Research Article

On Some Fuzzy Filters in Pseudo-BCI Algebras

Xiaohong Zhang

College of Arts and Sciences, Shanghai Maritime University, Shanghai 201306, China

Correspondence should be addressed to Xiaohong Zhang; zxhonghz@263.net

Received 2 March 2014; Accepted 9 March 2014; Published 8 April 2014

Academic Editor: Wieslaw A. Dudek

Copyright © 2014 Xiaohong Zhang. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Some new properties of fuzzy associative filters (also known as fuzzy associative pseudo-filters), fuzzy p-filter (also known as fuzzy pseudo-p-filters), and fuzzy a-filter (also known as fuzzy pseudo-a-filters) in pseudo-BCI algebras are investigated. By these properties, the following important results are proved: (1) a fuzzy filter (also known as fuzzy pseudo-filter) of a pseudo-BCI algebra is a fuzzy associative filter if and only if it is a fuzzy a-filter; (2) a filter (also known as pseudo-filter) of a pseudo-BCI algebra is associative if and only if it is an a-filter (also call it pseudo-a-filter); (3) a fuzzy filter of a pseudo-BCI algebra is fuzzy a-filter if and only if it is both a fuzzy p-filter and a fuzzy q-filter.

1. Introduction and Preliminaries

In the field of artificial intelligence research, nonclassical logics (fuzzy logic, epistemic logic, nonmonotonic logic, default logic, etc.) are extensively used (see [1]). In this paper we discuss a kind of logic algebra system, that is, pseudo-BCI algebra, which originated from BCI-logic; it is a kind of nonclassical logic and inspired by the calculus of combinators [2]. Newly, in [3], we show that pseudo-BCI algebra plays an important role in weakly integral residuated algebraic structure, which is in close connection with various fuzzy logic formal systems [4, 5].

In 1966, Iséki [2] introduced the concept of BCI-algebra as an algebraic counterpart of the BCI-logic. Since then, the ideal theory of BCI-algebras gets in-depth research and development. In 2008, as a generalization of BCI-algebra, Dudek and Jun [6] introduced the notion of pseudo-BCI algebra which is also generalization of pseudo-BCK algebra introduced by Georgescu and Iorgulescu in [7]. We investigated some classes of pseudo-BCI algebras in [8]. Recently, the pseudoideal theory of pseudo-BCI algebras has been studied: the notion of pseudo-BCI ideal (or pseudoideal) of pseudo-BCI algebra is introduced in [9]; some special pseudo-BCI ideals are discussed in [10], for example, associative pseudoideal and pseudo-a ideal, which are generalization of associative ideal of BCI-algebra (it is introduced by X.H. Zhang and R.G. Ling).

The notion of fuzzy sets has been applied to many algebraic systems (see [4, 11, 12]); naturally, it has been applied to pseudo-BCK/BCI algebra; for example, fuzzy pseudoideals have been investigated in [13–15]. As continuums of the above works, we further study fuzzy associative pseudoideal and fuzzy pseudo-a ideal in pseudo-BCI algebras.

Note that the notion of pseudo-BCI algebra in this paper is indeed dual form of original definition in [6]; accordingly, the notion of pseudo-filter (or pseudo-BCI filter) is the dual form of pseudoideal (or pseudo-BCI ideal) in [9]. Moreover, for short, the notion of pseudo-filter (or pseudo-BCI filter) is simply called “filter” in this paper.

At first, we recall some basic concepts and properties of pseudo-BCI algebras.

Definition 1 (see [6]). A pseudo-BCI algebra is a structure $(X; \leq, \rightarrow, \vee, 1)$, where “$\leq$” is a binary relation on X, “\rightarrow” and “\vee” are binary operations on X, and “1” is an element of X, verifying the axioms: for all $x, y, z \in X$,

\begin{align*}
(1) & \quad y \rightarrow z \leq (z \rightarrow x) \vee (y \rightarrow x), \quad y \vee z \leq (z \vee x) \rightarrow (y \vee x); \\
(2) & \quad x \leq (x \rightarrow y) \vee y, \ x \leq (x \vee y) \rightarrow y; \\
(3) & \quad x \leq x; \\
(4) & \quad x \leq y, \ y \leq x \Rightarrow x = y; \\
(5) & \quad x \leq y \Rightarrow x \rightarrow y = 1 \Leftrightarrow x \vee y = 1.
\end{align*}
Proposition 2 (see [6, 9, 10]). Let \((X; \leq, \rightarrow, \cdot, 1)\) be a pseudo-\(\text{BCI}\) algebra; then \(X\) satisfy the following properties for all \(x, y, z \in X\):

