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Abstract. 
The most simplified axiom systems of pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras and pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebras are obtained, and the mutually independence of axioms is proved. We introduce the notions of filters and normal filters in pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras. The structures and properties of the generated filters and generated normal filters in pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras are obtained. These can be seen as noncommutative generalizations of the corresponding ones in weak-
	
		

			𝑅
		

		

			0
		

	
 algebras.


1. Introduction
In recent years, the study of logic algebras and their noncommutative generalization—pseudo-logic algebras—has become of greater focus in the field of logic. BCK and BCI algebras were introduced by Imai and Iseki [1] and have been extensively investigated by many researchers. Georgescu and Iorgulescu [2] introduced the notion of a pseudo-BCK algebra as a noncommutative generalization of a BCK-algebra. Liu et al. [3] investigated the theory of pseudo-BCK algebras. MV-algebras were introduced by Chang in [4] as an algebraic tool to study the infinitely valued logic of Lukasiewicz. Georgescu and Iorgulescu [5] introduced pseudo MV-algebras which is a noncommutative generalization of MV-algebras. The notion of BL-algebras was introduced by Hajek [6] as the algebraic structures for his Basic Logic. Georgescu and Iorgulescu [7] introduced the notion of pseudo-BL algebras by dropping commutative axioms in BL-algebras. di Nola et al. [8, 9], Zhang and Fan [10], and Zhan et al. [11] investigated in detail the theory of pseudo-BL algebras. MTL-algebras [12] are the algebraic structures for Esteva-Godo monoidal 
	
		

			𝑡
		

	
-norm based logic, many-valued propositional calculus that formalizes the structure of the real unit interval 
	
		
			[
			0
			,
			1
			]
		

	
, induced by a left-continuous 
	
		

			𝑡
		

	
-norm. Flondor et al. [13] presented pseudo-MTL algebras as a noncommutative generalization of MTL-algebras. IMTL-algebras [12] are the algebraic counterpart for involutive monoidal 
	
		

			𝑡
		

	
-norm logic, an extension of MTL-algebras. NM-algebras [12] are the algebraic counterpart for nilpotent minimum logic, an extension of IMTL-algebras. Iorgulescu [14] and Liu and zhang [15] introduced and studied the pseudo-IMTL algebras and pseudo-NM algebras. 
	
		

			𝑅
		

		

			0
		

	
 algebras were introduced by Wang [16] as the algebraic structure for his formal deductive system 
	
		

			𝐿
		

		

			∗
		

	
 of fuzzy propositional calculus. Weak-
	
		

			𝑅
		

		

			0
		

	
 algebras [16] are the generalization of 
	
		

			𝑅
		

		

			0
		

	
 algebras. The research on 
	
		

			𝑅
		

		

			0
		

	
 algebras has attracted more and more attention [17].
In [18], we introduced and studied the pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras and pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebras. They are noncommutative generalizations of the weak-
	
		

			𝑅
		

		

			0
		

	
 algebras and 
	
		

			𝑅
		

		

			0
		

	
 algebras, respectively. Some properties, the noncommutative forms of the properties in weak-
	
		

			𝑅
		

		

			0
		

	
 algebras and 
	
		

			𝑅
		

		

			0
		

	
 algebras, were investigated. We showed that pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras are categorically isomorphic to pseudo-IMTL algebras, and pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebras are categorically isomorphic to pseudo-NM algebras.
Based on these results, in this paper, our study focused on the axioms independence and filter theory in pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras and pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebras. The most simplified axiom systems of pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras and pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebras are obtained, and the mutually independence of axioms is proved. The notions of filters and normal filters in pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras are introduced. The structures and properties of the generated filters and generated normal filters in pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras are obtained. These can be seen as noncommutative generalizations of the corresponding ones in weak-
	
		

			𝑅
		

		

			0
		

	
 algebras.
2. Preliminaries
We recall some definitions and results which will be used in the sequel.
Definition 1 (see [12]). An IMTL (involutive MTL) algebra is a structure 
	
		
			(
			𝐴
			,
			∨
			,
			∧
			,
			⊙
			,
			→
			,
			0
			,
			1
			)
		

	
 of type 
	
		
			(
			2
			,
			2
			,
			2
			,
			2
			,
			0
			,
			0
			)
		

	
 such that for all 
	
		
			𝑥
			,
			𝑦
			,
			𝑧
			∈
			𝐴
		

	
:(B1)
	
		
			(
			𝐴
			,
			∨
			,
			∧
			,
			0
			,
			1
			)
		

	
 is a bounded lattice,(B2)
	
		
			(
			𝐴
			,
			⊙
			,
			1
			)
		

	
 is a monoid,(B3)
	
		
			𝑥
			⊙
			𝑦
			≤
			𝑧
		

	
 if and only if 
	
		
			𝑥
			≤
			𝑦
			→
			𝑧
		

	
,(B4)
	
		
			(
			𝑥
			→
			𝑦
			)
			∨
			(
			𝑦
			→
			𝑥
			)
			=
			1
		

	
,(B5)
	
		

			𝑥
		

		
			−
			−
		

		
			=
			𝑥
		

	
,where 
	
		

			𝑥
		

		

			−
		

		
			=
			𝑥
			→
			0
		

	
.An NM (nilpotent minimum) algebra is an IMTL algebra satisfying the following condition:(B6)
	
		
			(
			𝑥
			⊙
			𝑦
			)
		

		

			−
		

		
			∨
			(
			(
			𝑥
			∧
			𝑦
			)
			→
			(
			𝑥
			⊙
			𝑦
			)
			)
			=
			1
		

	
.
Definition 2 (see [14, 15]). A pseudo-IMTL (pseudo-involutive MTL) algebra is a structure 
	
		
			(
			𝐴
			,
			∨
			,
			∧
			,
			⊙
			,
			→
			,
			⇝
			,
			0
			,
			1
			)
		

	
 of type 
	
		
			(
			2
			,
			2
			,
			2
			,
			2
			,
			2
			,
			0
			,
			0
			)
		

	
 such that for all 
	
		
			𝑥
			,
			𝑦
			,
			𝑧
			∈
			𝐴
		

	
:(pB1)
	
		
			(
			𝐴
			,
			∨
			,
			∧
			,
			0
			,
			1
			)
		

	
 is a bounded lattice,(pB2)
	
		
			(
			𝐴
			,
			⊙
			,
			1
			)
		

	
 is a monoid,(pB3)
	
		
			𝑥
			⊙
			𝑦
			≤
			𝑧
		

	
 if and only if 
	
		
			𝑥
			≤
			𝑦
			→
			𝑧
		

	
 if and only if 
	
		
			𝑦
			≤
			𝑥
			⇝
			𝑧
		

	
,(pB4)
	
		
			(
			𝑥
			→
			𝑦
			)
			∨
			(
			𝑦
			→
			𝑥
			)
			=
			(
			𝑥
			⇝
			𝑦
			)
			∨
			(
			𝑦
			⇝
			𝑥
			)
			=
			1
		

	
,(pB5)
	
		

			𝑥
		

		
			∼
			−
		

		
			=
			𝑥
		

		
			−
			∼
		

		
			=
			𝑥
		

	
,where 
	
		

			𝑥
		

		

			−
		

		
			=
			𝑥
			→
			0
		

	
 and 
	
		

			𝑥
		

		

			∼
		

		
			=
			𝑥
			⇝
			0
		

	
.A pseudo-NM (pseudo-nilpotent minimum) algebra is a pseudo-IMTL algebra satisfying the following condition:(pB6)
	
		
			(
			𝑥
			⊙
			𝑦
			)
		

		

			−
		

		
			∨
			(
			(
			𝑥
			∧
			𝑦
			)
			→
			(
			𝑥
			⊙
			𝑦
			)
			)
			=
			(
			𝑥
			⊙
			𝑦
			)
		

		

			∼
		

		
			∨
			(
			(
			𝑥
			∧
			𝑦
			)
			⇝
			(
			𝑥
			⊙
			𝑦
			)
			)
			=
			1
		

	
.
Definition 3 (see [16, 19]). Let 
	
		

			𝑀
		

	
 be a 
	
		
			(
			¬
			,
			∧
			,
			∨
			,
			→
			)
		

	
-type algebra, where 
	
		

			¬
		

	
 is a unary operation and 
	
		

			∧
		

	
, 
	
		

			∨
		

	
, and 
	
		

			→
		

	
 are binary operations. If there is a partial ordering 
	
		

			≤
		

	
 on 
	
		

			𝑀
		

	
, such that 
	
		
			(
			𝑀
			,
			≤
			)
		

	
 is a bounded distributive lattice, 
	
		

			∧
		

	
 and 
	
		

			∨
		

	
 are infimum and supremum operations with respect to 
	
		

			≤
		

	
, 
	
		

			¬
		

	
 is an order-reversing involution with respect to 
	
		

			≤
		

	
, and the following conditions hold for any 
	
		
			𝑎
			,
			𝑏
			,
			𝑐
			∈
			𝑀
		

	
(R1)
	
		
			¬
			𝑎
			→
			¬
			𝑏
			=
			𝑏
			→
			𝑎
		

	
,(R2)
	
		
			1
			→
			𝑎
			=
			𝑎
		

	
, 
	
		
			𝑎
			→
			𝑎
			=
			1
		

	
,(R3)
	
		
			𝑏
			→
			𝑐
			≤
			(
			𝑎
			→
			𝑏
			)
			→
			(
			𝑎
			→
			𝑐
			)
		

	
,(R4)
	
		
			𝑎
			→
			(
			𝑏
			→
			𝑐
			)
			=
			𝑏
			→
			(
			𝑎
			→
			𝑐
			)
		

	
,(R5)
	
		
			𝑎
			→
			(
			𝑏
			∨
			𝑐
			)
			=
			(
			𝑎
			→
			𝑏
			)
			∨
			(
			𝑎
			→
			𝑐
			)
		

	
, 
	
		
			𝑎
			→
			(
			𝑏
			∧
			𝑐
			)
			=
			(
			𝑎
			→
			𝑏
			)
			∧
			(
			𝑎
			→
			𝑐
			)
		

	
,where 1 is the largest element of 
	
		

			𝑀
		

	
, and then we call 
	
		

			𝑀
		

	
 a weak-
	
		

			𝑅
		

		

			0
		

	
 algebra.An 
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝑀
		

	
 is a weak-
	
		

			𝑅
		

		

			0
		

	
 algebra satisfying the additional condition as follows:(R6)
	
		
			(
			𝑎
			→
			𝑏
			)
			∨
			(
			(
			𝑎
			→
			𝑏
			)
			→
			(
			¬
			𝑎
			∨
			𝑏
			)
			)
			=
			1
		

	
.
Definition 4 (see [18]). A pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra is a structure
	
		
			(
			𝐴
			,
			∧
			,
			∨
			,
			→
			,
			⇝
			,
		

		

			−
		

		

			,
		

		

			∼
		

		
			,
			0
			,
			1
			)
		

	
 such that 
	
		
			(
			𝐴
			,
			∧
			,
			∨
			,
			0
			,
			1
			)
		

	
 is a bounded distributive lattice, 
	
		

			−
		

	
 and 
	
		

			∼
		

	
 are order-reversing pseudo-involution (i.e., if 
	
		
			𝑥
			≤
			𝑦
		

	
, then 
	
		

			𝑦
		

		

			−
		

		
			≤
			𝑥
		

		

			−
		

	
 and 
	
		

			𝑦
		

		

			∼
		

		
			≤
			𝑥
		

		

			∼
		

	
; 
	
		

			𝑥
		

		
			∼
			−
		

		
			=
			𝑥
		

		
			−
			∼
		

		
			=
			𝑥
		

	
), and the following axioms hold for any 
	
		
			𝑥
			,
			𝑦
			,
			𝑧
			∈
			𝐴
		

	
:(pR1)
	
