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We investigate the positive solutions of the semilinear parabolic systemwith coupled nonlinear nonlocal sources subject toweighted
nonlocal Dirichlet boundary conditions. The blow-up and global existence criteria are obtained.

1. Introduction

In this paper, we consider the positive solutions of the
semilinear parabolic systemwith coupled nonlinear nonlocal
sources subject to weighted nonlocal Dirichlet boundary
conditions:

𝑢
𝑖𝑡
= Δ𝑢
𝑖
+ ∫

Ω

𝑢
𝑞𝑖

𝑖
𝑢
𝑝𝑖

𝑖+1
(𝑥, 𝑡) d𝑥,

𝑖 = 1, 2, . . . , 𝑘, 𝑢
𝑘+1

= 𝑢
1
, 𝑥 ∈ Ω, 𝑡 > 0,

𝑢
𝑖 (
𝑥, 𝑡) = ∫

Ω

𝜑
𝑖
(𝑥, 𝑦) 𝑢

𝑖
(𝑦, 𝑡) d𝑦,

𝑖 = 1, 2, . . . , 𝑘, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢
𝑖 (
𝑥, 0) = 𝑢𝑖,0 (

𝑥) , 𝑖 = 1, 2, . . . , 𝑘, 𝑥 ∈ Ω,

(1)

where Ω is a bounded domain in R𝑁, 𝑁 ≥ 1, with smooth
boundary 𝜕Ω. The exponents 𝑝

𝑖
> 0, 𝑞

𝑖
≥ 0. The weighted

functions 𝜑
𝑖
in the boundary conditions are continuous,

nonnegative on 𝜕Ω × Ω and ∫
Ω
𝜑
𝑖
(𝑥, 𝑦)d𝑦 > 0 on 𝜕Ω. The

initial data 𝑢
𝑖0
(𝑥) ∈ 𝐶

2+]
(Ω) with 0 < ] < 1, 𝑢

𝑖0
(𝑥) ≥ 0, ̸≡ 0,

and satisfy the compatibility conditions.
Many physical phenomenawere formulated into nonlocal

mathematical models and studied by many authors [1–13].
For example, in [1], Bebernes and Bressan studied an ignition
model for a compressible reactive gas which is a nonlocal

reaction-diffusion equation. Furthermore, Bebernes et al. [14]
considered a more general model:

𝑢
𝑡
− Δ𝑢 = 𝑓 (𝑢) + 𝑔 (𝑡) , 𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢0 (
𝑥) , 𝑥 ∈ Ω,

𝑢 (𝑥, 𝑡) = 0, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

(2)

where 𝑢
0
(𝑥) ≥ 0, 𝑔(𝑡) > 0 or 𝑔(𝑡) = (𝑘/|Ω|) ∫

Ω
𝑢
𝑡
(𝑥, 𝑡)d𝑥

with 𝑘 > 0. Chadam et al. [15] studied another form
of (2) with 𝑓(𝑢) = 0 and 𝑔(𝑡) = ∫

Ω
𝜓(𝑢(𝑥, 𝑡))d𝑥 and

proved that the blow-up set is the whole region (including
the homogeneous Neumann boundary conditions). Souplet
[16, 17] considered (2) with the general function 𝑔(𝑡). Pao [18]
discussed a nonlocal reaction-diffusion equation arising from
the combustion theory.

The problems with both nonlocal sources and nonlocal
boundary conditions have been studied as well. To motivate
our study, we give a short review of examples of such
parabolic equations or systems studied in the literature. For
example, Lin and Liu [19] studied the following problem:

𝑢
𝑡
− Δ𝑢 = ∫

Ω

𝑓 (𝑢 (𝑦, 𝑡)) d𝑦, 𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 𝑡) = ∫

Ω

𝜑 (𝑥, 𝑦) 𝑢 (𝑦, 𝑡) d𝑦, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢0 (
𝑥) , 𝑥 ∈ Ω;

(3)
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they established local existence, global existence, and nonex-
istence of solutions and discussed the blow-up properties of
solutions.

Gladkov and Kim [20] considered the problem of the
form

𝑢
𝑡
= Δ𝑢 + 𝑐 (𝑥, 𝑡) 𝑢

𝑝
, 𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 𝑡) = ∫

Ω

𝜑 (𝑥, 𝑦) 𝑢
𝑙
(𝑦, 𝑡) d𝑦, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢0 (
𝑥) , 𝑥 ∈ Ω,

(4)

with 𝑝, 𝑙 > 0. And some criteria for the existence of global
solution as well as for the solution to blow up in finite time
were obtained.

In [21], Kong and Wang studied system (1) when 𝑘 = 2:

𝑢
𝑡
= Δ𝑢 + ∫

Ω

𝑢
𝑚
(𝑥, 𝑡) V𝑛 (𝑥, 𝑡) d𝑥, 𝑥 ∈ Ω, 𝑡 > 0,

V
𝑡
= ΔV + ∫

Ω

𝑢
𝑝
(𝑥, 𝑡) V𝑞 (𝑥, 𝑡) d𝑥, 𝑥 ∈ Ω, 𝑡 > 0,

𝑢 (𝑥, 𝑡) = ∫

Ω

𝜑 (𝑥, 𝑦) 𝑢 (𝑦, 𝑡) d𝑦,

V (𝑥, 𝑡) = ∫
Ω

𝜓 (𝑥, 𝑦) V (𝑦, 𝑡) d𝑦,

𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢 (𝑥, 0) = 𝑢0 (
𝑥) , V (𝑥, 0) = V

0 (
𝑥) , 𝑥 ∈ Ω;

(5)

they obtained the following results, and we extend them as
follows.

(i) Assume that 𝑚, 𝑞 < 1 and 𝑛𝑝 ≤ (1 − 𝑚)(1 − 𝑞) hold;
then the solution of (5) exists globally.