\[
\begin{align*}
&\text{(1) } 1 \leq x \Rightarrow x = 1; \\
&\text{(2) } x \leq y \Rightarrow y \rightarrow z \leq x \rightarrow z, \quad y \rightarrow z \leq x \rightarrow z; \\
&\text{(3) } x \leq y, \quad y \leq z \Rightarrow x \leq z; \\
&\text{(4) } x \rightarrow (y \rightarrow z) = y \rightarrow (x \rightarrow z); \\
&\text{(5) } x \leq y \Rightarrow z \Rightarrow x \rightarrow z; \\
&\text{(6) } x \rightarrow y \leq (z \rightarrow x) \rightarrow (z \rightarrow y), \quad x \rightarrow y \leq (z \rightarrow x) \rightarrow (z \rightarrow y); \\
&\text{(7) } x \leq y \Rightarrow z \leq x \rightarrow y, \quad z \leq x \Rightarrow z \leq y; \\
&\text{(8) } 1 \rightarrow x = x, \quad 1 \rightarrow y = x; \\
&\text{(9) } (y \rightarrow x) \supset x = y
ightarrow x, \quad (y \rightarrow x) \supset x = y \rightarrow x; \\
&\text{(10) } x \rightarrow y \leq (y \rightarrow x) \supset 1, \quad x \rightarrow y \leq (y \rightarrow x) \rightarrow 1; \\
&\text{(11) } (x \rightarrow y) \rightarrow 1 = (x \rightarrow 1) \supset (y \rightarrow 1), \quad (x \rightarrow y) \supset 1 = (x \supset 1) \rightarrow (y \rightarrow 1); \\
&\text{(12) } x \rightarrow 1 = 1 \supset x \rightarrow 1.
\end{align*}
\]

Definition 3 (see [9]). A nonempty subset \(F\) of a pseudo-\(\text{BCI}\) algebra \(X\) is called a pseudo-\(\text{BCI}\) filter (briefly, filter) of \(X\) if it satisfies

\[
\begin{align*}
&\text{(F1) } 1 \in F; \\
&\text{(F2) } x \in F, x \rightarrow y \in F \Rightarrow y \in F; \\
&\text{(F3) } x \in F, x \supset y \in F \Rightarrow y \in F.
\end{align*}
\]

Definition 4 (see [10]). A nonempty subset \(F\) of a pseudo-\(\text{BCI}\) algebra \(X\) is called an associative pseudo-\(\text{BCI}\) filter (briefly, associative filter) of \(X\) if it satisfies

\[
\begin{align*}
&\text{(1) } 1 \in F; \\
&\text{(2) } x \rightarrow (y \supset z) \in F \quad \text{and} \quad x \rightarrow y \in F \Rightarrow z \in F; \\
&\text{(3) } x \supset (y \supset z) \in F \quad \text{and} \quad x \supset y \in F \Rightarrow z \in F.
\end{align*}
\]

Definition 5 (see [10]). A nonempty subset \(F\) of a pseudo-\(\text{BCI}\) algebra \(X\) is called a pseudo-\(a\)-filter (briefly, \(a\)-filter) of \(X\) if it satisfies

\[
\begin{align*}
&\text{(1) } 1 \in F; \\
&\text{(2) } (x \rightarrow 1) \supset (y \supset z) \in F \quad \text{and} \quad y \in F \Rightarrow z \supset x \in F; \\
&\text{(3) } (x \supset 1) \rightarrow (y \supset z) \in F \quad \text{and} \quad y \in F \Rightarrow z \rightarrow x \in F.
\end{align*}
\]

Definition 6 (see [13–15]). A fuzzy set \(\mu : X \rightarrow [0, 1]\) is called a fuzzy pseudofilter (briefly, fuzzy filter) of pseudo-\(\text{BCI}\) algebra \(X\) if it satisfies

\[
\begin{align*}
&\text{(FF1) } \mu(x) \geq \mu(x), \forall x \in X; \\
&\text{(FF2) } \mu(y) \geq \min\{\mu(x \rightarrow y), \mu(x)\}, \forall x, y \in X; \\
&\text{(FF3) } \mu(y) \geq \min\{\mu(x \rightarrow y), \mu(x)\}, \forall x, y \in X.
\end{align*}
\]

Proposition 7. Let \(\mu\) be a fuzzy filter of a pseudo-\(\text{BCI}\) algebra \(X\). If \(x \leq y\), then \(\mu(x) \leq \mu(y)\), where \(x, y \in X\).

As a consequence of the so-called Transfer Principle for Fuzzy Sets in [11], we have the following.

Theorem 8 (see [11, 15]). Let \(X\) be a pseudo-\(\text{BCI}\) algebra. Then a fuzzy set \(\mu : X \rightarrow [0, 1]\) is a fuzzy filter of \(X\) if and only if the level set \(\mu_t = \{x \in X | \mu(x) \geq t\}\) is filter of \(X\) for all \(t \in \text{Im}(\mu)\).