		
			𝑥
			→
			𝑦
			=
			𝑦
		

		

			−
		

		
			⇝
			𝑥
		

		

			−
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			=
			𝑦
		

		

			∼
		

		
			→
			𝑥
		

		

			∼
		

	
,(pR2*)
	
		
			1
			→
			𝑥
			=
			1
			⇝
			𝑥
			=
			𝑥
		

	
; 
	
		
			𝑥
			→
			𝑥
			=
			𝑥
			⇝
			𝑥
			=
			1
		

	
,(pR3)
	
		
			𝑥
			→
			𝑦
			≤
			(
			𝑧
			→
			𝑥
			)
			→
			(
			𝑧
			→
			𝑦
			)
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			≤
			(
			𝑧
			⇝
			𝑥
			)
			⇝
			(
			𝑧
			⇝
			𝑦
			)
		

	
,(pR4)
	
		
			𝑥
			→
			(
			𝑦
			⇝
			𝑧
			)
			=
			𝑦
			⇝
			(
			𝑥
			→
			𝑧
			)
		

	
,(pR5*)
	
		
			𝑥
			→
			(
			𝑦
			∨
			𝑧
			)
			=
			(
			𝑥
			→
			𝑦
			)
			∨
			(
			𝑥
			→
			𝑧
			)
			,
			𝑥
			⇝
			(
			𝑦
			∨
			𝑧
			)
			=
			(
			𝑥
			⇝
			𝑦
			)
			∨
			(
			𝑥
			⇝
			𝑧
			)
		

	
; 
	
		
			𝑥
			→
			(
			𝑦
			∧
			𝑧
			)
			=
			(
			𝑥
			→
			𝑦
			)
			∧
			(
			𝑥
			→
			𝑧
			)
			,
			𝑥
			⇝
			(
			𝑦
			∧
			𝑧
			)
			=
			(
			𝑥
			⇝
			𝑦
			)
			∧
			(
			𝑥
			⇝
			𝑧
			)
		

	
.A pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
 is a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra satisfying the additional axiom as follows:(pR6)
	
		
			(
			𝑥
			→
			𝑦
			)
			∨
			(
			(
			𝑥
			→
			𝑦
			)
			⇝
			(
			𝑥
		

		

			−
		

		
			∨
			𝑦
			)
			)
			=
			(
			𝑥
			⇝
			𝑦
			)
			∨
			(
			(
			𝑥
			⇝
			𝑦
			)
			→
			(
			𝑥
		

		

			∼
		

		
			∨
			𝑦
			)
			)
			=
			1
		

	
.In [18], we also have another simplified definition.
Definition 5 (see [18]). A pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra is a structure 
	
		
			(
			𝐴
			,
			∧
			,
			∨
			,
			→
			,
			⇝
			,
		

		

			−
		

		

			,
		

		

			∼
		

		
			,
			0
			,
			1
			)
		

	
 satisfying(pL1)
	
		
			(
			𝐴
			,
			∧
			,
			∨
			,
			0
			,
			1
			)
		

	
 is a bounded lattice,(pL2)if 
	
		
			𝑥
			≤
			𝑦
		

	
, then 
	
		

			𝑦
		

		

			−
		

		
			≤
			𝑥
		

		

			−
		

	
 and 
	
		

			𝑦
		

		

			∼
		

		
			≤
			𝑥
		

		

			∼
		

	
,(pL3)
	
		

			𝑥
		

		
			∼
			−
		

		
			=
			𝑥
		

		
			−
			∼
		

		
			=
			𝑥
		

	
,(pR1)
	
		
			𝑥
			→
			𝑦
			=
			𝑦
		

		

			−
		

		
			⇝
			𝑥
		

		

			−
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			=
			𝑦
		

		

			∼
		

		
			→
			𝑥
		

		

			∼
		

	
,(pR2)
	
		
			1
			→
			𝑥
			=
			1
			⇝
			𝑥
			=
			𝑥
		

	
,(pR3)
	
		
			𝑥
			→
			𝑦
			≤
			(
			𝑧
			→
			𝑥
			)
			→
			(
			𝑧
			→
			𝑦
			)
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			≤
			(
			𝑧
			⇝
			𝑥
			)
			⇝
			(
			𝑧
			⇝
			𝑦
			)
		

	
,(pR4)
	
		
			𝑥
			→
			(
			𝑦
			⇝
			𝑧
			)
			=
			𝑦
			⇝
			(
			𝑥
			→
			𝑧
			)
		

	
,(pR5)
	
		
			𝑥
			→
			(
			𝑦
			∨
			𝑧
			)
			=
			(
			𝑥
			→
			𝑦
			)
			∨
			(
			𝑥
			→
			𝑧
			)
		

	
, 
	
		
			𝑥
			⇝
			(
			𝑦
			∨
			𝑧
			)
			=
			(
			𝑥
			⇝
			𝑦
			)
			∨
			(
			𝑥
			⇝
			𝑧
			)
		

	
.A pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
 is a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra satisfying the additional axiom as follows:(pR6)
	
		
			(
			𝑥
			→
			𝑦
			)
			∨
			(
			(
			𝑥
			→
			𝑦
			)
			⇝
			(
			𝑥
		

		

			−
		

		
			∨
			𝑦
			)
			)
			=
			(
			𝑥
			⇝
			𝑦
			)
			∨
			(
			(
			𝑥
			⇝
			𝑦
			)
			→
			(
			𝑥
		

		

			∼
		

		
			∨
			𝑦
			)
			)
			=
			1
		

	
.
Proposition 6 (see [18]).  In a pseudo-weak- 
	
		

			𝑅
		

		

			0
		

	
 algebra, the following properties hold: (1)
	
		

			0
		

		

			∼
		

		
			=
			0
		

		

			−
		

		
			=
			1
		

	
, 
	
		

			1
		

		

			∼
		

		
			=
			1
		

		

			−
		

		
			=
			0
		

	
,(2)
	
		

			𝑥
		

		

			−
		

		
			=
			𝑥
			→
			0
		

	
, 
	
		

			𝑥
		

		

			∼
		

		
			=
			𝑥
			⇝
			0
		

	
,(3)
	
		
			𝑥
			⇝
			𝑥
			=
			𝑥
			→
			𝑥
			=
			1
		

	
,(4)
	
		
			𝑥
			≤
			𝑦
		

	
 if and only if 
	
		
			𝑥
			⇝
			𝑦
			=
			1
		

	
 if and only if 
	
		
			𝑥
			→
			𝑦
			=
			1
		

	
,(5)
	
		

			(
		

		

			⋀
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			𝑖
		

		

			)
		

		

			∼
		

		

			=
		

		

			⋁
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			∼
		

		

			𝑖
		

	
, 
	
		

			(
		

		

			⋀
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			𝑖
		

		

			)
		

		

			−
		

		

			=
		

		

			⋁
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			−
		

		

			𝑖
		

	
, whenever the arbitrary meets and unions exist,(6)
	
		

			(
		

		

			⋁
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			𝑖
		

		

			)
		

		

			∼
		

		

			=
		

		

			⋀
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			∼
		

		

			𝑖
		

	
, 
	
		

			(
		

		

			⋁
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			𝑖
		

		

			)
		

		

			−
		

		

			=
		

		

			⋀
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			−
		

		

			𝑖
		

	
, whenever the arbitrary meets and unions exist,(7) if 
	
		
			𝑥
			≤
			𝑦
		

	
, then 
	
		
			𝑧
			⇝
			𝑥
			≤
			𝑧
			⇝
			𝑦
		

	
 and 
	
		
			𝑧
			→
			𝑥
			≤
			𝑧
			→
			𝑦
		

	
,(8) if 
	
		
			𝑥
			≤
			𝑦
		

	
, then 
	
		
			𝑦
			⇝
			𝑧
			≤
			𝑥
			⇝
			𝑧
		

	
 and 
	
		
			𝑦
			→
			𝑧
			≤
			𝑥
			→
			𝑧
		

	
,(9)
	
		
			(
			𝑥
			∧
			𝑦
			)
			⇝
			𝑧
			=
			(
			𝑥
			⇝
			𝑧
			)
			∨
			(
			𝑦
			⇝
			𝑧
			)
		

	
, 
	
		
			(
			𝑥
			∧
			𝑦
			)
			→
			𝑧
			=
			(
			𝑥
			→
			𝑧
			)
			∨
			(
			𝑦
			→
			𝑧
			)
		

	
,(10)
	
		
			𝑥
			⇝
			(
			𝑦
			∧
			𝑧
			)
			=
			(
			𝑥
			⇝
			𝑦
			)
			∧
			(
			𝑥
			⇝
			𝑧
			)
		

	
, 
	
		
			𝑥
			→
			(
			𝑦
			∧
			𝑧
			)
			=
			(
			𝑥
			→
			𝑦
			)
			∧
			(
			𝑥
			→
			𝑧
			)
		

	
,(11)
	
		
			(
			𝑥
			∨
			𝑦
			)
			⇝
			𝑧
			=
			(
			𝑥
			⇝
			𝑧
			)
			∧
			(
			𝑦
			⇝
			𝑧
			)
		

	
, 
	
		
			(
			𝑥
			∨
			𝑦
			)
			→
			𝑧
			=
			(
			𝑥
			→
			𝑧
			)
			∧
			(
			𝑦
			→
			𝑧
			)
		

	
,(12)
	
		

			𝑥
		

		

			∼
		

		
			∨
			𝑦
			≤
			𝑥
			⇝
			𝑦
		

	
, 
	
		

			𝑥
		

		

			−
		

		
			∨
			𝑦
			≤
			𝑥
			→
			𝑦
		

	
,(13)
	
		
			𝑥
			⇝
			𝑦
			≤
			(
			𝑦
			⇝
			𝑧
			)
			→
			(
			𝑥
			⇝
			𝑧
			)
		

	
, 
	
		
			𝑥
			→
			𝑦
			≤
			(
			𝑦
			→
			𝑧
			)
			⇝
			(
			𝑥
			→
			𝑧
			)
		

	
,(14)
	
		
			(
			𝐴
			,
			∧
			,
			∨
			,
			0
			,
			1
			)
		

	
 is a bounded distributive lattice,(15)
	
		
			𝑥
			⇝
			𝑦
			≤
			𝑥
			∨
			𝑧
			⇝
			𝑦
			∨
			𝑧
		

	
, 
	
		
			𝑥
			→
			𝑦
			≤
			𝑥
			∨
			𝑧
			→
			𝑦
			∨
			𝑧
		

	
,(16)
	
		
			𝑥
			⇝
			𝑦
			≤
			𝑥
			∧
			𝑧
			⇝
			𝑦
			∧
			𝑧
		

	
, 
	
		
			𝑥
			→
			𝑦
			≤
			𝑥
			∧
			𝑧
			→
			𝑦
			∧
			𝑧
		

	
,(17)
	
		
			(
			𝑥
			⇝
			𝑦
			)
			≤
			(
			𝑥
			⇝
			𝑧
			)
			∨
			(
			𝑧
			⇝
			𝑦
			)
		

	
, 
	
		
			(
			𝑥
			→
			𝑦
			)
			≤
			(
			𝑥
			→
			𝑧
			)
			∨
			(
			𝑧
			→
			𝑦
			)
		

	
,(18)
	
		
			(
			𝑥
			⇝
			𝑦
			)
			∨
			(
			𝑦
			⇝
			𝑥
			)
			=
			(
			𝑥
			→
			𝑦
			)
			∨
			(
			𝑦
			→
			𝑥
			)
			=
			1
		

	
,(19)
	
		
			𝑥
			≤
			(
			𝑥
			→
			𝑦
			)
			⇝
			𝑦
		

	
, 
	
		
			𝑥
			≤
			(
			𝑥
			⇝
			𝑦
			)
			→
			𝑦
		

	
,(20)
	
