_3v_1v_2v_3v_1.$$ \hspace{1cm} (5)

$W' = v_2v_3v_1v_2v_3v_1v_2v_3v_1$ is a closed walk of length 9 of v_2 passing the edge v_1v_3. By Case 2.2, we get

$$ξ(W') = v_1v_2v_3v_1v_2v_3v_1v_2v_3v_1.$$ \hspace{1cm} (6)

$W'' = v_2v_3v_1v_2v_3v_1v_2v_3v_1v_2v_3v_1v_2$ is a closed walk of length 14 of v_2 passing the edge v_1v_3. By Case 2.3, we obtain

$$ξ(W'') = v_1v_2v_3v_1v_2v_3v_1v_2v_3v_1v_2v_3v_1v_2v_3v_1.$$ \hspace{1cm} (7)

Obviously, $ξ(W) ∈ ℋ_k(S_m^3; v_1), ξ$ is an injective and not a surjective for $n ≥ 5$, and $k ≥ 1$.

Lemma 2. Let u be a nonisolated vertex of a connected graph G. If G_1 and G_2 are the graphs obtained from G by identifying an external vertex v_2 and the center vertex v_1 of the union of S_m^3 with G to u, respectively, where $|V(S_m^3)| = n, Q$ is either empty graph or nonempty graph. Then $M_k(G_1) < M_k(G_2)$ for $n ≥ 5$ and $k ≥ 4$; see Figure 3.

Proof. Let $ℋ_k(G_1), ℋ_k(S_m^3 ∪ Q), ℋ_k(S_m^3 ∪ Q)$, resp.) be the set of closed walks of length k of $G, S_m^3 ∪ Q$, resp.) for $i = 1, 2$. Then $ℋ_k(G_1) = ℋ_k(G) ∪ ℋ_k(S_m^3 ∪ Q)$, and $ℋ_k(S_m^3 ∪ Q)$ contains both at least one edge in $E(G)$ and at least one edge in $E(S_m^3 ∪ Q)$. So $M_k(G_1) = |ℋ_k(G)| + |ℋ_k(S_m^3 ∪ Q)| + |X_1| = M_k(G) + M_k(S_m^3 ∪ Q) + |X_1|$. Thus we need to show the inequality $|X_1| < |X_2|$.

We construct a mapping $η$ from X_1 to X_2 and consider the following four cases.

Case 1. Suppose W is a closed walk starting from $u ∈ V(G)$ in X_1. For $W ∈ X_1$, let $η(W) = (W - W_1(S_m^3 ∪ Q))∪ξ(W) ∪ (S_m^3 ∪ Q)$; that is, $η(W)$ is the closed walk in X_2 obtained from W by replacing its every section in $S_m^3 ∪ Q$ with its image under the map $ξ$.

Case 2. Suppose W is a closed walk starting from v_1 in X_1. For $W ∈ X_1$, we may uniquely decompose W into three sections $W_1W_2W_3$, where W_1 is the longest (v_1, v_2)-section of W without vertices $u_0, ..., u_i ∈ V(G), W_2$ is the internal longest (u_0, u_i)-section of W (for which the internal vertices are some possible vertices in $V(G)$), and W_3 is the remaining (v_2, v_3)-section of W. Let $η(W) = η(W_1)η(W_2)η(W_3)$, where $η(W_1) = W_1^{-1}, η(W_2) = W_2^{-1}$, and $η(W_3) = (W_2 - W_2 ∩ (S_m^3 ∪ Q))∪ξ(W_3)∪(S_m^3 ∪ Q)$; that is, $η(W_3)$ is a (u_0, u_i)-walk from W_2 by replacing its every section in $S_m^3 ∪ Q$ with its image under the map $ξ$.

Case 3. Suppose W is a closed walk starting from v_3 or $w ∈ V(Q)$ in X_1. For $W ∈ X_1$, we may uniquely decompose W into three sections $W_1W_2W_3$, where W_1 is the longest (v_2, v_3) (or (v_1, v_3))-section of W without vertices $u_0, ..., u_i ∈ V(G)$, W_2 is the internal longest (u_0, u_i)-section of W (for which the internal vertices are some possible vertices in $V(G)$), and W_3 is the remaining (v_2, v_3) (or (v_2, w))-section of W without vertices $u_0, ..., u_i$. We have three subcases.
Case 3.1. If both W_1 and W_3 do not pass edge v_1v_2, let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)$, where $\eta(W_2) = (W_2 - W_1 \cap (S_m^3 \cup Q)) \cup \xi(W_2 \cap (S_m^3 \cup Q))$, $\eta(W_1)$ is a (v_1, v_1)-walk obtained from W_1 replacing v_1 by v_2 and v_3, and $\eta(W_3)$ is a (v_1, v_3)-walk obtained from W_3 replacing v_1 by v_2 and v_3 by v_1.