Theorem 9 (see [15]). Let \(X\) be a pseudo-\(\text{BCI}\) algebra. Then a fuzzy set \(\mu : X \rightarrow [0, 1]\) is a fuzzy filter of \(X\) if and only if it satisfies

\[
\begin{align*}
&\text{(1) } \forall x, y, z \in X, x \leq y \rightarrow z \Rightarrow \mu(z) \geq \min\{\mu(x), \mu(y)\}; \\
&\text{(2) } \forall x, y, z \in X, x \leq y \rightarrow z \Rightarrow \mu(z) \geq \min\{\mu(x), \mu(y)\}.
\end{align*}
\]

Definition 10 (see [13, 15]). A fuzzy set \(\mu : X \rightarrow [0, 1]\) is called a fuzzy \(p\)-filter of a pseudo-\(\text{BCI}\) algebra \(X\) if it satisfies (FF1) and

\[
\begin{align*}
&\text{(FFF1) } \forall x, y, z \in X, \mu(z) \geq \min\{\mu(x \rightarrow y), \mu(x)\}; \\
&\text{(FFF2) } \forall x, y, z \in X, \mu(z) \geq \min\{\mu(x \rightarrow y), \mu(x)\}.
\end{align*}
\]

Definition 11 (see [13, 15]). A fuzzy set \(\mu : X \rightarrow [0, 1]\) is called a fuzzy \(a\)-filter of a pseudo-\(\text{BCI}\) algebra \(X\) if it satisfies (FF1) and

\[
\begin{align*}
&\text{(FAF1) } \forall x, y, z \in X, \mu(z) \geq \min\{\mu((x \rightarrow y) \rightarrow (x \rightarrow z)), \mu(y)\}; \\
&\text{(FAF2) } \forall x, y, z \in X, \mu(z) \geq \min\{\mu((x \rightarrow y) \rightarrow (x \rightarrow z)), \mu(y)\}.
\end{align*}
\]

Definition 12 (see [15]). A fuzzy set \(\mu : X \rightarrow [0, 1]\) is called a fuzzy associative filter of a pseudo-\(\text{BCI}\) algebra \(X\) if it satisfies (FF1) and

\[
\begin{align*}
&\text{(FAF1) } \forall x, y, z \in X, \mu(z) \geq \min\{\mu(x \rightarrow y), \mu(y)\}; \\
&\text{(FAF2) } \forall x, y, z \in X, \mu(z) \geq \min\{\mu(x \rightarrow y), \mu(y)\}.
\end{align*}
\]

Definition 13 (see [13, 15]). A fuzzy set \(\mu : X \rightarrow [0, 1]\) is called a fuzzy \(q\)-filter of a pseudo-\(\text{BCI}\) algebra \(X\) if it satisfies (FF1) and

\[
\begin{align*}
&\text{(FqF1) } \forall x, y, z \in X, \mu(x \rightarrow z) \geq \min\{\mu((x \rightarrow y) \rightarrow z), \mu(y)\}; \\
&\text{(FqF2) } \forall x, y, z \in X, \mu(x \rightarrow z) \geq \min\{\mu((x \rightarrow y) \rightarrow z), \mu(y)\}.
\end{align*}
\]
2. New Properties of Fuzzy a-Filters and Fuzzy Associative Filters

Lemma 14 (see [15]). Let μ be a fuzzy a-filter of a pseudo-BCI algebra X. Then μ satisfies
\[
\begin{align*}
\mu(x \rightarrow y) &\geq \mu((y \bowtie 1) \rightarrow x), \\
\mu(x \bowtie y) &\geq \mu((y \rightarrow 1) \bowtie x),
\end{align*}
\]
\vspace{1pt}
\forall x, y \in X.

Lemma 15 (see [15]). Let μ be a fuzzy a-filter of a pseudo-BCI algebra X. Then μ satisfies
\[
\mu(x) = \mu(x \rightarrow 1) = \mu(x \bowtie 1), \quad \forall x \in X.
\]

Theorem 16. Let μ be a fuzzy a-filter of a pseudo-BCI algebra X. Then the following statements hold for all $x, y, z \in X$:
\begin{enumerate}
\item [(1)] For all $x, y \in X$, $\mu(x) \geq \min\{\mu(y), \mu(x \rightarrow y)\}$, $\mu(x) \geq \min\{\mu(y), \mu(x \bowtie y)\}$;
\item [(2)] For all $x, y \in X$, $\mu(x \rightarrow y) = \mu(x \bowtie y)$;
\item [(3)] For all $x \in X$, $\mu((x \rightarrow 1) \rightarrow x) = \mu((x \bowtie 1) \rightarrow x) = \mu(1)$;
\item [(4)] For all $x, y, z \in X$, $\mu(x \rightarrow z) \geq \min\{\mu((x \bowtie y) \rightarrow z), \mu(y)\}$;
\item [(5)] For all $x, y, z \in X$, $\mu(x \bowtie z) \geq \min\{\mu((x \rightarrow y) \bowtie z), \mu(y)\}$;
\item [(6)] For all $x \in X$, $\mu(x \rightarrow (x \bowtie 1)) = \mu((x \bowtie 1) \rightarrow (x \bowtie 1)) = \mu(1)$;
\item [(7)] For all $x, y, z \in X$, $\mu((x \rightarrow y) \rightarrow y) \geq \mu(x)$, $\mu((x \bowtie y) \bowtie y) \geq \mu(x)$.
\end{enumerate}