		
			𝑥
			→
			𝑦
			=
			(
			(
			𝑥
			→
			𝑦
			)
			⇝
			𝑦
			)
			→
			𝑦
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			=
			(
			(
			𝑥
			⇝
			𝑦
			)
			→
			𝑦
			)
			⇝
			𝑦
		

	
,(21)
	
		
			𝑥
			→
			(
			𝑦
			→
			𝑥
			)
			=
			𝑥
			⇝
			(
			𝑦
			⇝
			𝑥
			)
			=
			𝑥
			⇝
			(
			𝑦
			→
			𝑥
			)
			=
			𝑥
			→
			(
			𝑦
			⇝
			𝑥
			)
			=
			1
		

	
,(22)
	
		

			𝑥
		

		

			−
		

		
			→
			(
			𝑥
			→
			𝑦
			)
			=
			𝑥
		

		

			∼
		

		
			⇝
			(
			𝑥
			⇝
			𝑦
			)
			=
			𝑥
		

		

			−
		

		
			⇝
			(
			𝑥
			→
			𝑦
			)
			=
			𝑥
		

		

			∼
		

		
			→
			(
			𝑥
			⇝
			𝑦
			)
			=
			1
		

	
,(23)
	
		
			𝑦
			≤
			(
			𝑥
			⇝
			𝑦
			)
			∧
			(
			𝑥
			→
			𝑦
			)
		

	
,(24)
	
		
			𝑥
			∨
			𝑦
			=
			(
			(
			𝑥
			⇝
			𝑦
			)
			→
			𝑦
			)
			∧
			(
			(
			𝑦
			⇝
			𝑥
			)
			→
			𝑥
			)
			=
			(
			(
			𝑥
			→
			𝑦
			)
			⇝
			𝑦
			)
			∧
			(
			(
			𝑦
			→
			𝑥
			)
			⇝
			𝑥
			)
		

	
,(25)
	
		
			(
			𝑥
			∨
			𝑦
			)
			→
			𝑥
			=
			𝑦
			→
			𝑥
		

	
, 
	
		
			(
			𝑥
			∨
			𝑦
			)
			⇝
			𝑥
			=
			𝑦
			⇝
			𝑥
		

	
,(26)
	
		
			𝑥
			→
			(
			𝑥
			∧
			𝑦
			)
			=
			𝑥
			→
			𝑦
		

	
, 
	
		
			𝑥
			⇝
			(
			𝑥
			∧
			𝑦
			)
			=
			𝑥
			⇝
			𝑦
		

	
,
								(27)
	
		
			𝑥
			≤
			𝑦
		

		

			−
		

	
 if and only if 
	
		
			𝑦
			≤
			𝑥
		

		

			∼
		

	
,(28)
	
		
			𝑥
			→
			𝑦
		

		

			∼
		

		
			=
			𝑦
			⇝
			𝑥
		

		

			−
		

	
, 
	
		
			𝑥
			⇝
			𝑦
		

		

			−
		

		
			=
			𝑦
			→
			𝑥
		

		

			∼
		

	
,
								(29)
	
		
			(
			𝑥
			→
			𝑦
		

		

			−
		

		

			)
		

		

			∼
		

		
			=
			(
			𝑦
			⇝
			𝑥
		

		

			∼
		

		

			)
		

		

			−
		

	
. In a pseudo-weak- 
	
		

			𝑅
		

		

			0
		

	
 algebra (pseudo- 
	
		

			𝑅
		

		

			0
		

	
 algebra) 
	
		

			𝐴
		

	
, we define a binary operation 
	
		

			⊙
		

	
 as follows, for any 
	
		
			𝑥
			,
			𝑦
			∈
			𝐴
		

	
: (30)
	
 		
			(
			1
			)
		
 	

	
		
			𝑥
			⊙
			𝑦
			=
		

		

			(
		

		
			𝑥
			⟶
			𝑦
		

		

			−
		

		

			)
		

		

			∼
		

		

			=
		

		

			(
		

		
			𝑦
			⇝
			𝑥
		

		

			∼
		

		

			)
		

		

			−
		

		

			.
		

	

Proposition 7 (see [18]).  In a pseudo-weak- 
	
		

			𝑅
		

		

			0
		

	
 algebra, the following properties hold: (31)
	
		
			𝑥
			→
			𝑦
			=
			(
			𝑥
			⊙
			𝑦
		

		

			∼
		

		

			)
		

		

			−
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			=
			(
			𝑦
		

		

			−
		

		
			⊙
			𝑥
			)
		

		

			∼
		

	
,(32)
	
		
			(
			𝑥
			⊙
			𝑦
			)
			⊙
			𝑧
			=
			𝑥
			⊙
			(
			𝑦
			⊙
			𝑧
			)
		

	
,(33)
	
		
			1
			⊙
			𝑥
			=
			𝑥
			⊙
			1
			=
			𝑥
		

	
,(34)
	
		
			𝑥
			⊙
			𝑦
			≤
			𝑧
		

	
 if and only if 
	
		
			𝑥
			≤
			𝑦
			→
			𝑧
		

	
 if and only if 
	
		
			𝑦
			≤
			𝑥
			⇝
			𝑧
		

	
,(35)
	
		
			𝑥
			⊙
			(
			𝑥
			⇝
			𝑦
			)
			≤
			𝑦
			≤
			𝑥
			⇝
			(
			𝑥
			⊙
			𝑦
			)
		

	
, 
	
		
			(
			𝑥
			→
			𝑦
			)
			⊙
			𝑥
			≤
			𝑦
			≤
			𝑥
			→
			(
			𝑦
			⊙
			𝑥
			)
		

	
,(36)
	
		
			𝑥
			⊙
			(
			𝑥
			⇝
			𝑦
			)
			≤
			𝑥
			≤
			𝑦
			⇝
			(
			𝑦
			⊙
			𝑥
			)
		

	
, 
	
		
			(
			𝑥
			→
			𝑦
			)
			⊙
			𝑥
			≤
			𝑥
			≤
			𝑦
			→
			(
			𝑥
			⊙
			𝑦
			)
		

	
,(37) if 
	
		
			𝑥
			≤
			𝑦
		

	
, then 
	
		
			𝑥
			⊙
			𝑧
			≤
			𝑦
			⊙
			𝑧
		

	
 and 
	
		
			𝑧
			⊙
			𝑥
			≤
			𝑧
			⊙
			𝑦
		

	
,(38)
	
		
			𝑥
			⊙
			(
			𝑥
			⇝
			𝑦
			)
			≤
			𝑥
			∧
			𝑦
		

	
, 
	
		
			(
			𝑥
			→
			𝑦
			)
			⊙
			𝑥
			≤
			𝑥
			∧
			𝑦
		

	
,(39)
	
		
			𝑥
			⊙
			0
			=
			0
			⊙
			𝑥
			=
			0
		

	
,(40)
	
		
			𝑥
			⊙
			(
		

		

			⋁
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			𝑖
		

		
			)
			=
		

		

			⋁
		

		
			𝑖
			∈
			𝐼
		

		
			(
			𝑥
			⊙
			𝑥
		

		

			𝑖
		

		

			)
		

	
, 
	
		

			(
		

		

			⋁
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			𝑖
		

		
			)
			⊙
			𝑥
			=
		

		

			⋁
		

		
			𝑖
			∈
			𝐼
		

		
			(
			𝑥
		

		

			𝑖
		

		
			⊙
			𝑥
			)
		

	
, whenever the arbitrary unions exist,(41)
	
		
			(
			𝑥
			⊙
			𝑦
			)
			→
			𝑧
			=
			𝑥
			→
			(
			𝑦
			→
			𝑧
			)
		

	
, 
	
		
			(
			𝑦
			⊙
			𝑥
			)
			⇝
			𝑧
			=
			𝑥
			⇝
			(
			𝑦
			⇝
			𝑧
			)
		

	
,(42)
	
		
			𝑦
			⇝
			(
		

		

			⋀
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			𝑖
		

		
			)
			=
		

		

			⋀
		

		
			𝑖
			∈
			𝐼
		

		
			(
			𝑦
			⇝
			𝑥
		

		

			𝑖
		

		

			)
		

	
, 
	
		
			𝑦
			→
			(
		

		

			⋀
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			𝑖
		

		
			)
			=
		

		

			⋀
		

		
			𝑖
			∈
			𝐼
		

		
			(
			𝑦
			→
			𝑥
		

		

			𝑖
		

		

			)
		

	
, whenever the arbitrary meets exist,(43)
	
		

			(
		

		

			⋁
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			𝑖
		

		
			)
			⇝
			𝑦
			=
		

		

			⋀
		

		
			𝑖
			∈
			𝐼
		

		
			(
			𝑥
		

		

			𝑖
		

		
			⇝
			𝑦
			)
		

	
, 
	
		

			(
		

		

			⋁
		

		
			𝑖
			∈
			𝐼
		

		

			𝑥
		

		

			𝑖
		

		
			)
			→
			𝑦
			=
		

		

			⋀
		

		
			𝑖
			∈
			𝐼
		

		
			(
			𝑥
		

		

			𝑖
		

		
			→
			𝑦
			)
		

	
, whenever the arbitrary unions and meets exist,(44)
	
		
			𝑥
			⊙
			𝑥
		

		

			∼
		

		
			=
			𝑥
		

		

			−
		

		
			⊙
			𝑥
			=
			0
		

	
,(45)
	
		
			𝑥
			⊙
			𝑦
			≤
			𝑥
			∧
			𝑦
			≤
			𝑥
			,
			𝑦
		

	
,(46)
	
		
			𝑥
			∨
			(
			𝑦
			⊙
			𝑧
			)
			≥
			(
			𝑥
			∨
			𝑦
			)
			⊙
			(
			𝑥
			∨
			𝑧
			)
		

	
,(47)
	
		
			𝑥
			→
			𝑦
			≤
			(
			𝑥
			⊙
			𝑧
			)
			→
			(
			𝑦
			⊙
			𝑧
			)
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			≤
			(
			𝑧
			⊙
			𝑥
			)
			⇝
			(
			𝑧
			⊙
			𝑦
			)
		

	
,(48)
	
		
			𝑥
			⊙
			(
			𝑦
			→
			𝑧
			)
			≤
			𝑦
			→
			(
			𝑥
			⊙
			𝑧
			)
		

	
, 
	
		
			(
			𝑦
			⇝
			𝑧
			)
			⊙
			𝑥
			≤
			𝑦
			⇝
			(
			𝑧
			⊙
			𝑥
			)
		

	
.
3. The Axioms Independence of Pseudo-Weak-
	
		

			𝑅
		

		

			0
		

	
 Algebras
We investigate the axioms independence of pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebras and pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras. Hence, we obtain most simplified axiom systems of pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras and pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebras.
Theorem 8.  A structure 
	
		
			(
			𝐴
			,
			∨
			,
			∧
			,
			→
			,
			⇝
			,
		

		

			−
		

		

			,
		

		

			∼
		

		
			,
			0
			,
			1
			)
		

	
 is a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra if and only if it satisfies the following conditions: (pL1)
	
		
			(
			𝐴
			,
			∧
			,
			∨
			,
			0
			,
			1
			)
		

	
 is a bounded lattice,(pL3′)
	
		

			1
		

		
			∼
			−
		

		
			=
			1
		

		
			−
			∼
		

		
			=
			1
		

	
, 
	
		

			0
		

		
			∼
			−
		

		
			=
			0
		

		
			−
			∼
		

		
			=
			0
		

	
,(pR1)
	
		
			𝑥
			→
			𝑦
			=
			𝑦
		

		

			−
		

		
			⇝
			𝑥
		

		

			−
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			=
			𝑦
		

		

			∼
		

		
			→
			𝑥
		

		

			∼
		

	
,(pR2)
	