(ii) If one of the following conditions holds:

(a) 𝑚 > 1,

(b) 𝑞 > 1,

(c) 𝑛𝑝 > (1 − 𝑚) (1 − 𝑞) ,

(6)

then the solution of (5) blows up in a finite time for
the sufficiently large initial data.

(iii) Assume that ∫
Ω
𝜑(𝑥, 𝑦)d𝑦 ≥ 1 and ∫

Ω
𝜓(𝑥, 𝑦)d𝑦 ≥

1 for all 𝑥 ∈ 𝜕Ω and one of (6) holds; then the
solution of problem (5) blows up in a finite time for
any positive initial data.

Recently, Zheng and Kong [22] also studied the following
problem:

𝑢
𝑡
− Δ𝑢 = 𝑢

𝑚
(𝑥, 𝑡) ∫

Ω

V𝑛 (𝑥, 𝑡) d𝑥, 𝑥 ∈ Ω, 𝑡 > 0,

V
𝑡
− ΔV = V𝑞 (𝑥, 𝑡) ∫

Ω

𝑢
𝑝
(𝑥, 𝑡) d𝑥, 𝑥 ∈ Ω, 𝑡 > 0,

(7)

with the same initial and boundary conditions as (5), and
they established similar conditions for global and nonglobal
solutions and also blow-up solutions.

The main purpose of this paper is to get the blow-up
criterion of problem (1) for any positive integer 𝑘.

In the following, we set 𝑄
𝑇
= Ω × (0, 𝑇), and 𝑆

𝑇
= 𝜕Ω ×

(0, 𝑇) with 0 < 𝑇 < ∞ for convenience.
It is knownby the standard theory [16, 23] that there exists

a local positive solution to (1). Moreover, by the comparison
principle (see Lemma 10 in the next section), the uniqueness
of solutions holds if 𝑝

𝑖
, 𝑞
𝑖
≥ 1, 𝑖 = 1, 2, . . . , 𝑘.

Theorem 1. Problem (1) has a positive classical solution
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
) ∈ [𝐶

2+�̂�,1+�̂�/2
(𝑄
𝑇
) ∩ 𝐶(𝑄

𝑇
)]
𝑘 for some �̂� : 0 <

�̂� < 1. Moreover, if 𝑇 < ∞, then

lim
𝑡→𝑇

(




𝑢
1 (
⋅, 𝑡)



∞
+ ⋅ ⋅ ⋅ +





𝑢
𝑘
(⋅, 𝑡)




∞
) = ∞. (8)

Theorem 2. If exponents 𝑝
𝑖
, 𝑞
𝑖
, 𝑖 = 1, 2, . . . , 𝑘 satisfy

𝑞
𝑖
< 1, 𝑖 = 1, 2, . . . , 𝑘,

𝑝
1
𝑝
2
⋅ ⋅ ⋅ 𝑝
𝑘
≤ (1 − 𝑞

1
) (1 − 𝑞

2
) ⋅ ⋅ ⋅ (1 − 𝑞

𝑘
) ,

(9)

the solution (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
) of (1) exists globally for any

nontrivial nonnegative initial data.

Theorem 3. If exponents 𝑝
𝑖
, 𝑞
𝑖
, 𝑖 = 1, 2, . . . , 𝑘 satisfy one of the

following:

(a) 𝑞𝑟 > 1, 𝑟 ∈ {1, 2, . . . , 𝑘} ,

(b) 𝑝1𝑝2 ⋅ ⋅ ⋅ 𝑝𝑘 > (1 − 𝑞1) (1 − 𝑞2) ⋅ ⋅ ⋅ (1 − 𝑞𝑘)
(10)

and if ∫
Ω
𝜑
𝑖
(𝑥, 𝑦)d𝑦 < 1, 𝑖 = 1, 2, . . . , 𝑘, for all 𝑥 ∈ 𝜕Ω, then

the solution of (1) exists globally for small nonnegative initial
data.

Theorem 4. If exponents 𝑝
𝑖
, 𝑞
𝑖
, 𝑖 = 1, 2, . . . , 𝑘 satisfy one of

the following:

(a) 𝑞𝑟 > 1, 𝑟 ∈ {1, 2, . . . , 𝑘} ,

(b) 𝑝1𝑝2 ⋅ ⋅ ⋅ 𝑝𝑘 > (1 − 𝑞1) (1 − 𝑞2) ⋅ ⋅ ⋅ (1 − 𝑞𝑘) ,
(11)

then the solution of (1) blows up in finite time for large initial
data.

If the initial data 𝑢
𝑖,0
(𝑥) satisfies

(𝐻) Δ𝑢𝑖,0
+ ∫

Ω

𝑢
𝑞𝑖

𝑖,0
𝑢
𝑞𝑖

𝑖,0+1
≥ 0, 𝑖 = 1, 2, . . . , 𝑘, (12)

we have another blow-up result.

Theorem 5. Assume that

𝑞
𝑟
> 1, ∫

Ω

𝜑
𝑟
(𝑥, 𝑦) d𝑦 ≥ 1, 𝑟 ∈ {1, 2, . . . , 𝑘} (13)

and the condition (H) holds. Then the solution of (1) blows up
in finite time for any positive initial data.
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This paper is organized as follows. Section 2 is devoted
to some comparison principles. In Section 3, we prove two
global existence results.The blow-up results are proved in the
final section.

2. Comparison Principle

Before proving the main results, we give the maximum and
comparison principles related to the problem. First, we give
the following definition of the upper and lower solutions.

