Clinical Study

Diffusion-Weighted Magnetic Resonance Imaging Findings of Kidneys with Obstructive Uropathy: Differentiation between Benign and Malignant Etiology

Tugce Ozlem Kalayci, 1 Melda Apaydin, 1 Fitnet Sönmezgöz, 2 Sinan Çalış, 3 and Melike Bedel Koruyucu 1

1 Department of Radiology, Izmir Ataturk Training and Research Hospital, 35160 Izmir, Turkey
2 Department of Radiology, Firat University Medical Faculty, 23100 Elazig, Turkey
3 Department of Statistic, Faculty of Science, Firat University, 23100 Elazig, Turkey

Correspondence should be addressed to Tugce Ozlem Kalayci; doktorozlemtugce@gmail.com

Received 22 August 2013; Accepted 24 December 2013; Published 9 February 2014

Academic Editors: Y. C. Cheung and Y. Mardor

Copyright © 2014 Tugce Ozlem Kalayci et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Purpose. In this study, we aimed to evaluate the capability of diffusion-weighted magnetic resonance imaging (DWI) in differentiation between benign and malignant etiology of obstructive uropathy.

Materials and Methods. DWI was performed in 41 patients with hydronephrotic kidneys and 26 healthy volunteers. MR imaging was performed using a 1.5T whole-body superconducting MR scanner. The signal intensities of the renal parenchyma on DWI and apparent diffusion coefficient (ADC) maps were noted. DWI was performed with the following diffusion gradient b values: 100, 600, and 1000 s/mm². A large circular region of interest was placed in the corticomedullary junction of the kidneys. For statistical analysis, the independent-samples t test was used.

Results. The mean renal ADC values for b100, b600, and b1000 in hydronephrosis patients with benign and malignant etiology and the healthy volunteers of the control group were analysed. ADC measurements of renal parenchyma in all hydronephrotic kidneys with benign and malignant etiology were found to be statistically low compared to those of normal kidneys (P < 0.05). Conclusions. There were significant differences in the ADC values of obstructed kidneys compared to those of normal kidneys. Obstructed kidneys with malignant etiology had lower ADC values for b1000 compared to obstructed kidneys with benign etiology, but these alterations were statistically insignificant.

1. Introduction

Diffusion-weighted magnetic resonance imaging (DWI) is used to show the Brownian motion of the spins in biologic tissues and can be used to differentiate between normal and abnormal tissue structures. The apparent diffusion coefficient (ADC), as the main quantitative parameter used to interpret DWI, combines the effects of capillary perfusion and water diffusion in the extracellular extravascular space [1]. DWI has been extensively used in neuroradiology. The applications of DWI in abdominal disease have lagged behind those of neurologic applications because DWI of abdominal organs is much more difficult to perform because of physiologic motion artefacts and the heterogeneous composition of the organs [2]. With the advent of echoplanar imaging (EPI) in conjunction with breath-holding, DWI of the abdomen has become possible with fast imaging times, minimizing the effect of gross physiologic motion from respiration and cardiac movement. The kidney is an interesting organ to measure ADC values because of its high blood flow and water transport functions. With its complex anatomic structure and physiology, the kidney is extremely challenging for DWI [3, 4]. Obstructive uropathy can occur due to some benign and malignant conditions. The benign and malignant causes of hydronephrosis might result in different diffusion characteristics in the affected renal parenchyma. To date, no papers have been published on DWI in obstructive uropathy patients for discrimination between benign and malignant etiology.
The purpose of this study was to evaluate the capability of DWI in differentiation between benign and malignant causes of obstructive uropathy.

2. Materials and Methods

The Institutional Ethics Committee reviewed and approved the study protocol, and informed consent was obtained from all volunteers and patients.