		
			1
			→
			𝑥
			=
			1
			⇝
			𝑥
			=
			𝑥
		

	
,(pR3)
	
		
			𝑥
			→
			𝑦
			≤
			(
			𝑧
			→
			𝑥
			)
			→
			(
			𝑧
			→
			𝑦
			)
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			≤
			(
			𝑧
			⇝
			𝑥
			)
			⇝
			(
			𝑧
			⇝
			𝑦
			)
		

	
,(pR5)
	
		
			𝑥
			→
			(
			𝑦
			∨
			𝑧
			)
			=
			(
			𝑥
			→
			𝑦
			)
			∨
			(
			𝑥
			→
			𝑧
			)
		

	
, 
	
		
			𝑥
			⇝
			(
			𝑦
			∨
			𝑧
			)
			=
			(
			𝑥
			⇝
			𝑦
			)
			∨
			(
			𝑥
			⇝
			𝑧
			)
		

	
.
Proof. Necessity is obvious. For sufficiency, it only needs to show axioms (pL2), (pL3), and (pR4) of Definition 5 hold. We first show the following three properties hold:(a)
	
		
			𝑥
			→
			𝑦
			≤
			(
			𝑦
			→
			𝑧
			)
			⇝
			(
			𝑥
			→
			𝑧
			)
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			≤
			(
			𝑦
			⇝
			𝑧
			)
			→
			(
			𝑥
			⇝
			𝑧
			)
		

	
,(b)
	
		
			𝑥
			→
			𝑥
			=
			𝑥
			⇝
			𝑥
			=
			1
		

	
,(c)
	
		
			𝑥
			≤
			𝑦
		

	
 if and only if 
	
		
			𝑥
			→
			𝑦
			=
			1
		

	
 if and only if 
	
		
			𝑥
			⇝
			𝑦
			=
			1
		

	
.In fact, by (pR1) and (pR3), we have 
	
		
			𝑥
			→
			𝑦
			=
			𝑦
		

		

			−
		

		
			⇝
			𝑥
		

		

			−
		

		
			≤
			(
			𝑧
		

		

			−
		

		
			⇝
			𝑦
		

		

			−
		

		
			)
			⇝
			(
			𝑧
		

		

			−
		

		
			⇝
			𝑥
		

		

			−
		

		
			)
			=
			(
			𝑦
			→
			𝑧
			)
			⇝
			(
			𝑥
			→
			𝑧
			)
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			=
			𝑦
		

		

			∼
		

		
			→
			𝑥
		

		

			∼
		

		
			≤
			(
			𝑧
		

		

			∼
		

		
			→
			𝑦
		

		

			∼
		

		
			)
			→
			(
			𝑧
		

		

			∼
		

		
			→
			𝑥
		

		

			∼
		

		
			)
			=
			(
			𝑦
			⇝
			𝑧
			)
			→
			(
			𝑥
			⇝
			𝑧
			)
		

	
.By (a) and (pR2), we have 
	
		
			1
			=
			1
			→
			1
			≤
			(
			1
			⇝
			𝑥
			)
			→
			(
			1
			⇝
			𝑥
			)
			=
			𝑥
			→
			𝑥
		

	
, and so 
	
		
			𝑥
			→
			𝑥
			=
			1
		

	
. Similarly, 
	
		
			𝑥
			⇝
			𝑥
			=
			1
		

	
.If 
	
		
			𝑥
			≤
			𝑦
		

	
, by (pR5) and (b), we have 
	
		
			𝑥
			→
			𝑦
			=
			𝑥
			→
			𝑥
			∨
			𝑦
			=
			(
			𝑥
			→
			𝑥
			)
			∨
			(
			𝑥
			→
			𝑦
			)
			=
			1
		

	
. Conversely, if 
	
		
			𝑥
			→
			𝑦
			=
			1
		

	
, by (pR2) and (a), we have 
	
		
			𝑥
			=
			1
			⇝
			𝑥
			≤
			(
			𝑥
			→
			𝑦
			)
			⇝
			(
			1
			→
			𝑦
			)
			=
			1
			⇝
			𝑦
			=
			𝑦
		

	
. Similarly, 
	
		
			𝑥
			≤
			𝑦
		

	
 if and only if 
	
		
			𝑥
			⇝
			𝑦
			=
			1
		

	
.(pL2): by (c) and (pR1), 
	
		
			𝑥
			≤
			𝑦
		

	
 if and only if 
	
		
			𝑥
			→
			𝑦
			=
			1
		

	
 if and only if 
	
		

			𝑦
		

		

			−
		

		
			⇝
			𝑥
		

		

			−
		

		
			=
			1
		

	
 if and only if 
	
		

			𝑦
		

		

			−
		

		
			≤
			𝑥
		

		

			−
		

	
. Similarly, 
	
		
			𝑥
			≤
			𝑦
		

	
 if and only if 
	
		
			𝑥
			⇝
			𝑦
			=
			1
		

	
 if and only if 
	
		

			𝑦
		

		

			∼
		

		
			→
			𝑥
		

		

			∼
		

		
			=
			1
		

	
 if and only if 
	
		

			𝑦
		

		

			∼
		

		
			≤
			𝑥
		

		

			∼
		

	
.(pL3): since 
	
		
			0
			≤
			1
		

		

			−
		

	
, by (pL2), 
	
		

			1
		

		
			−
			∼
		

		
			≤
			0
		

		

			∼
		

	
. By (pL3′), 
	
		
			1
			≤
			0
		

		

			∼
		

	
; thus 
	
		
			1
			=
			0
		

		

			∼
		

	
 and 
	
		

			1
		

		

			−
		

		
			=
			0
		

		
			∼
			−
		

		
			=
			0
		

	
. Similarly, 
	
		
			1
			=
			0
		

		

			−
		

	
 and 
	
		

			1
		

		

			∼
		

		
			=
			0
		

	
.By (pR2) and (pR1), 
	
		
			𝑥
			=
			1
			→
			𝑥
			=
			𝑥
		

		

			−
		

		
			⇝
			0
		

	
, and so 
	
		

			𝑥
		

		
			−
			∼
		

		
			=
			𝑥
		

		
			−
			∼
			−
		

		
			⇝
			0
			=
			1
			→
			𝑥
		

		
			−
			∼
		

		
			=
			𝑥
		

		

			−
		

		
			⇝
			0
			=
			𝑥
		

	
. Hence, 
	
		

			𝑥
		

		
			−
			∼
		

		
			=
			𝑥
		

	
. Similarly, we have 
	
		

			𝑥
		

		
			∼
			−
		

		
			=
			𝑥
		

	
.(pR4): by (pL2) and (pL3), it is easy to verify that pseudo-Kleene dual law holds:(d)
	
		
			(
			𝑥
			∧
			𝑦
			)
		

		

			∼
		

		
			=
			𝑥
		

		

			∼
		

		
			∨
			𝑦
		

		

			∼
		

	
, 
	
		
			(
			𝑥
			∨
			𝑦
			)
		

		

			∼
		

		
			=
			𝑥
		

		

			∼
		

		
			∧
			𝑦
		

		

			∼
		

	
, 
	
		
			(
			𝑥
			∧
			𝑦
			)
		

		

			−
		

		
			=
			𝑥
		

		

			−
		

		
			∨
			𝑦
		

		

			−
		

	
, and 
	
		
			(
			𝑥
			∨
			𝑦
			)
		

		

			−
		

		
			=
			𝑥
		

		

			−
		

		
			∧
			𝑦
		

		

			−
		

	
.By (pR1), (pR5), and (d), 
	
		
			𝑥
			∧
			𝑦
			→
			𝑧
			=
			𝑧
		

		

			−
		

		
			⇝
			(
			𝑥
			∧
			𝑦
			)
		

		

			−
		

		
			=
			𝑧
		

		

			−
		

		
			⇝
			𝑥
		

		

			−
		

		
			∨
			𝑦
		

		

			−
		

		
			=
			(
			𝑧
		

		

			−
		

		
			⇝
			𝑥
		

		

			−
		

		
			)
			∨
			(
			𝑧
		

		

			−
		

		
			⇝
			𝑦
		

		

			−
		

		
			)
			=
			(
			𝑥
			→
			𝑧
			)
			∨
			(
			𝑦
			→
			𝑧
			)
		

	
. Similarly, we have 
	
		
			𝑥
			∧
			𝑦
			⇝
			𝑧
			=
			(
			𝑥
			⇝
			𝑧
			)
			∨
			(
			𝑦
			⇝
			𝑧
			)
		

	
.If 
	
		
			𝑥
			≤
			𝑦
		

	
, then 
	
		
			𝑦
			→
			𝑧
			≤
			(
			𝑥
			→
			𝑧
			)
			∨
			(
			𝑦
			→
			𝑧
			)
			=
			𝑥
			∧
			𝑦
			→
			𝑧
			=
			𝑥
			→
			𝑧
		

	
 and 
	
		
			𝑦
			⇝
			𝑧
			≤
			(
			𝑥
			⇝
			𝑧
			)
			∨
			(
			𝑦
			⇝
			𝑧
			)
			=
			𝑥
			∧
			𝑦
			⇝
			𝑧
			=
			𝑥
			⇝
			𝑧
		

	
.Now we prove that (pR4) holds. Since 
	
		
			𝑥
			=
			1
			→
			𝑥
			≤
			(
			𝑥
			→
			𝑧
			)
			⇝
			(
			1
			→
			𝑧
			)
			=
			(
			𝑥
			→
			𝑧
			)
			⇝
			𝑧
		

	
, 
	
		
			𝑥
			→
			(
			𝑦
			⇝
			𝑧
			)
			≥
			(
			(
			𝑥
			→
			𝑧
			)
			⇝
			𝑧
			)
			→
			(
			𝑦
			⇝
			𝑧
			)
			≥
			𝑦
			⇝
			(
			𝑥
			→
			𝑧
			)
		

	
. Hence, 
	
		
			𝑥
			→
			(
			𝑦
			⇝
			𝑧
			)
			=
			𝑦
			⇝
			(
			𝑥
			→
			𝑧
			)
		

	
.
Corollary 9.  A structure 
	
		
			(
			𝐴
			,
			∨
			,
			∧
			,
			→
			,
			⇝
			,
		

		

			−
		

		

			,
		

		

			∼
		

		
			,
			0
			,
			1
			)
		

	
 is a pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebra if and only if it satisfies (pL1), (pL3′), (pR1), (pR2), (pR3), (pR5), and (pR6)
	
		
			(
			𝑥
			→
			𝑦
			)
			∨
			(
			(
			𝑥
			→
			𝑦
			)
			⇝
			(
			𝑥
		

		

			−
		

		
			∨
			𝑦
			)
			)
			=
			(
			𝑥
			⇝
			𝑦
			)
			∨
			(
			(
			𝑥
			⇝
			𝑦
			)
			→
			(
			𝑥
		

		

			∼
		

		
			∨
			𝑦
			)
			)
			=
			1
		

	
. According to Theorem 8 and Corollary 9, one obtains most simplified definitions of pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras and pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebras, as the axiom systems are mutually independence (see Theorem 11).
Definition 10. A pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra is a structure 
	
		
			(
			𝐴
			,
			∧
			,
			∨
			,
			→
			,
			⇝
			,
		

		

			−
		

		

			,
		

		

			∼
		

		
			,
			0
			,
			1
			)
		

	
 such that 
	
		
			(
			𝐴
			,
			∧
			,
			∨
			,
			0
			,
			1
			)
		

	
 is a bounded lattice and 
	
		
			(
			1
		

		

			∼
		

		

			)
		

		

			−
		

		
			=
			(
			1
		

		

			−
		

		

			)
		

		

			∼
		

		
			=
			1
		

	
 and 
	
		
			(
			0
		

		

			∼
		

		

			)
		

		

			−
		

		
			=
			(
			0
		

		