Definition 6. A pair of functions (𝑢
1
(𝑥, 𝑡), . . . , 𝑢

𝑘
(𝑥, 𝑡))

is called an upper solution of (1), if, for every 𝑖 =

1, 2, . . . , 𝑘, 𝑢
𝑖
(𝑥, 𝑡) ∈ 𝐶

2,1
(𝑄
𝑇
) ∩ 𝐶(𝑄

𝑇
) and satisfies

𝑢
𝑖𝑡
≥ Δ𝑢
𝑖
+ ∫

Ω

𝑢
𝑞𝑖

𝑖
𝑢
𝑝𝑖

𝑖+1
(𝑥, 𝑡) d𝑥, 𝑢

𝑘+1
= 𝑢
1
,

𝑥 ∈ Ω, 𝑡 > 0,

𝑢
𝑖 (
𝑥, 𝑡) ≥ ∫

Ω

𝜑
𝑖
(𝑥, 𝑦) 𝑢

𝑖
(𝑦, 𝑡) d𝑦, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑢
𝑖 (
𝑥, 0) ≥ 𝑢𝑖,0 (

𝑥) , 𝑥 ∈ Ω.

(14)

Similarly, a lower solution of (1) is defined by the opposite
inequalities.

Lemma 7. Suppose that 𝑎
𝑖𝑗
, 𝑏
𝑖
, 𝑓
𝑖
∈ 𝐶(𝑄

𝑇
) and 𝑓

𝑖
≥ 0, 𝑐

𝑖
,

𝑑
𝑖
≥ 0 in 𝑄

𝑇
, 𝑔
𝑖
(𝑥, 𝑦) ≥ 0 on 𝜕Ω × Ω, ∫

Ω
𝑔
𝑖
(𝑥, 𝑦)d𝑦 > 0 on

𝜕Ω, 𝑖 = 1, 2, . . . , 𝑘, 𝑗 = 1, 2, . . . , 𝑁. If, for every 𝑖 = 1, 2, . . . , 𝑘,
𝑤
𝑖
∈ 𝐶
2,1
(𝑄
𝑇
) ∩ 𝐶(𝑄

𝑇
) and satisfies

𝑤
𝑖𝑡
− Δ𝑤
𝑖
≥

𝑁

∑

𝑗=1

𝑎
𝑖𝑗

𝜕𝑤
𝑖

𝜕𝑥
𝑗

+ 𝑏
𝑖
𝑤
𝑖

+ 𝑓
𝑖 (
𝑥, 𝑡) ∫

Ω

(𝑐
𝑖
𝑤
𝑖
+ 𝑑
𝑖
𝑤
𝑖+1
) d𝑥, (𝑥, 𝑡) ∈ 𝑄𝑇

,

𝑤
𝑖 (
𝑥, 𝑡) ≥ ∫

Ω

𝑔
𝑖
(𝑥, 𝑦)𝑤

𝑖
(𝑦, 𝑡) d𝑦, (𝑥, 𝑡) ∈ 𝑆𝑇

,

𝑤
𝑖 (
𝑥, 0) > 0, 𝑥 ∈ Ω,

(15)

where 𝑤
𝑘+1

= 𝑤
1
, then 𝑤

𝑖
(𝑥, 𝑡) > 0, 𝑖 = 1, 2, on 𝑄

𝑇
.

Proof. Set 𝑏
𝑖
= sup

𝑄𝑇
|𝑏
𝑖
|, 𝑧
𝑖
= 𝑒
−𝐾𝑡
𝑤
𝑖
with 𝐾 > max{𝑏

𝑖
, 𝑖 =

1, 2, . . . , 𝑘}. Then

𝑧
𝑖𝑡
− Δ𝑧
𝑖
+ (𝐾 − 𝑏

𝑖
) 𝑧
𝑖

≥

𝑁

∑

𝑗=1

𝑎
𝑖𝑗

𝜕𝑧
𝑖

𝜕𝑥
𝑗

+ 𝑓
𝑖 (
𝑥, 𝑡) ∫

Ω

(𝑐
𝑖
𝑧
𝑖
+ 𝑑
𝑖
𝑧
𝑖+1
) d𝑥, (𝑥, 𝑡) ∈ 𝑄𝑇

,

𝑧
𝑖 (
𝑥, 𝑡) ≥ ∫

Ω

𝑔
𝑖
(𝑥, 𝑦) 𝑧

𝑖
(𝑦, 𝑡) d𝑦, (𝑥, 𝑡) ∈ 𝑆𝑇

,

𝑧
𝑖 (
𝑥, 0) > 0, 𝑥 ∈ Ω.

(16)

Since 𝑧
𝑖
(𝑥, 0) > 0, 𝑖 = 1, 2, . . ., there exists 𝛿 > 0 such that 𝑧

𝑖
>

0 for (𝑥, 𝑡) ∈ Ω × (0, 𝛿). Suppose for a contradiction that 𝑡 =
sup{𝑡 ∈ (0, 𝑇) : 𝑧

𝑖
> 0 on Ω×[0, 𝑡), 𝑖 = 1, 2, . . . , 𝑘} < 𝑇.Then

𝑧
𝑖
≥ 0 on 𝑄

𝑡
, and at least one of 𝑧

𝑖
vanishes at (𝑥, 𝑡) for some

𝑥 ∈ Ω. Without loss of generality, suppose that 𝑧
1
(𝑥, 𝑡) = 0 =

inf
𝑄
𝑡

𝑧
1
. If (𝑥, 𝑡) ∈ 𝑄

𝑡
; by virtue of the first inequality of (16),

we find that

𝑧
1𝑡
− Δ𝑧
1
+ (𝐾 − 𝑏

1
) 𝑧
1
−

𝑁

∑

𝑗=1

𝑎
𝑖𝑗

𝜕𝑧
𝑖

𝜕𝑥
𝑗

≥ 0, (𝑥, 𝑡) ∈ 𝑄
𝑡
. (17)

This leads to the conclusion that 𝑧
1
≡ 0 in 𝑄

𝑡
by the strong

maximum principle, a contradiction. If (𝑥, 𝑡) ∈ 𝑆
𝑡
, this results

in a contradiction too, that

0 = 𝑧
1
(𝑥, 𝑡) = ∫

Ω

𝑔
1
(𝑥, 𝑦) 𝑧

1
(𝑦, 𝑡) d𝑦 > 0 (18)

due to ∫
Ω
𝑔
1
(𝑥, 𝑦)d𝑦 > 0 on 𝜕Ω. This proves that 𝑧

1
> 0 and

consequently 𝑤
1
> 0. We complete the proof.