Case 3.2. If both W_1 and W_3 pass edge v_1v_2, we may anew decompose W into five sections $W_1W_2W_3W_4W_5$, where W_2 is the longest (v_3, v_3)-walk obtained from W_3 (for which the internal vertices are some possible vertices in $V(G_1)$), and the last W_5 is the remaining (v_4, v_3)-section of W. We have three subcases.

Case 3.2.1. If both W_2 and W_4 contain the vertex v_3, we may uniquely decompose W into two sections W_2W_4, where W_2 is the longest (v_3, v_2)-section of W, and W_4 is the remaining shortest (v_3, v_2)-section of W. Let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)$, where $\eta(W_1) = W_1$, $\eta(W_2) = (W_2 - W_3 \cap (S_m^3 \cup Q)) \cup \xi(W_2 \cap (S_m^3 \cup Q))$, $\eta(W_3) = W_3$, $\eta(W_4) = (W_4 - W_5 \cap (S_m^3 \cup Q)) \cup \xi(W_4 \cap (S_m^3 \cup Q))$, and $\eta(W_4)$ is a (v_1, v_3)-walk obtained from W_4 replacing v_1 by v_2 and v_3 by v_1.

Case 3.2.2. If W_2 does not contain the vertex v_3, let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)$, where $\eta(W_1) = W_1$, $\eta(W_2) = (W_2 - W_3 \cap (S_m^3 \cup Q)) \cup \xi(W_2 \cap (S_m^3 \cup Q))$, $\eta(W_3) = W_3$, $\eta(W_4) = (W_4 - W_5 \cap (S_m^3 \cup Q)) \cup \xi(W_4 \cap (S_m^3 \cup Q))$, and $\eta(W_4)$ is a (v_1, v_3)-walk obtained from W_4 replacing its first two vertices v_1 by v_2 and v_3 by v_1.

Case 3.2.3. If W_2 contains the vertex v_3 and W_3 does not contain vertex v_3, let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)$, where $\eta(W_1) = W_1$, $\eta(W_2) = (W_2 - W_3 \cap (S_m^3 \cup Q)) \cup \xi(W_2 \cap (S_m^3 \cup Q))$, $\eta(W_3) = W_3$, $\eta(W_4) = (W_4 - W_5 \cap (S_m^3 \cup Q)) \cup \xi(W_4 \cap (S_m^3 \cup Q))$, and $\eta(W_4)$ is a (v_1, v_3)-walk obtained from W_4 replacing its first two vertices v_1 by v_2 and v_3 by v_1.

Case 3.3. If W_1 passes edge v_1v_2, and W_3 does not pass edge v_1v_2, we may anew decompose W into four sections $W_1W_2W_3W_4$, where W_2 is the section of W (for which the internal vertices are some possible vertices in $V(G_1)$), and the last W_4 is the longest (v_3, v_3)-section of W (for which the internal vertices, if exist, are only possible $v_1, v_2, v_3, w \in V(Q)$). We consider the following two subcases.

Case 3.3.1. If W_2 contains vertex v_3, we may uniquely decompose W into two sections W_2W_3, where W_2 is the longest (v_1, v_3)-section of W and W_3 is the remaining shortest (v_3, v_2)-section of W.

Let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)$, where $\eta(W_3) = W_3$, $\eta(W_4) = (W_4 - W_5 \cap (S_m^3 \cup Q)) \cup \xi(W_4 \cap (S_m^3 \cup Q))$, and $\eta(W_4)$ is a (v_1, v_3)-walk obtained from W_4 replacing its first two vertices v_1 by v_2 and v_3 by v_1.

Case 3.3.2. If W_2 does not contain vertex v_3, let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)$, where $\eta(W_3) = W_3$, $\eta(W_4) = (W_4 - W_5 \cap (S_m^3 \cup Q)) \cup \xi(W_4 \cap (S_m^3 \cup Q))$, and $\eta(W_4)$ is a (v_1, v_3)-walk obtained from W_4 replacing its first two vertices v_1 by v_2 and v_3 by v_1.

Case 4. If W_1 does not pass edge v_1v_2, and W_3 passes edge v_1v_2, we may anew decompose W into four sections $W_1W_2W_3W_4$, where W_1 is the longest (v_1, v_2)-section of W (which do not contain vertices u_1, \ldots, u_i'), and W_3 is the internal longest (u_0, u_i')-section of W (for which the internal vertices are some possible vertices in $V(G_1)$), and the last W_4 is the longest (v_1, v_3)-section of W. We have two subcases.