			−
		

		

			)
		

		

			∼
		

		
			=
			0
		

	
, satisfying the following axioms:(P1)
	
		
			𝑥
			→
			𝑦
			=
			𝑦
		

		

			−
		

		
			⇝
			𝑥
		

		

			−
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			=
			𝑦
		

		

			∼
		

		
			→
			𝑥
		

		

			∼
		

	
,(P2)
	
		
			1
			→
			𝑥
			=
			1
			⇝
			𝑥
			=
			𝑥
		

	
,(P3)
	
		
			𝑥
			→
			𝑦
			≤
			(
			𝑧
			→
			𝑥
			)
			→
			(
			𝑧
			→
			𝑦
			)
		

	
, 
	
		
			𝑥
			⇝
			𝑦
			≤
			(
			𝑧
			⇝
			𝑥
			)
			⇝
			(
			𝑧
			⇝
			𝑦
			)
		

	
,(P4)
	
		
			𝑥
			→
			(
			𝑦
			∨
			𝑧
			)
			=
			(
			𝑥
			→
			𝑦
			)
			∨
			(
			𝑥
			→
			𝑧
			)
		

	
, 
	
		
			𝑥
			⇝
			(
			𝑦
			∨
			𝑧
			)
			=
			(
			𝑥
			⇝
			𝑦
			)
			∨
			(
			𝑥
			⇝
			𝑧
			)
		

	
.A pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
 is a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra satisfying the additional axiom as follows:(P5)
	
		
			(
			𝑥
			→
			𝑦
			)
			∨
			(
			(
			𝑥
			→
			𝑦
			)
			⇝
			(
			𝑥
		

		

			−
		

		
			∨
			𝑦
			)
			)
			=
			(
			𝑥
			⇝
			𝑦
			)
			∨
			(
			(
			𝑥
			⇝
			𝑦
			)
			→
			(
			𝑥
		

		

			∼
		

		
			∨
			𝑦
			)
			)
			=
			1
		

	
.
Theorem 11.  The five axioms of Definition 10 are mutually independent.
Proof. Let 
	
		
			𝐴
			=
			[
			0
			,
			1
			]
		

	
, 
	
		
			𝑥
			∨
			𝑦
			=
			m
			a
			x
			{
			𝑥
			,
			𝑦
			}
		

	
, 
	
		
			𝑥
			∧
			𝑦
			=
			m
			i
			n
			{
			𝑥
			,
			𝑦
			}
		

	
, 
	
		

			𝑥
		

		

			−
		

		

			=
		

		

			√
		

		
			
		
		
			1
			−
			𝑥
		

	
, and 
	
		

			𝑥
		

		

			∼
		

		
			=
			1
			−
			𝑥
		

		

			2
		

	
. Then 
	
		

			𝐴
		

	
 is a bounded lattice satisfying 
	
		

			𝑥
		

		
			−
			∼
		

		
			=
			𝑥
		

		
			∼
			−
		

		
			=
			𝑥
		

	
 for any 
	
		
			𝑥
			∈
			𝐴
		

	
.(i)Define operations 
	
		

			→
		

	
 and 
	
		

			⇝
		

	
 as pseudo-Godel implication on 
	
		

			𝐴
		

	
 as follows:
										
	
 		
			(
			2
			)
		
 	

	
		
			𝑥
			⟶
			𝑦
			=
			𝑥
			⇝
			𝑦
			=
		

		

			⎧
		

		

			⎨
		

		

			⎩
		

		
			1
			,
			𝑥
			≤
			𝑦
			,
		

		
			𝑦
			,
		

		
			o
			t
			h
			e
			r
			w
			i
			s
			e
		

		

			.
		

	
Then 
	
		

			𝐴
		

	
 satisfies (P2)–(P5), but not (P1): 
	
		
			1
			→
			0
			.
			5
			=
			0
			.
			5
		

	
, but 
	
		
			0
			.
			5
		

		

			−
		

		
			⇝
			1
		

		

			−
		

		

			=
		

		

			√
		

		
			
		
		
			0
			.
			5
			⇝
			0
			=
			0
		

	
.(ii)Define operations 
	
		

			→
		

	
 and 
	
		

			⇝
		

	
 on 
	
		

			𝐴
		

	
 as follows:
										
	
 		
			(
			3
			)
		
 	

	
		
			𝑥
			⟶
			𝑦
			=
			𝑥
			⇝
			𝑦
			=
			1
			.
		

	
Clearly, 
	
		

			𝐴
		

	
 satisfies (P1) and (P3)–(P5), but not (P2): 
	
		
			1
			→
			0
			.
			5
			=
			1
			⇝
			0
			.
			5
			=
			1
			≠
			0
			.
			5
		

	
.(iii)Define operations 
	
		

			→
		

	
 and 
	
		

			⇝
		

	
 on 
	
		

			𝐴
		

	
 as follows:
										
	
 		
			(
			4
			)
		
 	

	
		
			𝑥
			⟶
			𝑦
			=
		

		

			⎧
		

		

			⎨
		

		

			⎩
		

		

			𝑥
		

		

			−
		

		
			∨
			𝑦
			,
			𝑥
			=
			1
		

		
			o
			r
		

		
			𝑦
			=
			0
			,
		

		
			1
			,
		

		
			o
			t
			h
			e
			r
			w
			i
			s
			e
		

		

			,
		

		
			𝑥
			⇝
			𝑦
			=
		

		

			⎧
		

		

			⎨
		

		

			⎩
		

		

			𝑥
		

		

			∼
		

		
			∨
			𝑦
			,
			𝑥
			=
			1
		

		
			o
			r
		

		
			𝑦
			=
			0
			,
		

		
			1
			,
		

		
			o
			t
			h
			e
			r
			w
			i
			s
			e
		

		

			.
		

	
Then 
	
		

			𝐴
		

	
 satisfies (P1)-(P2) and (P4)-(P5), but not (P3). In fact, let 
	
		
			𝑥
			=
			0
			.
			6
			4
		

	
, 
	
		
			𝑦
			=
			0
			.
			1
		

	
, and 
	
		
			𝑧
			=
			0
		

	
, then 
	
		
			𝑦
			→
			𝑧
			=
			𝑦
		

		

			−
		

		
			∨
			𝑧
			=
			𝑦
		

		

			−
		

		

			=
		

		

			√
		

		
			
		
		
			1
			−
			𝑦
			=
		

		

			√
		

		
			
		
		
			0
			.
			9
			≈
			0
			.
			9
			5
			,
			(
			𝑥
			→
			𝑦
			)
			→
			(
			𝑥
			→
			𝑧
			)
			=
			1
			→
			𝑥
		

		

			−
		

		
			∨
			𝑧
			=
			1
			→
			𝑥
		

		

			−
		

		
			=
			𝑥
		

		

			−
		

		

			=
		

		

			√
		

		
			
		
		
			0
			.
			3
			6
			=
			0
			.
			6
		

	
.(iv)Define operations 
	
		

			→
		

	
 and 
	
		

			⇝
		

	
 as pseudo-Lukasiewicz implication on 
	
		

			𝐴
		

	
 as follows:
										
	
 		
			(
			5
			)
		
 	

	
		
			𝑥
			⟶
			𝑦
			=
			1
			∧
		

		

			(
		

		

			𝑥
		

		

			−
		

		
			+
			𝑦
		

		

			)
		

		
			,
			𝑥
			⇝
			𝑦
			=
			1
			∧
		

		

			(
		

		

			𝑥
		

		

			∼
		

		
			+
			𝑦
		

		

			)
		

		

			.
		

	
Then 
	
		

			𝐴
		

	
 satisfies (P1)–(P4), but not (P5): 
	
		
			(
			0
			.
			1
			9
			→
			0
			.
			0
			7
			)
			∨
			[
			(
			0
			.
			1
			9
			→
			0
			.
			0
			7
			)
			⇝
			(
			0
			.
			1
			9
		

		

			−
		

		
			∨
			0
			.
			0
			7
			)
			]
			=
			0
			.
			9
			7
			∨
			(
			0
			.
			9
			7
			⇝
			0
			.
			9
			)
			≤
			0
			.
			9
			7
			∨
			0
			.
			9
			6
			=
			0
			.
			9
			7
			<
			1
		

	
.(v)Suppose that 
	
		

			𝐴
		

	
 is a bounded lattice given by Figure 1.The operations 
	
		

			−
		

	
, 
	
		

			∼
		

	
, 
	
		

			→
		

	
, and 
	
		

			⇝
		

	
 on 
	
		

			𝐴
		

	
 are defined by the following:
							
	
 		
			(
			6
			)
		
 	

	
		

			𝑥
		

		
			
		
		
			0
			𝑓
			𝑐
			𝑑
			𝑎
			𝑏
			𝑒
			1
		

		
			
		
		

			𝑥
		

		

			−
		

		
			=
			𝑥
		

		

			∼
		

		
			
		
		
			1
			𝑒
			𝑏
			𝑎
			𝑑
			𝑐
			𝑓
			0
		

		
			𝑥
			⟶
			𝑦
			=
			𝑥
			⇝
			𝑦
			=
		

		

			⎧
		

		

			⎨
		

		

			⎩
		

		
			1
			,
			𝑥
			≤
			𝑦
			,
		

		

			𝑥
		

		

			−
		

		
			∨
			𝑦
			=
			𝑥
		

		

			∼
		

		
			∨
			𝑦
			,
		

		
			o
			t
			h
			e
			r
			w
			i
			s
			e
		

		

			.
		

	
Then 
	
		

			𝐴
		

	
 satisfies (P1)–(P3) and (P5), but not (P4): 
	
		
			(
			𝑎
			→
			𝑏
			)
			∨
			(
			𝑎
			→
			𝑐
			)
			=
			(
			𝑎
		

		

			−
		

		
			∨
			𝑏
			)
			∨
			(
			𝑎
		

		

			−
		

		
			∨
			𝑐
			)
			=
			(
			𝑑
			∨
			𝑏
			)
			∨
			(
			𝑑
			∨
			𝑐
			)
			=
			𝑏
			∨
			𝑎
			=
			𝑒
		

	
, but 
	
		
			𝑎
			→
			𝑏
			∨
			𝑐
			=
			𝑎
			→
			𝑒
			=
			1
		

	
.

