Lemma 8. Suppose that, for every 𝑖 = 1, 2, . . . , 𝑘, 𝑤
𝑖
∈

𝐶
2,1
(𝑄
𝑇
) ∩ 𝐶(𝑄

𝑇
) and satisfies

𝑤
𝑖𝑡
−Δ𝑤
𝑖
≥∫

Ω

(𝑎
𝑖 (
𝑥, 𝑡) 𝑤𝑖

+𝑏
𝑖 (
𝑥, 𝑡) 𝑤𝑖+1

) d𝑥, (𝑥, 𝑡) ∈ 𝑄𝑇
,

𝑤
𝑖 (
𝑥, 𝑡) ≥ ∫

Ω

𝑔
𝑖
(𝑥, 𝑦)𝑤

𝑖
(𝑦, 𝑡) d𝑦, (𝑥, 𝑡) ∈ 𝑆𝑇

,

𝑤
𝑖 (
𝑥, 0) ≥ 0, 𝑥 ∈ Ω,

(19)

where 𝑤
𝑘+1

= 𝑤
1
and 𝑎

𝑖
(𝑥, 𝑡), 𝑏

𝑖
(𝑥, 𝑡) are continuous, non-

negative functions in 𝑄
𝑇
, 𝑔
𝑖
(𝑥, 𝑦) ≥ 0 on 𝜕Ω × Ω such that

∫
Ω
𝑔
𝑖
(𝑥, 𝑦)d𝑦 < 1 on 𝜕Ω, and there exist positive constants 𝐶

𝑖

such that ∫
Ω
(𝑎
𝑖
(𝑥, 𝑡) + 𝑏

𝑖
(𝑥, 𝑡))d𝑥 ≤ 𝐶

𝑖
. Then 𝑤

𝑖
(𝑥, 𝑡) ≥ 0, 𝑖 =

1, 2, on 𝑄
𝑇
.

Proof. Suppose that the strict inequalities of (19) hold; by
Lemma 7, we have 𝑤

𝑖
(𝑥, 𝑡) > 0. Now we consider the general

case. Set

V
𝑖
= 𝑤
𝑖
+ 𝜀𝑒
𝐾𝑡
, (20)

where 𝜀 is any fixed positive constant, and 𝐾 = 1 +

max{∫
Ω
(𝑎
𝑖
(𝑥, 𝑡) + 𝑏

𝑖
(𝑥, 𝑡)) d𝑥, 𝑖 = 1, 2, . . . , 𝑘}. By (19), we get,

for 𝑖 = 1, 2, . . . , 𝑘,

V
𝑖𝑡
− ΔV
𝑖
− ∫

Ω

(𝑎
𝑖 (
𝑥, 𝑡) V𝑖 + 𝑏𝑖 (𝑥, 𝑡) V𝑖+1) d𝑥

≥ 𝜀𝑒
𝐾𝑡
(𝐾 − ∫

Ω

(𝑎
𝑖 (
𝑥, 𝑡) + 𝑏𝑖 (

𝑥, 𝑡)) d𝑥) > 0,

(𝑥, 𝑡) ∈ 𝑄𝑇
,

V
𝑖 (
𝑥, 𝑡) − ∫

Ω

𝑔
𝑖
(𝑥, 𝑦) V

𝑖
(𝑦, 𝑡) d𝑦

≥ 𝜀𝑒
𝐾𝑡
(1 − ∫

Ω

𝑔
𝑖
(𝑥, 𝑦) d𝑦) > 0, (𝑥, 𝑡) ∈ 𝑆𝑇

,

V
𝑖 (
𝑥, 0) ≥ 𝜀𝑒

𝐾𝑡
> 0, 𝑥 ∈ Ω,

(21)
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Therefore, we have V
𝑖
(𝑥, 𝑡) ≥ 0 on𝑄

𝑇
. Letting 𝜀 → 0

+, we get
the desired result.

If the boundary condition ∫
Ω
𝑔
𝑖
(𝑥, 𝑦)d𝑦 < 1 is not

necessarily valid, we have the following result. The argument
of its proof can be referred to [22, Lemma 2.2].

Lemma 9. Suppose that 𝑎
𝑖𝑗
, 𝑏
𝑖
, 𝑓
𝑖
∈ 𝐶(𝑄

𝑇
), 𝑓
𝑖
≥ 0, 𝑐

𝑖
, 𝑑
𝑖
, are

nonnegative and bounded in 𝑄
𝑇
, 𝑔
𝑖
(𝑥, 𝑦) ≥ 0 on 𝜕Ω × Ω,

∫
Ω
𝑔
𝑖
(𝑥, 𝑦)d𝑦 > 0 on 𝜕Ω, 𝑖 = 1, 2, . . . , 𝑘, 𝑗 = 1, 2, . . . , 𝑁. If,

for every 𝑖 = 1, 2, . . . , 𝑘, 𝑤
𝑖
∈ 𝐶
2,1
(𝑄
𝑇
) ∩ 𝐶(𝑄

𝑇
) and satisfies

𝑤
𝑖𝑡
− Δ𝑤
𝑖
≥

𝑁

∑

𝑗=1

𝑎
𝑖𝑗

𝜕𝑤
𝑖

𝜕𝑥
𝑗

+ 𝑏
𝑖
𝑤
𝑖

+ 𝑓
𝑖 (
𝑥, 𝑡) ∫

Ω

(𝑐
𝑖
𝑤
𝑖
+ 𝑑
𝑖
𝑤
𝑖+1
) d𝑥, (𝑥, 𝑡) ∈ 𝑄𝑇

,

𝑤
𝑖 (
𝑥, 𝑡) ≥ ∫

Ω

𝑔
𝑖
(𝑥, 𝑦)𝑤

𝑖
(𝑦, 𝑡) d𝑦, (𝑥, 𝑡) ∈ 𝑆𝑇

,

𝑤
𝑖 (
𝑥, 0) ≥ 0, 𝑥 ∈ Ω,

(22)

where 𝑤
𝑘+1

= 𝑤
1
, then 𝑤

𝑖
(𝑥, 𝑡) ≥ 0, 𝑖 = 1, 2, on 𝑄

𝑇
.