Case 3.4.1. If W_3 contains vertex v_3, we may uniquely decompose W into two sections W_3W_4, where W_3 is the shortest (v_1, v_3)-section of W, and W_4 is the remaining longest (v_3, v_4)-section of W.

Let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)$, where $\eta(W_3) = (W_3 - W_2 \cap (S_m^3 \cup Q)) \cup \xi(W_3 \cap (S_m^3 \cup Q))$, and $\eta(W_4)$ is a (v_1, v_3)-walk obtained from W_4 replacing its first two vertices v_1 by v_2 and v_3 by v_1.

Case 3.4.2. If W_3 does not contain vertex v_3, let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)$, where $\eta(W_3) = (W_3 - W_2 \cap (S_m^3 \cup Q)) \cup \xi(W_3 \cap (S_m^3 \cup Q))$, and $\eta(W_4)$ is a (v_1, v_3)-walk obtained from W_4 replacing its first two vertices v_1 by v_2 and v_3 by v_1.

Case 4. Suppose W is a closed walk starting from v_4 for $i = 4, 5, 6, \ldots, n$ in X_i. For $W = X_i$, we may uniquely decompose W into five sections $W_1W_2W_3W_4W_5$, where W_1 is the longest (v_1, v_2)-section of W (which do not contain vertices u_1, \ldots, u_i'), W_2 is the second (v_1, v_2)-section of W (for which the internal vertices, if exist, are only possible $v_1, v_2, v_3, w \in V(G)$), and the last W_5 is the longest (v_3, v_3)-section of W (for which the internal vertices are some possible vertices in $V(G_1)$), the fourth W_4 is the longest (v_2, v_3)-section of W. We have at least two subcases.
Case 4.1. If both W_2 and W_4 contain the vertex v_3, we may uniquely decompose W_2 into two sections $W_{21}W_{22}$ and decompose W_4 into two sections $W_{41}W_{42}$, where W_{21} is the longest (v_1, v_1)-section of W_2, W_{22} is the remaining shortest (v_3, v_3) of W_2, W_{41} is the shortest (v_2, v_3)-section of W_4, and W_{42} is the remaining longest (v_1, v_1)-section of W_4.

Let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)\eta(W_5)$, where $\eta(W_1) = W_1, \eta(W_2) = (W_3 - W_5) \cap (S_m^0 \cup Q) \cup \xi(W_2 \cap (S_m^0 \cup Q)), \eta(W_3) = W_3, \eta(W_4) = W_4$, and $\eta(W_5)$ is a (v_1, v_1)-walk obtained from W_2 replacing v_2 by v_2 and v_3 by v_1, and $\eta(W_4)$ is a (v_1, v_3)-walk obtained from W_4 replacing v_1 by v_2 and v_3 by v_1.

Case 4.2. If W_2 contains the vertex v_1 and W_4 does not contain vertex v_3, let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)\eta(W_5)$, where $\eta(W_1) = W_1, \eta(W_2) = (W_3 - W_5) \cap (S_m^0 \cup Q) \cup \xi(W_2 \cap (S_m^0 \cup Q)), \eta(W_3) = W_3, \eta(W_4) = W_4$, and $\eta(W_5)$ is a (v_1, v_1)-walk obtained from W_2 replacing its last vertex v_2 by v_3, and $\eta(W_4)$ is a (v_1, v_1)-walk obtained from W_4 replacing its first two vertices v_2, v_3 by v_1.

Case 4.3. If W_2 does not contain the vertex v_3, let $\eta(W) = \eta(W_1)\eta(W_2)\eta(W_3)\eta(W_4)$, where $\eta(W_1) = W_1, \eta(W_2) = (W_3 - W_5) \cap (S_m^0 \cup Q) \cup \xi(W_2 \cap (S_m^0 \cup Q)), \eta(W_3) = W_3, \eta(W_4) = W_4$, and $\eta(W_5)$ is a (v_1, v_1)-walk obtained from W_2 by replacing its last two vertices v_2, v_3 by v_1, and $\eta(W_4)$ is a (v_1, v_1)-walk obtained from W_4 by replacing its first vertex v_2 by v_1.