	
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
	


	
		
	















Figure 1


4. Filters and Normal Filters of Pseudo-Weak-
	
		

			𝑅
		

		

			0
		

	
 Algebras
We introduce the notions of filters and normal filters in pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras and investigate the structures and properties of the generated filters and generated normal filters in pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras.
Definition 12. A nonempty subset 
	
		

			𝐹
		

	
 of a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
 is said to be a filter of 
	
		

			𝐴
		

	
 if it satisfies(F1)
	
		
			𝑥
			,
			𝑦
			∈
			𝐹
			⇒
			𝑥
			⊙
			𝑦
			∈
			𝐹
		

	
,
								(F2)
	
		
			𝑥
			∈
			𝐹
		

	
, 
	
		
			𝑥
			≤
			𝑦
			⇒
			𝑦
			∈
			𝐹
		

	
.
Proposition 13.  For a subset 
	
		

			𝐹
		

	
 of a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
, the following are equivalent: (i)
	
		

			𝐹
		

	
 is a filter,(ii)
	
		
			1
			∈
			𝐹
		

	
 and 
	
		
			𝑥
			,
			𝑥
			⇝
			𝑦
			∈
			𝐹
			⇒
			𝑦
			∈
			𝐹
		

	
,(iii)
	
		
			1
			∈
			𝐹
		

	
 and 
	
		
			𝑥
			,
			𝑥
			→
			𝑦
			∈
			𝐹
			⇒
			𝑦
			∈
			𝐹
		

	
.
Proof. (i)
	
		

			⇒
		

	
(ii). By (F2), we have 
	
		
			1
			∈
			𝐹
		

	
. By (F1), 
	
		
			𝑥
			,
			𝑥
			⇝
			𝑦
			∈
			𝐹
			⇒
			𝑥
			⊙
			(
			𝑥
			⇝
			𝑦
			)
			∈
			𝐹
		

	
. By (38) and (F2), 
	
		
			𝑥
			∧
			𝑦
			∈
			𝐹
		

	
, and so 
	
		
			𝑦
			∈
			𝐹
		

	
.(ii)
	
		

			⇒
		

	
(iii). If 
	
		
			𝑥
			,
			𝑥
			→
			𝑦
			∈
			𝐹
		

	
, by (19), 
	
		
			𝑥
			≤
			(
			𝑥
			→
			𝑦
			)
			⇝
			𝑦
		

	
. By (4), 
	
		
			𝑥
			⇝
			(
			(
			𝑥
			→
			𝑦
			)
			⇝
			𝑦
			)
			=
			1
			∈
			𝐹
		

	
. By (ii), 
	
		
			𝑦
			∈
			𝐹
		

	
.(iii)
	
		

			⇒
		

	
(i). If 
	
		
			𝑥
			∈
			𝐹
		

	
, 
	
		
			𝑥
			≤
			𝑦
		

	
, then 
	
		
			𝑥
			→
			𝑦
			=
			1
			∈
			𝐹
		

	
, so 
	
		
			𝑦
			∈
			𝐹
		

	
; that is, (F2) holds; if 
	
		
			𝑥
			,
			𝑦
			∈
			𝐹
		

	
, by (41), 
	
		
			𝑥
			→
			(
			𝑦
			→
			(
			𝑥
			⊙
			𝑦
			)
			)
			=
			(
			𝑥
			⊙
			𝑦
			)
			→
			(
			𝑥
			⊙
			𝑦
			)
			=
			1
			∈
			𝐹
		

	
, and so 
	
		
			𝑥
			⊙
			𝑦
			∈
			𝐹
		

	
, which means (F1) holds.
Clearly, 
	
		
			{
			1
			}
		

	
 and 
	
		

			𝐴
		

	
 are both filters of a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
.
Proposition 14.  For a subset 
	
		

			𝐹
		

	
 of a pseudo-weak- 
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
, the following are equivalent: (i)
	
		

			𝐹
		

	
 is a filter,(ii)
	
		
			𝑥
			,
			𝑦
			∈
			𝐹
		

	
, 
	
		
			𝑦
			≤
			𝑥
			→
			𝑧
			⇒
			𝑧
			∈
			𝐹
		

	
,(iii)
	
		
			𝑥
			,
			𝑦
			∈
			𝐹
		

	
, 
	
		
			𝑦
			≤
			𝑥
			⇝
			𝑧
			⇒
			𝑧
			∈
			𝐹
		

	
.
Proof. (i)
	
		

			⇔
		

	
(ii). If 
	
		
			𝑥
			,
			𝑦
			∈
			𝐹
		

	
, 
	
		
			𝑦
			≤
			𝑥
			→
			𝑧
		

	
, by (F2) and Proposition 13 (iii), 
	
		
			𝑧
			∈
			𝐹
		

	
. Conversely, if 
	
		
			𝑥
			∈
			𝐹
		

	
, by 
	
		
			𝑥
			≤
			𝑥
			→
			1
		

	
, we have 
	
		
			1
			∈
			𝐹
		

	
; suppose that 
	
		
			𝑥
			,
			𝑥
			→
			𝑦
			∈
			𝐹
		

	
, by 
	
		
			𝑥
			→
			𝑦
			≤
			𝑥
			→
			𝑦
		

	
, we have 
	
		
			𝑦
			∈
			𝐹
		

	
. By Proposition 13 (iii), 
	
		

			𝐹
		

	
 is a filter.(i)
	
		

			⇔
		

	
(iii). Similarly.
Next, we consider filter generated by a set. It is easy to verify that the intersection of filters of 
	
		

			𝐴
		

	
 is also a filter. If 
	
		
			𝑆
			⊆
			𝐴
		

	
, the least filter containing 
	
		

			𝑆
		

	
; that is, the intersection of all filters of 
	
		

			𝐴
		

	
 containing 
	
		

			𝑆
		

	
 is called the filter generated by 
	
		

			𝑆
		

	
 and denoted by 
	
		
			[
			𝑆
			)
		

	
. If 
	
		
			𝑆
			=
			{
			𝑎
			}
		

	
, 
	
		
			[
			{
			𝑎
			}
			)
		

	
 is written 
	
		
			[
			𝑎
			)
		

	
. Clearly
						
	
 		
			(
			7
			)
		
 	

	
		

			[
		

		

			𝑆
		

		

			)
		

		
			=
			∩
		

		

			{
		

		
			𝑇
			∣
			𝑆
			⊆
			𝑇
			⊆
			𝐴
			,
			𝑇
		

		
			i
			s
			a
			ﬁ
			l
			t
			e
			r
			o
			f
		

		

			𝐴
		

		

			}
		

		

			.
		

	

Theorem 15.  Let 
	
		

			𝐴
		

	
 be a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra and let 
	
		

			𝑆
		

	
 be a nonempty subset of 
	
		

			𝐴
		

	
. Then
							
	
 		
			(
			8
			)
		
 	

	
		

			[
		

		

			𝑆
		

		

			)
		

		

			=
		

		

			
		

		
			𝑥
			∈
			𝐴
			∣
			𝑡
			ℎ
			𝑒
			𝑟
			𝑒
			𝑎
			𝑟
			𝑒
			𝑛
			≥
			1
			,
			𝑎
		

		

			1
		

		
			,
			𝑎
		

		

			2
		

		
			,
			…
			,
			𝑎
		

		

			𝑛
		

		
			∈
			𝑆
			,
		

		
			𝑠
			𝑢
			𝑐
			ℎ
			𝑡
			ℎ
			𝑎
			𝑡
			𝑎
		

		

			1
		

		
			⊙
			⋯
			⊙
			𝑎
		

		

			𝑛
		

		
			≤
			𝑥
		

		

			
		

		

			=
		

		

			
		

		
			𝑥
			∈
			𝐴
			∣
			𝑡
			ℎ
			𝑒
			𝑟
			𝑒
			𝑎
			𝑟
			𝑒
			𝑛
			≥
			1
			,
			𝑎
		

		

			1
		

		
			,
			𝑎
		

		

			2
		

		
			,
			…
			,
			𝑎
		

		

			𝑛
		

		
			∈
			𝑆
			,
		

		
			𝑠
			𝑢
			𝑐
			ℎ
			𝑡
			ℎ
			𝑎
			𝑡
			𝑎
		

		

			𝑛
		

		

			⇝
		

		

			
		

		
			⋯
			⇝
		

		

			
		

		

			𝑎
		

		

			1
		

		
			⇝
			𝑥
		

		

			
		

		

			⋯
		

		

			
		

		
			=
			1
		

		

			
		

		

			=
		

		

			
		

		
			𝑥
			∈
			𝐴
			∣
			𝑡
			ℎ
			𝑒
			𝑟
			𝑒
			𝑎
			𝑟
			𝑒
			𝑛
			≥
			1
			,
			𝑎
		

		

			1
		

		
			,
			𝑎
		

		

			2
		

		
			,
			…
			,
			𝑎
		

		

			𝑛
		

		
			∈
			𝑆
			,
		

		
			𝑠
			𝑢
			𝑐
			ℎ
			𝑡
			ℎ
			𝑎
			𝑡
			𝑎
		

		

			𝑛
		

		

			⟶
		

		

			
		

		
			⋯
			⟶
		

		

			
		

		

			𝑎
		

		

			1
		

		
			⟶
			𝑥
		

		

			
		

		

			⋯
		

		

			
		

		
			=
			1
		

		

			
		

		

			.
		

	

Proof. Only prove the first equality. Using (34) to the first equality, we can get the rest of the two equalities. Let 
	
		

			𝐵
		

	
 denote the right side of the first equality. If 
	
		
			𝑥
			,
			𝑦
			∈
			𝐵
		

	
, then there are 
	
		

			𝑎
		

		

			1
		

		
			,
			𝑎
		

		

			2
		

		
			,
			…
			,
			𝑎
		

		

			𝑛
		

		
			,
			𝑏
		

		

			1
		

		
			,
			𝑏
		

		

			2
		

		
			,
			…
			,
			𝑏
		

		

			𝑚
		

		
			∈
			𝑆
		

	
 such that 
	
		

			𝑎
		

		

			1
		

		
			⊙
			⋯
			⊙
			𝑎
		

		

			𝑛
		

		
			≤
			𝑥
		

	
 and 
	
		

			𝑏
		

		

			1
		

		
			⊙
			⋯
			⊙
			𝑏
		

		

			𝑚
		

		
			≤
			𝑦
		

	
. By (37), 
	
		

			𝑎
		

		

			1
		

		
			⊙
			⋯
			⊙
			𝑎
		

		

			𝑛
		

		
			⊙
			𝑏
		

		

			1
		

		
			⊙
			⋯
			⊙
			𝑏
		

		

			𝑚
		

		
			≤
			𝑥
			⊙
			𝑦
		

	
, so 
	
		
			𝑥
			⊙
			𝑦
			∈
			𝐵
		

	
. If 
	
		
			𝑥
			∈
			𝐵
		

	
 and 
	
		
			𝑥
			≤
			𝑦
		

	
, we have 
	
		

			𝑎
		

		

			1
		

		
			⊙
			⋯
			⊙
			𝑎
		

		

			𝑛
		

		
			≤
			𝑥
			≤
			𝑦
		

	
, so 
	
		
			𝑦
			∈
			𝐵
		

	
. Hence 
	
		

			𝐵
		

	
 is a filter. If 
	
		

			𝐶
		

	
 is a filter and 
	
		
			𝑆
			⊆
			𝐶
		

	
, for any 
	
		
			𝑥
			∈
			𝐵
		

	
, there are 
	
		

			𝑎
		

		

			1
		

		
			,
			𝑎
		

		

			2
		

		
			,
			…
			,
			𝑎
		

		

			𝑛
		

		
			∈
			𝑆
		

	
 such that 
	
		

			𝑎
		

		

			1
		

		
			⊙
			⋯
			⊙
			𝑎
		

		

			𝑛
		

		
			≤
			𝑥
		

	
. By (F2), 
	
		
			𝑥
			∈
			𝐶
		

	
, hence 
	
		
			𝐵
			⊆
			𝐶
		

	
.
For convenience, we shall write 
	
		

			𝑎
		

		

			𝑛
		

		
			∶
			=
		

		

			𝑛
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		
			𝑎
			⊙
			⋯
			⊙
			𝑎
		

	
 and 
	
		

			𝑎
		

		

			0
		

		
			∶
			=
			1
		

	
; 
	
		

			𝑎
		

		

			𝑛
		

		
			⇝
			𝑥
			∶
			=
		

		

			𝑛
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		
			𝑎
			⇝
			(
			⋯
			⇝
			(
			𝑎
			⇝
			𝑥
			)
			⋯
			)
		

	
 and 
	
		

			𝑎
		

		

			0
		

		
			⇝
			𝑥
			∶
			=
			𝑥
		

	
; 
	
		

			𝑎
		

		

			𝑛
		

		
			−
			→
			𝑥
			∶
			=
		

		

			𝑛
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		
			𝑎
			→
			(
			⋯
			→
			(
			𝑎
			→
			𝑥
			)
			⋯
			)
		

	
 and 
	
		

			𝑎
		

		

			0
		

		
			−
			→
			𝑥
			∶
			=
			𝑥
		

	
.
Corollary 16.  If 
	
		

			𝐴
		

	
 is a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra and 
	
		
			𝑎
			∈
			𝐴
		

	
, then
							
	
 		
			(
			9
			)
		
 	

	
		

			[
		

		

			𝑎
		

		

			)
		

		

			=
		

		

			{
		

		
			𝑥
			∈
			𝐴
			∣
			𝑛
			≥
			1
			,
			𝑎
		

		

			𝑛
		

		
			≤
			𝑥
		

		

			}
		

		

			=
		

		

			
		

		
			𝑥
			∈
			𝐴
			∣
			𝑛
			≥
			1
			,
			𝑎
		

		

			𝑛
		

		
			⇝
			𝑥
			=
			1
		

		

			
		

		

			=
		

		

			
		

		
			𝑥
			∈
			𝐴
			∣
			𝑛
			≥
			1
			,
			𝑎
		

		

			𝑛
		

		
			−
			→
			𝑥
			=
			1
		

		

			
		

		

			.
		