By Lemma 9, we can easily get the following result.

Lemma 10. Let (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
) and (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑘
) be

nonnegative upper and lower solution of system (1) on 𝑄
𝑡
,

respectively. If one assumes that, for some 𝑟 ∈ {1, 2, . . . , 𝑘},

(i) 𝑢
𝑟+1
> 𝛿 or 𝑢

𝑟+1
> 𝛿 when 𝑝

𝑟
< 1,

(ii) 𝑢
𝑟
> 𝛿 or 𝑢

𝑟
> 𝛿 when 𝑞

𝑟
< 1,

then (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
) ≥ (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑘
) on 𝑄

𝑇
.

3. Global Existence Results

Before proving Theorem 2, we give a global existence result
for a scalar equation.

Lemma 11. Let 𝑤
0
(𝑥) and 𝜑(𝑥, 𝑦) be continuous, nonnegative

functions onΩ and 𝜕Ω×Ω, respectively, and let the nonnegative
constants 𝜃

𝑖𝑗
satisfy 0 < 𝜃

𝑖1
+ 𝜃
𝑖2
≤ 1. Then the solutions of the

nonlocal problem

𝑤
𝑡
− Δ𝑤 =

𝑘

∑

𝑖=1

𝑤
𝜃𝑖1
(𝑥, 𝑡) ∫

Ω

𝑤
𝜃𝑖2
(𝑥, 𝑡) d𝑥, 𝑥 ∈ Ω, 𝑡 > 0,

𝑤 (𝑥, 𝑡) = ∫

Ω

𝜑 (𝑥, 𝑦)𝑤 (𝑦, 𝑡) d𝑦, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑤 (𝑥, 0) = 𝑤0 (
𝑥) , 𝑥 ∈ Ω

(23)

exist globally.

Proof. The augment is similar to the proof of [22, Lemma 3.1]
or [21, Lemma 6]. For the reader’s convenience, we complete

it. It is easy to prove that there exists a positive function 𝜓 ∈
𝐶
2
(Ω) such that

min
Ω

𝜓 (𝑥) > max
Ω

𝑤
2

0
(𝑥) ,

𝜓 (𝑥) ≥ ∫

Ω

𝜑
2
(𝑥, 𝑦) d𝑦∫

Ω

𝜓 (𝑦) d𝑦,

𝑥 ∈ 𝜕Ω.

(24)

Let 𝜃 > 0 be large enough such that

2𝜃min
Ω

𝜓 (𝑥)

≥ (2𝑘 + 1)max{max
Ω





Δ𝜓 (𝑥)





,

|Ω| [max
Ω

𝜓 (𝑥)]

(𝜃𝑖1+𝜃𝑖2+1)/2

(𝑖 = 1, 2, . . . , 𝑘) |Ω| } .

(25)

Setting 𝑧(𝑥, 𝑡) = 𝑒2𝜃𝑡𝜓(𝑥) for (𝑥, 𝑡) ∈ Ω × (0,∞), one readily
checks that

𝑧
𝑡
− Δ𝑧 ≥ 2

𝑘

∑

𝑖=1

𝑧
(𝜃𝑖1+1)/2

(𝑥, 𝑡) ∫

Ω

𝑧
𝜃𝑖2/2

(𝑥, 𝑡) d𝑥,

𝑥 ∈ Ω, 𝑡 > 0,

𝑧 (𝑥, 𝑡) ≥ ∫

Ω

𝜑
2
(𝑥, 𝑦) d𝑦∫

Ω

𝑧 (𝑦, 𝑡) d𝑦, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑧 (𝑥, 0) ≥ 𝑤
2

0
(𝑥) + 1, 𝑥 ∈ Ω,

(26)

Let 𝑤 = 𝑧1/2(𝑥, 𝑡); it follows that

𝑤
𝑡
− Δ𝑤 ≥

𝑘

∑

𝑖=1

𝑤
𝜃𝑖1
(𝑥, 𝑡) ∫

Ω

𝑤
𝜃𝑖2
(𝑥, 𝑡) d𝑥, 𝑥 ∈ Ω, 𝑡 > 0,

𝑤 (𝑥, 𝑡) ≥ ∫

Ω

𝜑
2
(𝑥, 𝑦) d𝑦∫

Ω

𝑤 (𝑦, 𝑡) d𝑦, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑤 (𝑥, 0) > 𝑤0 (
𝑥) , 𝑥 ∈ Ω.

(27)

This implies that𝑤 is a global upper solution of (23). Clearly,
0 is a lower solution of it. So we complete the proof.