Proof. (1) For any $x, y \in X$, by Proposition 2(6), we have $y \rightarrow 1 \leq (x \rightarrow y) \rightarrow (x \rightarrow 1)$. From this, applying Proposition 7, we get
\[
\mu(y \rightarrow 1) \leq \mu((x \rightarrow y) \rightarrow (x \rightarrow 1)).
\]

Using Definition 6(FF2), we have
\[
\mu(x \rightarrow 1) \geq \min\{\mu((x \rightarrow y) \rightarrow (x \rightarrow 1)), \mu(x \rightarrow y)\}.
\]

Thus,
\[
\mu(x \rightarrow 1) \geq \min\{\mu((x \rightarrow y) \rightarrow (x \rightarrow 1)), \mu(x \rightarrow y)\}.
\]

By Lemma 15, $\mu(x \rightarrow 1) = \mu(x)$ and $\mu(y \rightarrow 1) = \mu(y)$. Therefore, $\mu(x) \geq \min\{\mu(y), \mu(x \rightarrow y)\}$.

Similarly, we have $\mu(x) \geq \min\{\mu(y), \mu(x \bowtie y)\}$. (2) For any $x, y \in X$, by Proposition 2(11) and (12), we have $(x \rightarrow y) \rightarrow 1 = (x \rightarrow 1) \bowtie (y \rightarrow 1)$. By Lemma 14, it follows that
\[
\mu((x \rightarrow y) \rightarrow 1) = \mu((x \rightarrow 1) \bowtie (y \rightarrow 1)) \leq \mu((y \rightarrow 1) \bowtie x) \leq \mu(x \bowtie y).
\]
(7) For any \(x \in X \), by Definition 1(3), we have \(x \leq (x \rightarrow y) \leadsto y \). From this, (2), and Proposition 7, we get
\[
\mu(x) \leq \mu((x \rightarrow y) \leadsto y) = \mu((x \rightarrow y) \rightarrow y). \quad (14)
\]
Similarly, we have \(\mu((x \leadsto y) \leadsto y) \geq \mu(x) \).

Lemma 17. Let \(\mu \) be a fuzzy associative filter of a pseudo-BCI algebra \(X \). Then \(\mu \) satisfies
\[
\mu(y) \geq \mu(x \leadsto (x \leadsto y)),
\]
\[
\mu(y) \geq \mu(x \leadsto (x \rightarrow y)), \quad \forall x, y \in X. \quad (15)
\]

Proof. It is easily proved by Definition 12; the proof is omitted. \(\square \)

Theorem 18. Let \(\mu \) be a fuzzy associative filter of a pseudo-BCI algebra \(X \). Then the following statements hold:

1. For any \(x \in X \), \(\mu(x \rightarrow (x \leadsto 1)) = \mu(x \leadsto (x \rightarrow 1)) = \mu(1) \);
2. For any \(x, y \in X \), \(\mu(y) \geq \mu((x \rightarrow 1) \leadsto (x \rightarrow y)) \);
3. For any \(x, y \in X \), \(\mu(y) \geq \mu((x \rightarrow 1) \rightarrow (x \rightarrow y)) \);
4. For any \(x, y \in X \), \(\mu(y) \geq \mu((y \rightarrow 1) \rightarrow (y \rightarrow (x \rightarrow y))) \);
5. For any \(x, y \in X \), \(\mu(y) \geq \mu((x \rightarrow (x \rightarrow y)) \leadsto (x \rightarrow 1)) \);
6. For any \(x, y \in X \), \(\mu(x) \geq \mu((x \rightarrow 1) \rightarrow 1)) \);
7. For any \(x, y \in X \), \(\mu((x \rightarrow 1) \rightarrow x) = \mu((x \rightarrow 1) \rightarrow x) = \mu(1) \);
8. For any \(x, y \in X \), \(\mu(x \rightarrow y) \geq \mu((x \rightarrow y) \rightarrow y) \);
9. For any \(x, y \in X \), \(\mu(x) \geq \mu((x \rightarrow 1) \rightarrow x) \);
10. For any \(x, y \in X \), \(\mu(x) \geq \mu((x \rightarrow y) \rightarrow y) \);
11. For any \(x, y \in X \), \(\mu(x) \geq \mu((x \rightarrow 1) \rightarrow 1)) \);
12. For any \(x, y \in X \), \(\mu(x) \geq \min\{\mu(y)\}, \mu(x \rightarrow y) \}

Proof. (1) For any \(x \in X \) (by Definition 1 and Proposition 2),
\[
(x \rightarrow 1) \leadsto ((x \rightarrow 1) \rightarrow (x \rightarrow (x \rightarrow 1)))
\]
\[
= (x \rightarrow 1) \leadsto ((x \rightarrow 1) \rightarrow (x \rightarrow 1)))
\]
\[
= (x \rightarrow 1) \leadsto (x \rightarrow 1)
\]
\[
= (x \rightarrow 1) \leadsto (x \rightarrow 1) = 1. \quad (16)
\]

From this and Lemma 17, we have
\[
\mu(x \rightarrow (x \rightarrow 1)) \geq \mu((x \rightarrow 1) \rightarrow ((x \rightarrow 1) \rightarrow (x \rightarrow (x \rightarrow 1)))) = \mu(1). \quad (17)
\]

This means that \(\mu(x \rightarrow (x \rightarrow 1)) = \mu(1) \). Similarly, \(\mu(x \rightarrow (x \rightarrow 1)) = \mu(1) \).