For example, \[
\eta_1\left(u_0 u_1 \cdots u_2 v_3 w_1 \cdots u_2 v_3 v_1 u_1' \cdots u_1' v_1 u_0'\right) = u_0 u_1 \cdots u_2 v_3 w_1 \cdots u_2 v_3 v_1 u_1' \cdots u_1' v_1 u_0' \quad \eta_1\left(u_0 u_1 \cdots u_2 v_3 w_1 \cdots u_2 v_3 v_1 u_1' \cdots u_1' v_1 u_0'\right) = u_0 u_1 \cdots u_2 v_3 w_1 \cdots u_2 v_3 v_1 u_1' \cdots u_1' v_1 u_0'.
\]

(8)

where $u_0, u_1, \ldots, u_r, u_1', \ldots, u_r'$ are vertices in G and u_0, u_1, \ldots, u_r are vertices in Q.

By Lemma 1, ξ is injective and not surjective. It is easily shown that η is also injective and not surjective. Thus $|X_2| < |X_2|, M_1(G_1) < M_2(G_2)$.

Theorem 3. Let G_1 be an arbitrary graph on n vertices in set \(\Gamma(n, m)\), where $n > 5$. Then $EE(G_1) \leq EE(S_m^0)$ with the equality holding if and only if $G_1 \cong S_m^0$.

Proof. Determine a vertex v of the maximum degree Δ as a root in G_1, and let $k \geq 4$ be an integer. Let G_{11} be the completely connected graph of 3-uniform linear hypertree H_1 attached at v, and let m_1 be the number of triangles of G_{11} for $i = 1, 2, \ldots, \Delta/2$, respectively. We can repeatedly apply this transformation from Lemma 2 at some vertices whose degrees are not equal to two or $2m_1$ in G_{11} till G_{11} becomes a star. From Lemma 2, it satisfies that each application of this transformation strictly increases the number of closed walks and also increases Estrada index.
When all G_{H_i} turn into stars, we can again use Lemma 2 at the vertex v as long as there exists at least one vertex whose degree is not equal to two or $2 \sum m_i$, further increasing the number of closed walks. In the end of this procedure, we get the star S_m. The whole procedure of transformation is shown in Figure 4.

\textbf{Lemma 4} (see [20]). Let v be a vertex of a graph G, $G - \{v\} = G - v$ for $v \in V(G)$, and $\mathcal{C}(v)$ the set of cycles containing v. Consider

$$P(G, \lambda) = \lambda \cdot P(G - v, \lambda) - \sum_{v \in \mathcal{C}(v)} P(G - v, \lambda),$$

where $P(G - v, \lambda) = 1$ if G is a single edge and $P(G - V(Z), \lambda) = 1$ if G is a cycle.

Now, we calculate $EE(S_m^3)$. Applying Lemma 4, we have

$$P(S_m^3, \lambda) = \left(\lambda + 1\right)^{(n-1)/2} \left(\lambda - 1\right)^{(n-3)/2} \left(\lambda^2 - n + 1\right).$$

(10)

By some simple calculating, we achieve the following eigenvalues:

$$\lambda_1 = \lambda_2 = \cdots = \lambda_{(n-1)/2} = -1,$$

$$\lambda_{(n+1)/2} = \lambda_{(n+3)/2} = \cdots = \lambda_{n-2} = 1,$$

$$\lambda_{n-1} = \frac{1 + \sqrt{4n - 3}}{2}, \quad \lambda_n = \frac{1 + \sqrt{4n - 3}}{2}.$$

(11)

Then, we obtain

$$EE \left(S_m^3\right) = \frac{(n - 1)}{2e} + \frac{(n - 3)}{2} e^{-\frac{1 + \sqrt{4n - 3}}{2}} + e^{-\frac{1 - \sqrt{4n - 3}}{2}}.$$

(12)

Theorem 3 shows that the star S_m^3 has the maximum Estrada index in set $\Gamma(n, m)$. Thus, according to previous definition, it is easy to show that the 3-uniform star S_m^3 has the maximum Estrada index among the set of 3-uniform linear hypertrees; that is,

$$EE(H) \leq EE \left(S_m^3\right),$$

(13)

where

$$EE \left(S_m^3\right) = \frac{(n - 1)}{2e} + \frac{(n - 3)}{2} e^{-\frac{1 + \sqrt{4n - 3}}{2}} + e^{-\frac{1 - \sqrt{4n - 3}}{2}}.$$

(14)

\textbf{Conflict of Interests}

The authors declare that there is no conflict of interests regarding the publication of this paper.

\textbf{Acknowledgments}

This work was supported by Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT)(no. ITR1068), Special 973 Program for Key Basic Research of the Ministry of Science and Technology, China (no. 2010CB334708), the National Natural Science Foundation of China (NSFC)(no. 60863006), Scientific Research Foundation of the Department of Science and Technology, Qinghai Province, China (no. 2012-Z-943).

\textbf{References}

Submit your manuscripts at http://www.hindawi.com