Proof of Theorem 2. By (11), we know that there exists 𝑎
𝑖
∈

(0, 1), 𝑖 = 1, 2, . . . , 𝑘, such that

𝑝
𝑖

1 − 𝑞
𝑖

≤

𝑎
𝑖

𝑎
𝑖+1

, 𝑖 = 1, 2, . . . , 𝑘, 𝑎
𝑘+1

= 𝑎
1
. (28)
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Define 𝛼 = ∑
𝑘

𝑖=1
1/𝑎
𝑖
. Let Φ(𝑥, 𝑦) ≥ max{𝜑

𝑖
(𝑥, 𝑦), 𝑖 =

1, 2, . . . , 𝑘} be a continuous function defined for (𝑥, 𝑦) ∈ 𝜕Ω×
Ω. Suppose that 𝑧 solves

𝑧
𝑡
− Δ𝑧 = 𝛼

𝑘

∑

𝑖=1

𝑧
1−𝑎𝑖

(𝑥, 𝑡) ∫

Ω

𝑧
𝑎𝑖
(𝑥, 𝑡) d𝑥, 𝑥 ∈ Ω, 𝑡 > 0,

𝑧 (𝑥, 𝑡) =

𝑘

∑

𝑖=1

𝑔
𝑖 (
𝑥) ∫

Ω

Φ(𝑥, 𝑦) 𝑧 (𝑦, 𝑡) d𝑦, 𝑥 ∈ 𝜕Ω, 𝑡 > 0,

𝑧 (𝑥, 0) = 1 +

𝑘

∑

𝑖=1

𝑢
1/𝑎𝑖

𝑖,0
(𝑥) , 𝑥 ∈ Ω,

(29)

where

𝑔
𝑖 (
𝑥) = (∫

Ω

Φ(𝑥, 𝑦) d𝑦)
(1−𝑎𝑖)/𝑎𝑖

. (30)

In view of Lemma 11, we know that 𝑧 is global. Moreover, 𝑧 >
1 in Ω × [0,∞) by the maximum principle. Set 𝑢

𝑖
= 𝑧
𝑎𝑖 , 𝑖 =

1, 2, . . . , 𝑘. By (28) and (29) and using Hölder’s inequality, we
get

𝑢
𝑖𝑡
− Δ𝑢
𝑖
− ∫

Ω

𝑢
𝑞𝑖

𝑖
𝑢
𝑝𝑖

𝑖+1
d𝑥

= 𝑎
𝑖
𝑧
𝑎𝑖−1
𝑧
𝑡
− 𝑎
𝑖
𝑧
𝑎𝑖−1
Δ𝑧 − 𝑎

𝑖
(𝑎
𝑖
− 1) |∇𝑧|

2

− ∫

Ω

𝑧
𝑎𝑖𝑞𝑖+𝑎𝑖+1𝑝𝑖d𝑥

≥ 𝑎
𝑖
𝑧
𝑎𝑖−1

(𝑧
𝑡
− Δ𝑧) − ∫

Ω

𝑧
𝑎𝑖d𝑥 ≥ (𝛼𝑎

𝑖
− 1)∫

Ω

𝑧
𝑎𝑖d𝑥

≥ 0, (𝑥, 𝑡) ∈ 𝑄𝑇
,

𝑢
𝑖
− ∫

Ω

𝜑
𝑖
(𝑥, 𝑦) 𝑢

𝑖
(𝑦, 𝑡) d𝑦

= 𝑧
𝑎𝑖
− ∫

Ω

𝜑
𝑖
(𝑥, 𝑦) 𝑧

𝑎𝑖
(𝑦, 𝑡) d𝑦

≥ (∫

Ω

𝜑
𝑖
(𝑥, 𝑦) d𝑦)

1−𝑎𝑖

(∫

Ω

𝜑
𝑖
(𝑥, 𝑦) 𝑧 (𝑦, 𝑡) d𝑦)

𝑎𝑖

− ∫

Ω

𝜑
𝑖
(𝑥, 𝑦) 𝑧

𝑎𝑖
(𝑦, 𝑡) d𝑦

≥ 0, (𝑥, 𝑡) ∈ 𝑆𝑇
,

𝑢
𝑖 (
𝑥, 0) ≥ 𝑢𝑖,0 (

𝑥) , 𝑥 ∈ Ω.

(31)

This means that (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑘
) is a global upper solution of

(1).

Proof of Theorem 3. Define

max{sup
𝜕Ω

∫

Ω

𝜑
𝑖
(𝑥, 𝑦) d𝑦, 𝑖 = 1, 2, . . . , 𝑘} = 𝛿

0
∈ (0, 1) .

(32)

Let 𝑤 be the unique solution of the elliptic problem

−Δ𝑤 = 1, 𝑥 ∈ Ω; 𝑤 = 𝐶
0
, 𝑥 ∈ 𝜕Ω. (33)

Then there exists a constant𝑀 > 0 such that 𝐶
0
≤ 𝑤(𝑥) ≤

𝐶
0
+𝑀 in Ω. We choose 𝐶

0
to be large enough such that

1 + 𝐶
0

1 + 𝐶
0
+𝑀

≥ 𝛿
0
. (34)

Set 𝑢
𝑖
(𝑥, 𝑡) = 𝑏

𝑖
(1 + 𝑤(𝑥)). When (𝑥, 𝑡) ∈ 𝑆

𝑇
, it follows that

𝑢
𝑖
− ∫

Ω

𝜑
𝑖
(𝑥, 𝑦) 𝑢

𝑖
(𝑦, 𝑡) d𝑦

= 𝑏
𝑖
(1 + 𝐶

0
) − 𝑏
𝑖
∫

Ω

𝜑
𝑖
(𝑥, 𝑦) (1 + 𝑤 (𝑦)) d𝑦

≥ 𝑏
𝑖
[1 + 𝐶

0
− (1 + 𝐶

0
+𝑀) 𝛿

0
]

≥ 0.

(35)

Now we investigate (𝑥, 𝑡) ∈ 𝑄
𝑇
. Set 𝐿

𝑖
= (1 + 𝐶

0
+𝑀)
𝑝𝑖+𝑞𝑖

|Ω|

for convenience. A simple computation yields

𝑢
𝑖𝑡
− Δ𝑢
𝑖
− ∫

Ω

𝑢
𝑞𝑖

𝑖
𝑢
𝑝𝑖

𝑖+1
d𝑥

= 𝑏
𝑖
− 𝑏
𝑞𝑖

𝑖
𝑏
𝑝𝑖

𝑖+1
∫

Ω

(1 + 𝑤 (𝑥))
𝑝𝑖+𝑞𝑖d𝑥

≥ 𝑏
𝑞𝑖

𝑖
(𝑏
1−𝑞𝑖

𝑖
− 𝑏
𝑝𝑖

𝑖+1
𝐿
𝑖
) .