(2) For any \(x, y \in X \), by Definition 1(1), we have
\[
x \leadsto (x \rightarrow 1)
\]
\[
\leq ((x \rightarrow 1) \leadsto (x \rightarrow y)) \rightarrow (x \leadsto (x \rightarrow y)). \quad (18)
\]
Applying Theorem 9(1), we get
\[
\mu(x \leadsto (x \rightarrow y)) \geq \min\{\mu(x \leadsto (x \rightarrow 1)), \mu((x \rightarrow 1) \leadsto (x \rightarrow y))\}. \quad (19)
\]
By (1) and Lemma 17, \(\mu(x \leadsto (x \rightarrow 1)) = \mu(1), \mu(y) \geq \mu(x \leadsto (x \rightarrow y)) \). Therefore,
\[
\mu(y) \geq \mu(x \leadsto (x \rightarrow y)) \geq \min\{\mu(1), \mu((x \rightarrow 1) \leadsto (x \rightarrow y))\} = \mu(x \leadsto (x \rightarrow y)). \quad (20)
\]

(3) It is similar to (2).

(4) For any \(x, y \in X \), by (2), we have \(\mu(x \leadsto y) \geq \mu((y \rightarrow 1) \leadsto (y \rightarrow (x \rightarrow y))) \). On the other hand, applying Definition 1 and Proposition 2,
\[
(y \rightarrow 1) \leadsto (y \rightarrow (x \rightarrow y)) = (y \rightarrow 1) \leadsto (x \rightarrow (x \rightarrow y)) = (y \rightarrow 1) \leadsto (x \rightarrow 1)
\]
\[
\geq x \leadsto y.
\]
From this and Proposition 7, \(\mu((y \rightarrow 1) \leadsto (y \rightarrow (x \rightarrow y))) \geq \mu(x \rightarrow y) \). Thus, \(\mu(x \rightarrow y) \geq \mu(x \rightarrow y) \). Similarly, we can get \(\mu(x \rightarrow y) \geq \mu(x \rightarrow y) \). Therefore, \(\mu(x \rightarrow y) = \mu(x \rightarrow y) \).

(5) For any \(x, y \in X \), since (by Proposition 2)
\[
y \leadsto (x \rightarrow (x \rightarrow y)) = x \rightarrow (y \leadsto (x \rightarrow y))
\]
\[
= x \rightarrow (x \leadsto (y \leadsto y)) = x \rightarrow (x \rightarrow 1) = x \rightarrow (x \rightarrow 1), \quad (22)
\]
\[
\mu(x \leadsto (x \rightarrow y)) \geq \min\{\mu(y), \mu(x \rightarrow y)\}, \mu(x) \geq \min\{\mu(y), \mu(x \rightarrow y)\}
\]
\[
\mu(x \rightarrow (x \rightarrow y)) \geq \min\{\mu(y), \mu(x \rightarrow y)\}, \mu(x) \geq \min\{\mu(y), \mu(x \rightarrow y)\}.
\]
\[
\mu(x \rightarrow (x \rightarrow y)) \geq \min\{\mu(y), \mu(x \rightarrow y)\}, \mu(x) \geq \min\{\mu(y), \mu(x \rightarrow y)\}.
\]

Thus,
\[
\mu(x \rightarrow (x \rightarrow y)) \geq \min\{\mu(y), \mu(x \rightarrow y)\} \geq \mu(y).
\]

Similarly, \(\mu(x \leadsto (x \rightarrow y)) \geq \mu(y) \).

(6) By (2) and (3), we can get (6).
(7) For any $x, y \in X$, by Definition 1, we have $y \rightarrow (y \rightarrow 1) \leq (x \rightarrow y) \rightarrow (x \rightarrow (y \rightarrow 1))$. Applying (1) and Theorem 9, we get

$$
\mu(x \rightarrow (y \rightarrow 1)) \leq \min\left\{ \mu(y \rightarrow (y \rightarrow 1)), \mu(x \rightarrow y) \right\} = \min\{ \mu(y \rightarrow (y \rightarrow 1)), \mu(x \rightarrow y) \} = \mu(x \rightarrow y).
$$

Similarly, $\mu(x \rightarrow (y \rightarrow 1)) \geq \mu(x \rightarrow y)$.

(8) For any $x, y \in X$, by Lemma 17, $\mu(y \rightarrow x) \geq \mu(x \rightarrow (y \rightarrow x))$. And, using Proposition 2(4), we have

$$
\mu(y \rightarrow x) = \mu(x \rightarrow (y \rightarrow x)) = \mu(x \rightarrow (y \rightarrow 1)).
$$

Hence, $\mu(y \rightarrow x) \geq \mu(x \rightarrow (y \rightarrow 1))$. From this and (7), we get

$$
\mu(y \rightarrow x) \geq \mu(x \rightarrow (y \rightarrow 1)) \geq \mu(x \rightarrow y).
$$

Similarly, $\mu(\mu(y \rightarrow x) \geq \mu(x \rightarrow y)$.

