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Abstract. 
Let  be a fixed odd prime. Using certain results of exponential Diophantine equations, we prove that (i) if , then the equation  has no positive integer solutions ; (ii) if , then the equation has only the solutions , where  is an odd prime with ; (iii) if  and , then the equation has at most two positive integer solutions .



1. Introduction
Let ,  be the sets of all integers and positive integers, respectively. Let  be a fixed odd prime. Recently, the solutions  of the equation 
						
					were determined in the following cases:(1)(Sroysang [1]) if , then (1) has no solutions;(2)(Sroysang [2]) if , then (1) has no solutions;(3)(Rabago [3]) if , then (1) has only the solutions , , and .
In this paper, using certain results of exponential Diophantine equations, we prove a general result as follows.
Theorem 1.  If , then (1) has no solutions . If , then (1) has only the solutions 
							
						where  is an odd prime with . 
If  and , then (1) has at most two solutions .
Obviously, the above theorem contains the results of [1, 2]. Finally, we propose the following conjecture.
Conjecture 2.  If , then (1) has at most one solution .
2. Preliminaries
Lemma 3.  If  is a prime, where  is a positive integer, then  must be a prime.
Proof. See Theorem  of [4].
Lemma 4.  If  is an odd prime with , then the equation 
							
						has solutions .
Proof. See Section 8.1 of [5].
Lemma 5.  The equation 
							
						has only the solution .
Proof. See Theorem 8.4 of [6].
Lemma 6.  Let  be a fixed odd positive integer. If the equation 
							
						has solutions , then the equation 
							
						has at most two solutions , except the following cases: (i), , , , and , where  is a positive integer with ;(ii), , , and , where  is a positive integer with ;(iii), , , and , where ,  are positive integers with .
Proof. See [7].
Lemma 7.  If  is an odd prime and  belongs to the exceptional case (i) of Lemma 6, then .
Proof. We now assume that  is an odd prime with . Then we have 
							
						If , since , then , and by (7), we have
							
						But, by the second equality of (9), we get , a contradiction.
If , then from (8) we get 
							
						Further, by the second equality of (10), we have , , and . Thus, the lemma is proved.
Lemma 8.  If  is an odd prime and  belongs to the exceptional case (iii) of Lemma 6, then .
Proof. Using the same method as in the proof of Lemma 7, we can obtain this lemma without any difficulty.
Lemma 9.  If  belongs to the exceptional case (ii), then (6) has at most one solution  with .
Proof. Notice that, for any positive integer , there exists at most one number of 5, , and  which is a multiple of 3. Thus, by Lemma 6, the lemma is proved.
Lemma 10.  The equation 
							
						has only the solution .
Proof. See [8].
3. Proof of Theorem
We now assume that  is a solution of (1). Then we have .
If , since , then from (1) we get 
						
					where we obtain
						
					Since , applying Lemma 10 to (14), we get 
						
					Further, by Lemma 3, we see from the second equality of (15) that 
						
					is an odd prime with .
Therefore, by (13), (15), and (16), we obtain the solutions given in (2).
Obviously, if  satisfies (2), then . Otherwise, since , we see from (1) that . It implies that if , then (1) has no solutions . If , then (1) has only the solutions (2).
Here and below, we consider the remaining cases that . By the above analysis, we have . If , then  and (4) has the solution  with . But, by Lemma 5, it is impossible. Therefore, we have 
						
					Substituting (17) into (1), the equation 
						
					has the solution  with . Since , by Lemma 4, (3) has solutions . Therefore, by Lemmas 6–9, (1) has at most two solutions . Thus, the theorem is proved.
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