(36)

(a) If 𝑞
𝑟
> 1, no matter 𝑞

𝑟+1
> 1 or 𝑞

𝑟+1
≤ 1, we can

choose 𝑏
𝑟
to be small enough such that 𝑏1−𝑞𝑟

𝑟
≥ 𝑏
𝑝𝑟

𝑟+1
𝐿
𝑟
. For

fixed 𝑏
𝑟
, there exist 𝑏

𝑖
, 𝑖 = 1, 2, . . . , 𝑟 − 1, 𝑟 + 1, . . . , 𝑘, satisfying

𝑏
1−𝑞𝑖

𝑖
≥ 𝑏
𝑝𝑖

𝑖+1
𝐿
𝑖
, 𝑖 = 1, 2, . . . , 𝑘. It follows that

𝑢
𝑖𝑡
− Δ𝑢
𝑖
− ∫

Ω

𝑢
𝑞𝑖

𝑖
𝑢
𝑝𝑖

𝑖+1
d𝑥 ≥ 0, 𝑖 = 1, 2, . . . , 𝑘. (37)

(b) If 𝑞
𝑖
≤ 1, 𝑖 = 1, 2, . . . , 𝑘 and 𝑝

1
𝑝
2
⋅ ⋅ ⋅ 𝑝
𝑘
> (1 − 𝑞

1
)(1 −

𝑞
2
) ⋅ ⋅ ⋅ (1−𝑞

𝑘
), we can choose 𝑏

1
to be small enough such that

𝑏
(1−𝑞1)(1−𝑞2)⋅⋅⋅(1−𝑞𝑘)

1

> 𝑏
𝑝1𝑝2⋅⋅⋅𝑝𝑘

1
𝐿
(1−𝑞2)⋅⋅⋅(1−𝑞𝑘)

1
𝐿
𝑝1(1−𝑞3)⋅⋅⋅(1−𝑞𝑘)

2

⋅ ⋅ ⋅ 𝐿
𝑝1𝑝2⋅⋅⋅𝑝𝑘−2(1−𝑞𝑘−1)

𝑘−1
𝐿
𝑝1𝑝2⋅⋅⋅𝑝𝑘−1

𝑘
.

(38)

Consequently, there exist 𝑏
𝑖
> 0, 𝑖 = 2, 3, . . . , 𝑘, 𝑏

𝑘+1
= 𝑏
1

satisfying 𝑏1−𝑞𝑖
𝑖

≥ 𝑏
𝑝𝑖

𝑖+1
𝐿
𝑖
, 𝑖 = 1, 2, . . . , 𝑘. Hence (37) holds too.

By (35) and (37), in any case (a) or (b), we know that the
solution of (1) must be global for small data 𝑢

𝑖,0
(𝑥) ≤ 𝑏

𝑖
(1 +

𝑤(𝑥)), 𝑖 = 1, 2, . . . , 𝑘 for 𝑥 ∈ Ω.

4. Blow-Up Results

In this section, we assume that (𝑢(𝑥, 𝑡), V(𝑥, 𝑡)) is a positive
solution of (1) onΩ×[0, 𝑇), where𝑇 is themaximal existence
time.
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Proof of Theorem 4. We denote by 𝜆
1
, 𝜙
1
(𝑥) the first eigen-

value and the corresponding eigenfunction of the linear
elliptic problem:

−Δ𝜑 (𝑥) = 𝜆𝜑 (𝑥) , 𝑥 ∈ Ω; 𝜑 (𝑥) = 0, 𝑥 ∈ 𝜕Ω,

(39)

and 𝜙
1
(𝑥) satisfies

𝜑
1 (
𝑥) > 0, 𝑥 ∈ Ω, max

Ω

𝜙
1
(𝑥) = 1. (40)

Define 𝛾 = min{𝛼
𝑖
(𝑞
𝑖
− 1) + 𝛼

𝑖+1
𝑝
𝑖
+ 1, 𝑖 = 1, 2, . . . , 𝑘}.

(a) If 𝑞
𝑟
≥ 1, we claim that there exist positive constants

𝛼
𝑖
> 1, 𝑖 = 1, 2, . . . , 𝑘, such that the inequality

𝛼
𝑖
(𝑞
𝑖
− 1) + 𝛼

𝑖+1
𝑝
𝑖
> 0 (41)

holds. First, when 𝑖 = 𝑟, (41) holds for any 𝛼
𝑟
, 𝛼
𝑟+1
> 1. When

𝑖 = 𝑟 + 1, if 𝑞
𝑟+1

≥ 1, (41) holds for any 𝛼
𝑟+2

> 1; if 𝑞
𝑟+1

≤ 1

we can choose 𝛼
𝑟+2
> max{1, 𝛼

𝑟+1
(1−𝑞
𝑟+1
)/𝑝
𝑟+1
}.That is, (41)

holds too.When 𝑖 = 𝑟−1, if 𝑞
𝑟−1
≥ 1, (41) holds for any 𝛼

𝑟−1
>

1; if 𝑞
𝑟−1
< 1, we can choose 1 < 𝛼

𝑟−1
< (𝛼
𝑖
𝑝
𝑟−1
/1−𝑞
𝑟−1
) such

that (41) holds too.
(b) If 𝑞

𝑖
< 1, 𝑖 = 1, 2, . . . , 𝑘, and 𝑝

1
𝑝
2
⋅ ⋅ ⋅ 𝑝
𝑘
> (1 − 𝑞

1
)(1 −

𝑞
2
) ⋅ ⋅ ⋅ (1 − 𝑞

𝑘
), we can choose 𝛼

𝑖
> 1 such that

𝑝
1

1 − 𝑞
1

>

𝛼
1

𝛼
2

,

𝑝
2

1 − 𝑞
2

>

𝛼
2

𝛼
3

, . . . ,

𝑝
𝑘

1 − 𝑞
𝑘

>

𝛼
𝑘

𝛼
1

. (42)