2.1. Patients. Forty-one patients with chronic hydronephrotic kidneys detected by ultrasound (US) imaging participated in the study. There was a history of obstructive uropathy longer than 6 weeks in all patients. Twenty-six patients (20 male and 6 female; mean age 58.3 ± 17.8; age range 24–90 years old) with benign etiology and 15 patients (10 male and 5 female; mean age 62.3 ± 18.1; age range 21–80 years old) with malignant etiology were included in this study. The control group consisted of 26 healthy volunteers (8 male and 18 female; mean age 49.0 ± 18.8; age range 27–65 years old) on whom was performed abdominal MRI for hepatic haemangioma. They also had no history of renal disease and had normal creatinine levels (0.7 ± 0.12 mg/dL). Seven of the 26 patients with benign etiology and seven of the 15 patients with malignancy had bilateral hydronephrosis. The 33 kidneys (30.8%) with obstructive uropathy with benign etiology exhibited benign prostatic hyperplasia (9.3%, n = 10); ureter stone (4.6%, n = 5); renal calculus within the renal pelvicalyceal system (7.4%, n = 8); and narrowness of the ureter secondary to retroperitoneal fibrosis (9.3%, n = 10). The twenty-two kidneys (20.6%) with obstructive uropathy with malignant etiology exhibited bladder cancers (8.4%, n = 9); colon cancers (1.8%, n = 2); cervical cancers (2.8%, n = 3); uterine cancers (0.9%, n = 1); prostate cancers (0.9%, n = 1); retroperitoneal tumours (1.8%, n = 2); and pelvic tumours (3.7%, n = 4). All patients with obstructive uropathy with benign and malignant etiology were previously diagnosed by radiologic imaging or histopathologic study.

2.2. Magnetic Resonance Imaging (MRI). MRI was performed using a 1.5 T whole-body superconducting MR scanner (General Electric Signa high-speed scanner, Milwaukee, WI, USA) equipment with high-speed gradients. A body coil was used for all images. Axial T2-weighted fat saturation spin-echo images (TE: 90, TR: 5700, slice thickness: 8 mm, intersection gap: 1.5, number of excitations: 4, and matrix size: 512 × 512) were obtained in all patients for demonstration of the pelvicalyceal system. DWI (TE: 72, TR: 8000, FOV: 30 × 30, slice thickness: 5 mm, intersection gap: 0, number of excitations: 1, and matrix size: 128 × 128) was obtained using single-shot spin-echo and echoplanar imaging (EPI) sequences with the following diffusion gradient b values: 100, 600, and 1000 s/mm². All images were obtained without restriction of fluid intake and without breath-holding.

2.3. Image Analysis. The DWI data were transferred to a workstation (Advantage Windows, software version 2.0, GE Medical Systems). Radiological analysis was performed by the same radiologist. A large circular region of interest (ROI) was placed at the corticomedullary junction for the measurement of ADC values (Figure 1). For each kidney, three ROIs were placed in the middle portion of the kidneys, which are less influenced by the perfusion effect. The mean ADC values for b100, b600, and b1000, with standard deviations, were calculated. ADC maps were calculated automatically with the MR system.

2.4. Statistical Analysis. Statistical analysis was performed with the SPSS 12.0 software package. The ADC values of the volunteers and patients with obstructed uropathy are reported as the mean ± standard deviation. The independent-samples t test was used to compare the parenchymal ADC values of the normal kidneys and the obstructed kidneys that had benign and malignant etiology. A P value of less than 0.05 was considered to indicate a statistically significant difference.

3. Results

Significant declines were observed in renal signals with an increasing value of b in the obstructed kidneys. The colour change was observed on the ADC maps that were created from DW echoplanar images, depending on increasing b value and decreasing ADC coefficients; the colour shift from red to yellow/green was observed much more in hydronephrotic kidneys than in normal kidneys to be compatible with lower ADC values (Figure 2).

The mean renal ADC values for b100, b600, and b1000 values in patients with obstructive uropathy with benign and malignant etiology and in the healthy volunteers of the control group are summarised in Table 1. The ADC measurements of renal parenchyma in all hydronephrotic kidneys with benign and malignant etiology were found to be extremely low compared to those of normal kidneys (P < 0.05) (Figure 3).