	

Corollary 17.  Let 
	
		

			𝐹
		

	
 be a filter of a pseudo-weak- 
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
 and 
	
		
			𝑎
			∈
			𝐴
		

	
; then 
	
 		
			(
			1
			0
			)
		
 	

	
		

			[
		

		
			𝐹
			∪
		

		

			{
		

		

			𝑎
		

		
			}
			)
		

		

			=
		

		

			
		

		
			𝑥
			∈
			𝐴
			∣
		

		

			
		

		

			𝑠
		

		

			1
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			1
		

		

			
		

		
			⊙
			⋯
			⊙
		

		

			
		

		

			𝑠
		

		

			𝑚
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			𝑚
		

		

			
		

		
			≤
			𝑥
			,
		

		
			𝑤
			ℎ
			𝑒
			𝑟
			𝑒
			𝑚
			≥
			1
			,
			𝑛
		

		

			1
		

		
			,
			…
			,
			𝑛
		

		

			𝑚
		

		
			≥
			0
			,
		

		

			𝑠
		

		

			1
		

		
			,
			…
			,
			𝑠
		

		

			𝑚
		

		
			∈
			𝐹
		

		

			
		

		

			.
		

	

Theorem 18.  Let 
	
		

			𝐹
		

	
 be a filter of a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
 and 
	
		
			𝑎
			,
			𝑏
			∈
			𝐴
		

	
; then
							
	
 		
			(
			1
			1
			)
		
 	

	
		

			[
		

		
			𝐹
			∪
		

		

			{
		

		

			𝑎
		

		
			}
			)
		

		

			∩
		

		

			[
		

		
			𝐹
			∪
		

		

			{
		

		

			𝑏
		

		
			}
			)
		

		

			=
		

		

			[
		

		
			𝐹
			∪
		

		

			{
		

		
			𝑎
			∨
			𝑏
		

		
			}
			)
		

		

			.
		

	

Proof. Assume that 
	
		
			𝑥
			∈
			[
			𝐹
			∪
			{
			𝑎
			}
			)
			∩
			[
			𝐹
			∪
			{
			𝑏
			}
			)
		

	
, by Corollary 17, there are 
	
		

			𝑛
		

		

			1
		

		
			,
			…
			,
			𝑛
		

		

			𝑚
		

		
			,
			𝑙
		

		

			1
		

		
			,
			…
			,
			𝑙
		

		

			𝑘
		

		
			≥
			0
			,
			𝑠
		

		

			1
		

		
			,
			…
			,
			𝑠
		

		

			𝑚
		

		
			,
			𝑡
		

		

			1
		

		
			,
			…
			,
			𝑡
		

		

			𝑘
		

		
			∈
			𝐹
		

	
 such that
							
	
 		
			(
			1
			2
			)
		
 	

	
		

			
		

		

			𝑠
		

		

			1
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			1
		

		

			
		

		
			⊙
			⋯
			⊙
		

		

			
		

		

			𝑠
		

		

			𝑚
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			𝑚
		

		

			
		

		
			≤
			𝑥
			,
		

		

			
		

		

			𝑡
		

		

			1
		

		
			⊙
			𝑏
		

		

			𝑙
		

		

			1
		

		

			
		

		
			⊙
			⋯
			⊙
		

		

			
		

		

			𝑡
		

		

			𝑘
		

		
			⊙
			𝑏
		

		

			𝑙
		

		

			𝑘
		

		

			
		

		
			≤
			𝑥
			.
		

	

						Put 
	
		
			𝑝
			=
			𝑠
		

		

			1
		

		
			⊙
			⋯
			⊙
			𝑠
		

		

			𝑚
		

		
			⊙
			𝑡
		

		

			1
		

		
			⊙
			⋯
			⊙
			𝑡
		

		

			𝑘
		

	
 and 
	
		
			𝑞
			=
			m
			a
			x
			{
			𝑛
		

		

			1
		

		
			,
			…
			,
			𝑛
		

		

			𝑚
		

		
			,
			𝑙
		

		

			1
		

		
			,
			…
			,
			𝑙
		

		

			𝑘
		

		

			}
		

	
, and then
							
	
 		
			(
			1
			3
			)
		
 	

	
		

			(
		

		
			𝑝
			⊙
			𝑎
		

		

			𝑞
		

		

			)
		

		

			𝑚
		

		
			≤
			𝑥
			,
		

		

			(
		

		
			𝑝
			⊙
			𝑏
		

		

			𝑞
		

		

			)
		

		

			𝑘
		

		
			≤
			𝑥
			.
		

	

						Thus, by (46) 
	
		
			𝑥
			≥
			(
			𝑝
			⊙
			𝑎
		

		

			𝑞
		

		

			)
		

		

			𝑚
		

		
			∨
			(
			𝑝
			⊙
			𝑏
		

		

			𝑞
		

		

			)
		

		

			𝑘
		

		
			≥
			(
			(
			𝑝
			⊙
			𝑎
		

		

			𝑞
		

		

			)
		

		

			𝑚
		

		
			∨
			(
			𝑝
			⊙
			𝑏
		

		

			𝑞
		

		
			)
			)
		

		

			𝑘
		

		
			≥
			(
			(
			𝑝
			⊙
			𝑎
		

		

			𝑞
		

		
			)
			∨
			(
			𝑝
			⊙
			𝑏
		

		

			𝑞
		

		
			)
			)
		

		
			𝑚
			𝑘
		

		
			=
			(
			𝑝
			⊙
			(
			𝑎
		

		

			𝑞
		

		
			∨
			𝑏
		

		

			𝑞
		

		
			)
			)
		

		
			𝑚
			𝑘
		

		
			≥
			(
			𝑝
			⊙
			(
			𝑎
			∨
			𝑏
			)
		

		

			𝑞
		

		

			2
		

		

			)
		

		
			𝑚
			𝑘
		

	
. 
	
		
			𝑥
			∈
			[
			𝐹
			∪
			{
			𝑎
			∨
			𝑏
			}
			)
		

	
. Hence 
	
		
			[
			𝐹
			∪
			{
			𝑎
			}
			)
			∩
			[
			𝐹
			∪
			{
			𝑏
			}
			)
			⊆
			[
			𝐹
			∪
			{
			𝑎
			∨
			𝑏
			}
			)
		

	
. Inverse contains is obvious.
Corollary 19.  Let 
	
		

			𝐹
		

	
 be a filter of a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
 and 
	
		
			𝑎
			,
			𝑏
			∈
			𝐴
		

	
. If 
	
		
			𝑎
			∨
			𝑏
			∈
			𝐹
		

	
, then
							
	
 		
			(
			1
			4
			)
		
 	

	
		

			[
		

		
			𝐹
			∪
		

		

			{
		

		

			𝑎
		

		
			}
			)
		

		

			∩
		

		

			[
		

		
			𝐹
			∪
		

		

			{
		

		

			𝑏
		

		
			}
			)
		

		
			=
			𝐹
			.
		

	

Corollary 20.  Let 
	
		

			𝐴
		

	
 be a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra and 
	
		
			𝑎
			,
			𝑏
			∈
			𝐴
		

	
; then 
	
		
			[
			𝑎
			)
			∩
			[
			𝑏
			)
			=
			[
			𝑎
			∨
			𝑏
			)
		

	
.
Proof. Taking 
	
		
			𝐹
			=
			{
			1
			}
		

	
 in Theorem 18.
Next we introduce the notion of normal filters in a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra.
Definition 21. A filter 
	
		

			𝐹
		

	
 of a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
 is called normal if 
	
		
			𝑥
			,
			𝑦
			∈
			𝐴
		

	
, 
	
		
			𝑥
			→
			𝑦
			∈
			𝐹
		

	
 if and only if 
	
		
			𝑥
			⇝
			𝑦
			∈
			𝐹
		

	
.
Proposition 22.  Let 
	
		

			𝐹
		

	
 be a normal filter of a pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
. Then there is 
	
		
			𝑠
			∈
			𝐹
		

	
 such that 
	
		
			𝑏
			⊙
			𝑠
			≤
			𝑐
		

	
 if and only if there is 
	
		
			𝑡
			∈
			𝐹
		

	
 such that 
	
		
			𝑡
			⊙
			𝑏
			≤
			𝑐
		

	
.
Proof. If there is 
	
		
			𝑠
			∈
			𝐹
		

	
 such that 
	
		
			𝑏
			⊙
			𝑠
			≤
			𝑐
		

	
, by (34), 
	
		
			𝑠
			≤
			𝑏
			⇝
			𝑐
		

	
. By 
	
		
			𝑠
			∈
			𝐹
		

	
, we have 
	
		
			𝑏
			⇝
			𝑐
			∈
			𝐹
		

	
, and so 
	
		
			𝑏
			→
			𝑐
			∈
			𝐹
		

	
. Put 
	
		
			𝑏
			→
			𝑐
			=
			𝑡
			∈
			𝐹
			,
		

		
			a
			n
			d
		

	
 then 
	
		
			𝑡
			⊙
			𝑏
			≤
			𝑐
		

	
. Converse is similar.
Theorem 23.  If 
	
		

			𝐹
		

	
 is a normal filter of a pseudo-weak- 
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
 and 
	
		
			𝑎
			∈
			𝐴
		

	
, then 
	
 		
			(
			1
			5
			)
		
 	

	
		

			[
		

		
			𝐹
			∪
		

		

			{
		

		

			𝑎
		

		
			}
			)
		

		

			=
		

		

			{
		

		
			𝑥
			∈
			𝐴
			∣
			𝑡
			ℎ
			𝑒
			𝑟
			𝑒
			𝑎
			𝑟
			𝑒
			𝑠
			∈
			𝐹
			,
			𝑛
			≥
			0
			,
		

		
			𝑠
			𝑢
			𝑐
			ℎ
			𝑡
			ℎ
			𝑎
			𝑡
			𝑠
			⊙
			𝑎
		

		

			𝑛
		

		
			≤
			𝑥
		

		

			}
		

		

			=
		

		

			{
		

		
			𝑥
			∈
			𝐴
			∣
			𝑡
			ℎ
			𝑒
			𝑟
			𝑒
			𝑎
			𝑟
			𝑒
			𝑠
			∈
			𝐹
			,
			𝑛
			≥
			0
			,
		

		
			𝑠
			𝑢
			𝑐
			ℎ
			𝑡
			ℎ
			𝑎
			𝑡
			𝑎
		

		

			𝑛
		

		
			⊙
			𝑠
			≤
			𝑥
		

		

			}
		

		

			.
		

	

Proof. We show the first equality. By Corollary 17,
							
	
 		
			(
			1
			6
			)
		
 	

	
		

			[
		

		
			𝐹
			∪
		

		

			{
		

		

			𝑎
		

		
			}
			)
		

		

			=
		

		

			
		

		
			𝑥
			∈
			𝐴
			∣
		

		

			
		

		

			𝑠
		

		

			1
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			1
		

		

			
		

		
			⊙
			⋯
			⊙
		

		

			
		

		

			𝑠
		

		

			𝑚
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			𝑚
		

		

			
		

		
			≤
			𝑥
			,
		

		
			𝑚
			≥
			1
			,
			𝑛
		

		

			1
		

		
			,
			…
			,
			𝑛
		

		

			𝑚
		

		
			≥
			0
			𝑠
		

		

			1
		

		
			,
			…
			,
			𝑠
		

		

			𝑚
		

		
			∈
			𝐹
		

		

			
		

		

			.
		