Hence (41) holds too.
Hence, for the case (a) or (b), we all have 𝛾 > 1. Now let

𝑠(𝑡) be the unique solution of the ODE problem

𝑠

(𝑡) = −𝜆𝑠 (𝑡) + 𝑙𝑠

𝛾
(𝑡) , 𝑡 > 0,

𝑠 (0) = 𝑠0
> 1,

(43)

where 𝑙 = min{(1/𝛼
𝑖
) ∫
Ω
𝜙
𝛼𝑖𝑞𝑖+𝛼𝑖+1𝑝𝑖

1
, 𝑖 = 1, 2, . . . , 𝑘}. Then 𝑠(𝑡)

blows up in finite time 𝑇(𝑠
0
) with 𝑠

0
being large enough.

Set

𝑢
𝑖
= 𝑠
𝛼𝑖
(𝑡) 𝜙
𝛼𝑖

1
(𝑥) , (𝑥, 𝑡) ∈ Ω × [0, 𝑇 (𝑠0

)) ,

𝑖 = 1, 2, . . . , 𝑘.

(44)

We will show that (𝑢, V) is a lower solution of problem (1). A
direct computation yields

𝑢
𝑖𝑡
− Δ𝑢
𝑖
− ∫

Ω

𝑢
𝑞𝑖

𝑖
𝑢
𝑝𝑖

𝑖+1
d𝑥

= 𝛼
𝑖
𝑙𝑠
𝛼𝑖−1+𝛾

𝜙
𝛼𝑖

1
− 𝛼
𝑖
(𝛼
𝑖
− 1) 𝑠
𝛼𝑖
𝜙
𝛼𝑖−2

1





∇𝜙
1






2

− ∫

Ω

𝑠
𝛼𝑖𝑞𝑖+𝑎𝑖+1𝑝𝑖

𝜙
1

𝛼𝑖𝑞𝑖+𝑎𝑖+1𝑝𝑖d𝑥

≤ 𝛼
𝑖
𝑙𝑠
𝛼𝑖−1+𝛾

− 𝑠
𝛼𝑖𝑞𝑖+𝑎𝑖+1𝑝𝑖

∫

Ω

𝜙
1

𝛼𝑖𝑞𝑖+𝑎𝑖+1𝑝𝑖d𝑥

≤ 0, (𝑥, 𝑡) ∈ Ω × [0, 𝑇 (𝑠0
)) ,

𝑢
𝑖
− ∫

Ω

𝜑
𝑖
(𝑥, 𝑦) 𝑢

𝑖
(𝑦, 𝑡) d𝑦

= 0 − 𝑠
𝛼𝑖
(𝑡) ∫

Ω

𝜑
𝑖
(𝑥, 𝑦) 𝜙

𝛼𝑖

1
(𝑦) d𝑦

≤ 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇 (𝑠0
)) .

(45)

(𝑢
1
, . . . , 𝑢

𝑘
) is a blowing up lower solution of (1) provided

the initial data are so large that 𝑢
𝑖,0
(𝑥) ≥ 𝑠

𝛼𝑖
(0)𝜙
𝛼𝑖

1
(𝑥), 𝑖 =

1, 2, . . . , 𝑘 for 𝑥 ∈ Ω. We complete the proof.

Proof of Theorem 5. Since 𝑢
𝑖,0
> 0 in Ω, ∫

Ω
𝜑
𝑟
(𝑥, 𝑦)d𝑦 > 0 on

𝜕Ω, and

𝑢
𝑖,0 (
𝑥) = ∫

Ω

𝜑
𝑟
(𝑥, 𝑦) 𝑢

𝑖,0
(𝑦) d𝑦, 𝑥 ∈ 𝜕Ω, (46)

by the compatibility conditions, we have 𝑢
𝑖,0
> 0 on 𝜕Ω.

Denote by 𝜂 the positive constant such that 𝑢
𝑖,0
> 𝜂 on Ω.

The assumption (H) implies that (𝑢
𝑖
)
𝑡
> 0 by the comparison

principle, and in turn 𝑢
𝑖
> 𝜂, 𝑖 = 1, 2, . . . , 𝑘 on Ω × [0, 𝑇).

Furthermore, 𝑢
𝑟
satisfies

(𝑢
𝑟
)
𝑡
≥ Δ𝑢
𝑟
+ |Ω| 𝜂

𝑝𝑟
𝑢
𝑞𝑟

𝑟
, (𝑥, 𝑡) ∈ 𝑄𝑇

,

𝑢
𝑟
= ∫

Ω

𝜑
𝑟
(𝑥, 𝑦) 𝑢

𝑟
(𝑦, 𝑡) d𝑦, (𝑥, 𝑡) ∈ 𝑆𝑇

,

𝑢
𝑟 (
𝑥, 0) = 𝑢𝑟,0 (

𝑥) , 𝑥 ∈ Ω.

(47)

Let 𝑧
𝑟
(𝑡) be the solution of the following Cauchy problem:

𝑧


𝑟
(𝑡) = |Ω| 𝜂

𝑝𝑟
𝑧
𝑞𝑟

𝑟
,

𝑧
𝑟 (
0) =

1

2

𝜂 > 0.

(48)

Clearly, 𝑧
𝑟
(𝑡) blows up under the condition

𝑞
𝑟
> 1. (49)

On the other hand, since ∫
Ω
𝜑
𝑟
(𝑥, 𝑦)d𝑦 ≥ 1, by Lemma 9, we

have 𝑢
𝑟
≥ 𝑧
𝑟
as long as both 𝑢

𝑟
and 𝑧
𝑟
exist, and thus 𝑢

𝑟
blows

up for any positive initial data. The proof now is completed.
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