(9) By (1) and (8), we can get (8). (10) It is similar to the proof of Theorem 16(7). (11) For any $x \in X$, by Lemma 17, $\mu(x) \geq \mu(x \rightarrow (x \rightarrow x)) = \mu(x \rightarrow 1)$. On the other hand, using (8), $\mu(x \rightarrow 1) \geq \mu(1 \rightarrow x) = \mu(x)$. Hence, $\mu(x) = \mu(x \rightarrow 1) = \mu(x \rightarrow 1)$. (12) It is similar to the proof of Theorem 16(1).

3. Some Necessary and Sufficient Conditions for Fuzzy a-Filters and Fuzzy Associative Filters

Checking the proof of Theorem 18 in detail, we know that the proof only applies the properties of fuzzy filters and the conditions in Lemma 17. From this, we can get the following.

Lemma 19. Let μ be a fuzzy filter of a pseudo-BCI algebra X. If μ satisfies

(C1) for all $x, y \in X, \mu(y) \geq \mu(x \rightarrow (x \rightarrow y))$;

(C2) for all $x, y \in X, \mu(y) \geq \mu(x \rightarrow (x \rightarrow y))$, then the following statements hold:

(C3) for all $x \in X, \mu(x \rightarrow (x \rightarrow 1)) = \mu(x \rightarrow (x \rightarrow 1)) = \mu(1)$;

(C4) for all $x, y \in X, \mu(x \rightarrow y) = \mu(x \rightarrow y)$;

(C5) for all $x \in X, \mu(x) = \mu(x \rightarrow 1) = \mu(x \rightarrow 1)$;

(C6) for all $x, y \in X, \mu(x) \geq \min\{\mu(y), \mu(x \rightarrow y)\}, \mu(x) \geq \min\{\mu(y), \mu(x \rightarrow y)\}$.

Proof. It is similar to Theorem 18 (the conditions (FAF1) and (FAF2) are not applied); the proof is omitted.

Theorem 20. Let μ be a fuzzy filter of a pseudo-BCI algebra X. Then μ is a fuzzy associative filter of X if and only if it satisfies

(C1) for all $x, y \in X, \mu(y) \geq \mu(x \rightarrow (x \rightarrow y))$;

(C2) for all $x, y \in X, \mu(y) \geq \mu(x \rightarrow (x \rightarrow y))$.

Proof. Assume that μ is a fuzzy associative filter of X; by Lemma 17, (C1) and (C2) hold.

Conversely, assume that μ satisfies conditions (C1) and (C2). For any $x, y, z \in X$, by Proposition 2(6), $y \rightarrow (x \rightarrow z) \leq (x \rightarrow y) \rightarrow (x \rightarrow (x \rightarrow z))$. Using Theorem 9, we get

$$
\mu(x \rightarrow (x \rightarrow z)) \geq \min\{\mu(y \rightarrow (x \rightarrow z)), \mu(x \rightarrow y)\}. \quad (28)
$$

By Lemma 19(C4) and Proposition 2(4), $\mu(y \rightarrow (x \rightarrow z)) = \mu(x \rightarrow (y \rightarrow z))$. Thus,

$$
\mu(x \rightarrow (x \rightarrow z)) \geq \min\{\mu(x \rightarrow (y \rightarrow z)), \mu(x \rightarrow y)\}. \quad (29)
$$

On the other hand, applying Lemma 19(C5), Proposition 2(11), and (12),

$$
\mu(x \rightarrow (x \rightarrow z)) = \mu((x \rightarrow (x \rightarrow z)) \rightarrow 1) = \mu((x \rightarrow 1) \rightarrow ((x \rightarrow 1) \rightarrow (z \rightarrow 1))) \geq \mu((x \rightarrow 1) \rightarrow (z \rightarrow ((x \rightarrow 1) \rightarrow 1))) \geq \mu(z \rightarrow ((x \rightarrow 1) \rightarrow (z \rightarrow ((x \rightarrow 1) \rightarrow 1)))) = \mu(x \rightarrow y).
$$

And, by Lemma 19(C6),

$$
\mu(x \rightarrow y) = \min\{\mu((x \rightarrow 1) \rightarrow (x \rightarrow 1)), \mu((x \rightarrow 1) \rightarrow (x \rightarrow 1))\}. \quad (30)
$$

By Lemma 19(C3) and the above result, we get

$$
\mu(z) \geq \min\{\mu((x \rightarrow 1) \rightarrow (x \rightarrow 1)), \mu((x \rightarrow 1) \rightarrow (x \rightarrow 1))\}. \quad (31)
$$

Combining (P1) and (P2), we get that $\mu(z) \geq \min\{\mu(x \rightarrow (y \rightarrow z)), \mu(x \rightarrow y)\}$. That is, (FAF1) holds. Similarly, condition (FAF2) holds. Therefore, by Definition 12, μ is a fuzzy associative filter of X.