	

						Since
							
	
 		
			(
			1
			7
			)
		
 	

	
		

			
		

		

			𝑠
		

		

			1
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			1
		

		

			
		

		

			⊙
		

		

			
		

		

			𝑠
		

		

			2
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			2
		

		

			
		

		
			⊙
			⋯
			⊙
		

		

			
		

		

			𝑠
		

		

			𝑚
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			𝑚
		

		

			
		

		
			≤
			𝑥
			,
		

	

						by (34),
							
	
 		
			(
			1
			8
			)
		
 	

	
		

			
		

		

			𝑠
		

		

			1
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			1
		

		

			
		

		
			⊙
			𝑠
		

		

			2
		

		

			≤
		

		

			
		

		

			𝑎
		

		

			𝑛
		

		

			2
		

		

			⊙
		

		

			
		

		

			𝑠
		

		

			3
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			3
		

		

			
		

		
			⊙
			⋯
			⊙
		

		

			
		

		

			𝑠
		

		

			𝑚
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			𝑚
		

		
			
			
		

		
			⟶
			𝑥
			,
		

	

						by Proposition 22, there is 
	
		

			𝑡
		

		

			2
		

		
			∈
			𝐹
		

	
 such that
							
	
 		
			(
			1
			9
			)
		
 	

	
		

			𝑡
		

		

			2
		

		

			⊙
		

		

			
		

		

			𝑠
		

		

			1
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			1
		

		

			
		

		

			≤
		

		

			
		

		

			𝑎
		

		

			𝑛
		

		

			2
		

		

			⊙
		

		

			
		

		

			𝑠
		

		

			3
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			3
		

		

			
		

		
			⊙
			⋯
			⊙
		

		

			
		

		

			𝑠
		

		

			𝑚
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			𝑚
		

		
			
			
		

		
			⟶
			𝑥
			,
		

	

						and so
							
	
 		
			(
			2
			0
			)
		
 	

	
		

			
		

		

			𝑡
		

		

			2
		

		
			⊙
			𝑠
		

		

			1
		

		

			
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			1
		

		
			+
			𝑛
		

		

			2
		

		

			⊙
		

		

			
		

		

			𝑠
		

		

			3
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			3
		

		

			
		

		
			⊙
			⋯
			⊙
		

		

			
		

		

			𝑠
		

		

			𝑚
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			𝑚
		

		

			
		

		
			≤
			𝑥
			.
		

	

						Repeating the above steps, there are 
	
		

			𝑡
		

		

			2
		

		
			,
			…
			,
			𝑡
		

		

			𝑚
		

		
			∈
			𝐹
		

	
 such that
							
	
 		
			(
			2
			1
			)
		
 	

	
		

			
		

		

			𝑡
		

		

			𝑚
		

		
			⊙
			⋯
			⊙
			𝑡
		

		

			2
		

		
			⊙
			𝑠
		

		

			1
		

		

			
		

		
			⊙
			𝑎
		

		

			𝑛
		

		

			1
		

		
			+
			⋯
			+
			𝑛
		

		

			𝑚
		

		
			≤
			𝑥
			.
		

	

						Let 
	
		
			𝑠
			=
			𝑡
		

		

			𝑚
		

		
			+
			⋯
			+
			𝑡
		

		

			2
		

		
			+
			𝑠
		

		

			1
		

		
			∈
			𝐹
		

	
 and 
	
		
			𝑛
			=
			𝑛
		

		

			1
		

		
			+
			⋯
			+
			𝑛
		

		

			𝑚
		

	
, we have 
	
		
			𝑠
			⊙
			𝑎
		

		

			𝑛
		

		
			≤
			𝑥
		

	
. That is that the first equality holds.
By the first equality and Proposition 22, we can obtain the second equation.
Corollary 24.  If 
	
		

			𝐹
		

	
 is a normal filter of a pseudo-weak- 
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
 and 
	
		
			𝑎
			∈
			𝐴
		

	
, then 
	
 		
			(
			2
			2
			)
		
 	

	
		

			[
		

		
			𝐹
			∪
		

		

			{
		

		

			𝑎
		

		
			}
			)
		

		

			=
		

		

			
		

		
			𝑥
			∈
			𝐴
			∣
			𝑡
			ℎ
			𝑒
			𝑟
			𝑒
			𝑖
			𝑠
			𝑛
			≥
			0
			,
			𝑠
			𝑢
			𝑐
			ℎ
			𝑡
			ℎ
			𝑎
			𝑡
			𝑎
		

		

			𝑛
		

		
			−
			→
			𝑥
			∈
			𝐹
		

		

			
		

		

			=
		

		

			
		

		
			𝑥
			∈
			𝐴
			∣
			𝑡
			ℎ
			𝑒
			𝑟
			𝑒
			𝑖
			𝑠
			𝑛
			≥
			0
			,
			𝑠
			𝑢
			𝑐
			ℎ
			𝑡
			ℎ
			𝑎
			𝑡
			𝑎
		

		

			𝑛
		

		
			⇝
			𝑥
			∈
			𝐹
		

		

			
		

		

			.
		

	

Proof. By Theorem 23,
							
	
 		
			(
			2
			3
			)
		
 	

	
		

			[
		

		
			𝐹
			∪
		

		

			{
		

		

			𝑎
		

		
			}
			)
		

		

			=
		

		

			{
		

		
			𝑥
			∈
			𝐴
			∣
		

		
			t
			h
			e
			r
			e
			a
			r
			e
		

		
			𝑠
			∈
			𝐹
			,
			𝑛
			≥
			0
			,
		

		
			s
			u
			c
			h
			t
			h
			a
			t
		

		
			𝑠
			⊙
			𝑎
		

		

			𝑛
		

		
			≤
			𝑥
		

		

			}
		

		

			.
		

	
Since there is 
	
		
			𝑠
			∈
			𝐹
		

	
 such that 
	
		
			𝑠
			⊙
			𝑎
		

		

			𝑛
		

		
			≤
			𝑥
		

	
, if and only if there is 
	
		
			𝑠
			∈
			𝐹
		

	
 such that 
	
		
			𝑠
			≤
		

		

			𝑛
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		
			𝑎
			→
			(
			⋯
			→
			(
			𝑎
			→
			𝑥
			)
			⋯
			)
		

	
; that is, there is 
	
		
			𝑠
			∈
			𝐹
		

	
 such that 
	
		
			𝑠
			≤
			𝑎
		

		

			𝑛
		

		
			−
			→
			𝑥
		

	
, if and only if 
	
		

			𝑎
		

		

			𝑛
		

		
			−
			→
			𝑥
			∈
			𝐹
		

	
. Thus, we prove the first equality.Similarly, by
							
	
 		
			(
			2
			4
			)
		
 	

	
		

			[
		

		
			𝐹
			∪
		

		

			{
		

		

			𝑎
		

		
			}
			)
		

		

			=
		

		

			{
		

		
			𝑥
			∈
			𝐴
			∣
		

		
			t
			h
			e
			r
			e
			a
			r
			e
		

		
			𝑠
			∈
			𝐹
			,
			𝑛
			≥
			0
			,
		

		
			s
			u
			c
			h
			t
			h
			a
			t
		

		

			𝑎
		

		

			𝑛
		

		
			⊙
			𝑠
			≤
			𝑥
		

		

			}
		

		

			.
		

	

						Since there is 
	
		
			𝑠
			∈
			𝐹
		

	
 such that 
	
		

			𝑎
		

		

			𝑛
		

		
			⊙
			𝑠
			≤
			𝑥
		

	
, if and only if there is 
	
		
			𝑠
			∈
			𝐹
		

	
 such that 
	
		
			𝑠
			≤
		

		

			𝑛
		

		
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
			
		

		
			𝑎
			⇝
			(
			⋯
			⇝
			(
			𝑎
			⇝
			𝑥
			)
			⋯
			)
		

	
; that is, there is 
	
		
			𝑠
			∈
			𝐹
		

	
 such that 
	
		
			𝑠
			≤
			𝑎
		

		

			𝑛
		

		
			⇝
			𝑥
		

	
, if and only if 
	
		

			𝑎
		

		

			𝑛
		

		
			⇝
			𝑥
			∈
			𝐹
		

	
, Thus, we have the second equality.
Corollary 25.  If 
	
		

			𝐹
		

	
 is a normal filter of a pseudo-weak- 
	
		

			𝑅
		

		

			0
		

	
 algebra 
	
		

			𝐴
		

	
 and 
	
		
			𝑎
			∈
			𝐴
		

	
, then 
	
 		
			(
			2
			5
			)
		
 	

	
		

			[
		

		
			𝐹
			∪
		

		

			{
		

		

			𝑎
		

		
			}
			)
		

		

			=
		

		

			{
		

		
			𝑥
			∈
			𝐴
			∣
			𝑡
			ℎ
			𝑒
			𝑟
			𝑒
			𝑖
			𝑠
			𝑛
			≥
			0
			,
			𝑠
			𝑢
			𝑐
			ℎ
			𝑡
			ℎ
			𝑎
			𝑡
			𝑎
		

		

			𝑛
		

		
			⟶
			𝑥
			∈
			𝐹
		

		

			}
		

		

			=
		

		

			{
		

		
			𝑥
			∈
			𝐴
			∣
			𝑡
			ℎ
			𝑒
			𝑟
			𝑒
			𝑖
			𝑠
			𝑛
			≥
			0
			,
			𝑠
			𝑢
			𝑐
			ℎ
			𝑡
			ℎ
			𝑎
			𝑡
			𝑎
		

		

			𝑛
		

		
			⇝
			𝑥
			∈
			𝐹
		

		

			}
		

		

			.
		

	

Proof. There is 
	
		
			𝑠
			∈
			𝐹
		

	
 such that 
	
		
			𝑠
			⊙
			𝑎
		

		

			𝑛
		

		
			≤
			𝑥
		

	
, if and only if there is 
	
		
			𝑠
			∈
			𝐹
		

	
 such that 
	
		
			𝑠
			≤
			𝑎
		

		

			𝑛
		

		
			→
			𝑥
		

	
, if and only if 
	
		

			𝑎
		

		

			𝑛
		

		
			→
			𝑥
			∈
			𝐹
		

	
. There is 
	
		
			𝑠
			∈
			𝐹
		

	
 such that 
	
		

			𝑎
		

		

			𝑛
		

		
			⊙
			𝑠
			≤
			𝑥
		

	
, if and only if there is 
	
		
			𝑠
			∈
			𝐹
		

	
 such that 
	
		
			𝑠
			≤
			𝑎
		

		

			𝑛
		

		
			⇝
			𝑥
		

	
, if and only if 
	
		

			𝑎
		

		

			𝑛
		

		
			⇝
			𝑥
			∈
			𝐹
		

	
. By Theorem 23, Corollary 25 holds.
5. Conclusions
We obtained the most simplified axiom systems of pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras and pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebras and proved the mutually independence of axioms. We introduced the notions of filters and normal filters in pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras and gave the structures and properties of the generated filters and generated normal filters in pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras. These will be conducive to further study pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras (pseudo-IMTL algebras) and pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebras (pseudo-NM algebras). In the future, we will investigate relations between various kinds of filters of pseudo-logic algebras. We may also study fuzzy type of filters of pseudo-weak-
	
		

			𝑅
		

		

			0
		

	
 algebras and pseudo-
	
		

			𝑅
		

		

			0
		

	
 algebras.
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