There was a statistically significant difference between the ADC values of hydronephrotic kidneys with benign causes...
Table 1: Comparison of ADC values of obstructed kidneys with normal kidneys.

<table>
<thead>
<tr>
<th>b value</th>
<th>Obstructed kidneys with benign etiology Mean ± S.D.</th>
<th>Obstructed kidneys with malignant etiology Mean ± S.D.</th>
<th>Normal kidneys Mean ± S.D.</th>
</tr>
</thead>
<tbody>
<tr>
<td>100*</td>
<td>3.12 ± 0.61 × 10^{-3}**</td>
<td>3.28 ± 0.44 × 10^{-3}**</td>
<td>3.55 ± 0.29 × 10^{-3}</td>
</tr>
<tr>
<td>600*</td>
<td>2.38 ± 0.45 × 10^{-3}**</td>
<td>2.57 ± 0.68 × 10^{-3}</td>
<td>2.67 ± 0.49 × 10^{-3}</td>
</tr>
<tr>
<td>1000*</td>
<td>1.93 ± 0.33 × 10^{-3}**</td>
<td>1.83 ± 0.17 × 10^{-3}**</td>
<td>2.09 ± 0.19 × 10^{-3}</td>
</tr>
</tbody>
</table>

ADC average values calculated from the following b values: 100, 600, and 1000 s/mm².

* Independent t test, 0.05 significance level.
** The differences are statistically significant between the groups.

and those of normal kidneys. The mean ADC values of hydronephrotic kidneys with benign etiology were statistically significantly lower than the mean ADC values of normal kidneys for b100, b600, and b1000 (P < 0.05). The mean ADC values of hydronephrotic kidneys with malignant causes were found to be statistically significantly lower than the mean ADC values of normal kidneys for b100 and b1000 (Table 1).

In the obstructed kidneys with benign etiology, the minimum and maximum values of ADC ranged from 1.45 to 4.10 × 10^{-3}. In the obstructed kidneys with malignant etiology, the minimum and maximum values of ADC ranged from 1.49 to 4.02 × 10^{-3}. Obstructed kidneys with malignant etiology had lower ADC values for b1000 than had the obstructed kidneys with benign etiology, but these differences were statistically insignificant.

4. Discussion

Hydronephrosis is a common disease in urological clinical practice, which is one of the major causes of renal insufficiency and renal failure. Dilatation of the renal pelvis and calyceal system can occur even in the absence of urinary obstruction; therefore, hydronephrosis and obstructive uropathy are not interchangeable or synonymous terms. Obstructive uropathy can occur due to some benign and malignant causes. Common causes include bladder stones, kidney stones, benign prostatic hyperplasia, bladder or ureteral cancer, colon cancer, cervical cancer, uterine cancer, scar tissue that occurs inside the ureter, and problems with the nerves of the bladder. Up to now, there have been various approaches to define what obstruction really means, including US, intravenous urography, diuretic renal scintigraphy,
The Scientific World Journal

5. Conclusions

DWI seems to be a reliable method to differentiate normal healthy kidney from hydronephrotic kidney. On the basis of this preliminary study, this technique could be applied in the clinical area as a rapid addition to existing kidney MRI protocols and thus provide DW images of diagnostic quality as well as quantitative data regarding diffusivity. The present study reports on our initial experience with DWI of the kidneys in patients with obstructive uropathy with benign and malignant etiology in a small sample and further studies using ROIs in different locations (e.g., the renal pelvis) and larger groups of obstructive uropathy patients are warranted to assess the efficacy of DWI for the discrimination of etiology.
Disclosure

This study was presented as an e-poster presentation in European Congress of Radiology (ECR) Vienna, Austria, March 7-11, 2013.

Conflict of Interests

The authors of this paper have no conflict of interests, including specific financial interests, relationships, and/or affiliations relevant to the subject matter or materials included.

References

Submit your manuscripts at http://www.hindawi.com