Theorem 21 (see [13, 15]). Let μ be a fuzzy filter of a pseudo-BCI algebra X. Then μ is a fuzzy a-filter of X if and only if it satisfies

(a1) for all $x, y \in X, \mu(x \rightarrow y) \geq \mu((y \rightarrow 1) \rightarrow x)$;

(a2) for all $x, y \in X, \mu(x \rightarrow y) \geq \mu((y \rightarrow 1) \rightarrow x)$.

Theorem 22. Let μ be a fuzzy filter of a pseudo-BCI algebra X. Then the following conditions are equivalent:

(i) μ is a fuzzy a-filter of X;

(ii) μ is a fuzzy associative filter of X.
Proof. (i) ⇒ (ii). Suppose that μ is a fuzzy a-filter of X. For any $x, y \in X$, by Definition 1(1),
\[x \rightarrow (x \bowtie 1) \leq ((x \bowtie 1) \rightarrow (x \bowtie y)) \bowtie (x \rightarrow (x \bowtie y)). \]
(31)
Applying Theorem 16(6) and Proposition 7, we get
\[\mu(1) = \mu((x \rightarrow (x \bowtie 1)) \leq \mu(((x \bowtie 1) \rightarrow (x \bowtie y)) \bowtie (x \rightarrow (x \bowtie y))). \]
(32)
It follows that
\[\mu(1) = \mu(((x \bowtie 1) \rightarrow (x \bowtie y)) \bowtie (x \rightarrow (x \bowtie y))). \]
(33)
Moreover, by Theorem 16(1),
\[\mu((x \bowtie 1) \rightarrow (x \bowtie y)) \geq \min\{\mu((x \bowtie (x \bowtie y)), \mu(1)\}
\]
\[= \mu(x \rightarrow (x \bowtie y)). \]
(34)
Therefore,
\[\mu(x \rightarrow y) \geq \mu((x \bowtie y) \bowtie (y \bowtie 1)). \]
(35)
Using Theorem 16(2),
\[\mu((x \bowtie 1) \bowtie (x \bowtie y)) = \mu((x \bowtie 1) \rightarrow (x \bowtie y)). \]
Thus,
\[\mu((x \bowtie 1) \bowtie (x \bowtie y)) \geq \mu((x \bowtie 1) \rightarrow (x \bowtie y)). \]
(36)
On the other hand, applying Proposition 2(6) and (8), $y \leq (x \bowtie 1) \bowtie (x \bowtie y)$. From this and Theorem 16(1),
we get
\[\mu(y) \geq \min\{\mu((x \bowtie 1) \bowtie (x \bowtie y)), \mu(1)\}
\]
\[= \mu((x \bowtie 1) \bowtie (x \bowtie y)). \]
(37)
From $y \leq (x \bowtie 1) \bowtie (x \bowtie y)$, we have $y \rightarrow ((x \bowtie 1) \bowtie (x \bowtie y)) = 1$; it follows that
\[\mu(y) \geq \min\{\mu((x \bowtie 1) \bowtie (x \bowtie y)), \mu(1)\}
\]
\[= \mu((x \bowtie 1) \bowtie (x \bowtie y)). \]
(38)
Therefore,
\[\mu(y) \geq \mu((x \bowtie 1) \bowtie (x \bowtie y)) \geq \mu(x \rightarrow (x \bowtie y)). \]
(39)
This means that (C1) holds. Similarly, $\mu(y) \geq \mu(x \rightarrow (x \rightarrow y))$. By Theorem 20, μ is a fuzzy associative filter of X.

(ii) ⇒ (i). Suppose that μ is a fuzzy associative filter of X. For any $x, y \in X$, by Definition 1(1),
\[(y \bowtie 1) \rightarrow x \leq (x \rightarrow y) \bowtie (y \bowtie 1). \]
Applying Proposition 7, we get
\[\mu((x \rightarrow y) \bowtie (y \bowtie 1)) \geq \mu((y \bowtie 1) \rightarrow x). \]
(40)
On the other hand, using Theorem 18(12),
\[\mu(x \rightarrow y) \geq \min\{\mu((y \bowtie 1) \rightarrow y), \mu((x \rightarrow y) \bowtie (y \bowtie 1))\}. \]
(41)
By Theorem 18(9), $\mu((y \bowtie 1) \rightarrow y) = \mu(1)$. It follows that
\[\mu(x \rightarrow y) \geq \min\{\mu(1), \mu((x \rightarrow y) \bowtie (y \bowtie 1))\}
\]
\[= \mu((x \rightarrow y) \bowtie (y \bowtie 1)). \]
(42)
Therefore,
\[\mu(x \rightarrow y) \geq \mu((x \rightarrow y) \bowtie (y \bowtie 1)) \geq \mu(x \rightarrow (x \bowtie y)). \]
(43)

Now, we discuss the relationship between associative filters and a-filters of pseudo-BCI algebras. At first, we give the following results (the proofs are omitted).

Proposition 23. A nonempty subset F of pseudo-BCI algebra X is a filter (associative filter, a-filter) of X if and only if the characteristic function χ_F of F is a fuzzy filter (fuzzy associative filter, fuzzy a-filter) of X.

Proposition 24. Let X be a pseudo-BCI algebra. Then a fuzzy set $\mu : X \rightarrow [0, 1]$ is a fuzzy associative filter (fuzzy a-filter) of X if and only if the level set $\mu_t = \{x \in X | \mu(x) \geq t\}$ is associative filter (a-filter) of X for all $t \in \text{Im}(\mu)$.

In fact, the above proposition is a consequence of the so-called Transfer Principle for Fuzzy Sets in [11].

Combining Propositions 23 and 24, Theorems 8 and 22, we get the following.

Theorem 25. Let F be a filter of a pseudo-BCI algebra X. Then the following conditions are equivalent:

(i) F is an a-filter of X;
(ii) F is an associative filter of X.

Remark 26. In [10], the authors proved Theorem 18, but the proof is wrong (from “Conversely...” to the end of proof). In fact, by Theorem 25, Theorem 4 in [10] is true.

Finally, we discuss the relationship among fuzzy associative filters, fuzzy a-filters, and fuzzy q-filters in pseudo-BCI algebras.

Lemma 27. Let μ be a fuzzy p-filter of a pseudo-BCI algebra X. Then μ satisfies
The Scientific World Journal

(1) for all \(x \in X \), \(\mu(x) = \mu((x \rightarrow 1) \bowtie 1) \);
(2) for all \(x \in X \), \(\mu(((x \rightarrow 1) \bowtie 1) \bowtie x) = \mu(1) \).

Proof. (1) For any \(x \in X \), by Definition 10(FPF1), we have

\[
\mu(x) \geq \min \{ \mu((x \rightarrow 1) \bowtie (1 \rightarrow 1)), \mu(1) \} = \mu((x \rightarrow 1) \bowtie 1).
\]

And, using Definition 1(2) and Proposition 7, \(\mu((x \rightarrow 1) \bowtie 1) \geq \mu(x) \).
If follows that \(\mu(x) = \mu((x \rightarrow 1) \bowtie 1) \).

(2) For any \(x \in X \), by Proposition 2(11), (12), and (9), we have

\[
(((x \rightarrow 1) \bowtie 1) \bowtie x) \rightarrow 1) \rightarrow 1
= (((x \rightarrow 1) \bowtie 1) \bowtie 1) \rightarrow 1
= (((x \rightarrow 1) \bowtie 1) \bowtie (x \bowtie 1)) \rightarrow 1
= ((x \rightarrow 1) \rightarrow (x \bowtie 1)) \rightarrow 1
= (x \rightarrow 1) \rightarrow 1 = 1.
\]

From this and (1), we get

\[
\mu(((x \rightarrow 1) \bowtie 1) \bowtie x)
= \mu(((x \rightarrow 1) \bowtie 1) \bowtie (x \bowtie 1)) \rightarrow 1) \rightarrow 1 = \mu(1).
\]

This means that (2) holds. \(\square \)

Theorem 28. Let \(\mu \) be a fuzzy filter of a pseudo-BCI algebra \(X \). Then the following conditions are equivalent:

(1) \(\mu \) is a fuzzy \(a \)-filter of \(X \);
(2) \(\mu \) is both a fuzzy \(p \)-filter and a fuzzy \(q \)-filter of \(X \).

Proof. Assume that \(\mu \) is a fuzzy \(a \)-filter of \(X \). It is easy to prove that \(\mu \) is both a fuzzy \(p \)-filter and a fuzzy \(q \)-filter of \(X \).

Conversely, let \(\mu \) be both a fuzzy \(p \)-filter and a fuzzy \(q \)-filter of \(X \). For any \(x, y \in X \), by Definition 13(FqF1), we have

\[
\mu(x \rightarrow y) \geq \min \{ \mu((x \bowtie ((y \bowtie 1) \rightarrow x)) \rightarrow y), \mu((y \bowtie 1) \rightarrow x) \}.
\]

And, by Proposition 2(4),

\[
(x \bowtie ((y \bowtie 1) \rightarrow x)) \rightarrow y
= ((y \bowtie 1) \rightarrow (x \bowtie x)) \rightarrow y
= ((y \bowtie 1) \rightarrow 1) \rightarrow y.
\]

From this and Lemma 27(2),

\[
\mu((x \bowtie ((y \bowtie 1) \rightarrow x)) \rightarrow y)
= \mu(((y \bowtie 1) \rightarrow 1) \rightarrow y) = \mu(1).
\]

Therefore,

\[
\mu(x \rightarrow y) \geq \min \{ \mu(1), \mu((y \bowtie 1) \rightarrow x) \} = \mu((y \bowtie 1) \rightarrow x).
\]

This means that Theorem 21(a1) holds. Similarly, we can prove (a2). By Theorem 21, we know that \(\mu \) is a fuzzy \(a \)-filter of \(X \).

\(\square \)

Conflict of Interests

The author declares that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant no. 6175044) and Innovation Program of Shanghai Municipal Education Commission (no. 13ZZ122).

References

