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Abstract. 
The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy
set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained.



1. Introduction
In 1966, Imai and Iséki [1] introduced the notion of a BCK-algebra. There exist several generalizations of BCK-algebras, such as BCI-algebras [2], BCH-algebras [3], BCC-algebras [4], BH-algebras [5], and d-algebras [6]. Neggers et al. defined B/BM/BG-algebras [7–9] and showed that the class of all B-algebras is a proper subclass of the class of all BG-algebras. They also proved that an algebra is a BM-algebra if and only if it is a 0-commutative B-algebra (therefore, every BM-algebra is a B-algebra). In [10], it is shown that the class of 0-commutative B-algebras is the class of -semisimple BCI-algebras (and hence any BM-algebra is a BCI-algebra). The class of BM-algebras contains Coxeter algebras (see [8]). Some other connections between BM-algebras and its related topics are studied in [11]. Walendziak introduced in [12] the concept of BF-algebras, which is a generalization of B-algebras and BN-algebras defined by C. B. Kim and H. S. Kim [13]. An interesting result of [13] states that an algebra is a BN-algebra if and only if it is a 0-commutative BF-algebra.
We will denote by  (resp., ) the class of all BCK-algebras (resp., BCI/BCH/BH/B/BM/BG/BF/BN-algebras). The interrelationships between some classes of algebras mentioned before are visualized in Figure 1 (an arrow indicates proper inclusion; that is, if  and  are classes of algebras, then  means ).




	
	
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 1


In this paper we consider ideals and fuzzy ideals in BN-algebras. In Section 2, similarly to BCK/BCI/BCH/BH/BF-algebras (see [5, 12, 14–16]), we define the concept of an ideal. We also introduce the notions of normal ideals and normal congruences. We investigate the properties of them and prove that there is a one-to-one correspondence between normal ideals and normal congruences of a BN-algebra. Moreover we obtain the isomorphism theorem for BN-algebras. In this section we also give all what is necessary, to make the paper self-contained. In Section 3 we define fuzzy ideals in BN-algebras (fuzzy ideals of BCK/BCI/BCC/BF-algebras are considered in [17–20]) and provide conditions for a fuzzy set to be a fuzzy ideal. Given a fuzzy set , we make the least fuzzy ideal containing . This leads us to show that the set of fuzzy ideals of a BN-algebra is a complete lattice. Moreover, the homomorphic properties of fuzzy ideals are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras in terms of fuzzy ideals are given in Section 4. Noetherian BCK/BCI/BM/BF-algebras are studied in [21–26].
2. On BN-Algebras: Ideals
An algebra  of type  is called a Coxeter algebra [27] if for all  the following identities hold:,,.
Remark 1. Kim et al. [27] showed that a Coxeter algebra is equivalent to an abelian group all of whose elements have order 2. Therefore, if  is a Coxeter algebra, then the operation  is commutative and associative.
We say that  is a BM-algebra [8] if it satisfies (B2) and.
Proposition 2 (see [8]).  If  is a BM-algebra, then, for any , (i),(ii).
Proposition 3.  If  is a BM-algebra, then, for all , (i),(ii)if , then .
Proof. (i) Substituting  and  in (BM), we have . Applying (B2) we get (i).
(ii) follows from (i) and (B2).
An algebra  of type  is called a BF-algebra [12] if it satisfies (B1), (B2), and.
Definition 4. An algebra  of type  is called a BN-algebra [13] if (B1), (B2), andhold for all .
Let  be a BN-algebra. We define a binary relation  on  by  if and only if . It is easy to see that, for any , if , then .
Example 5. Let  be the set of real numbers and let  be the algebra with the operation  defined by 
							
						Then  is a BN-algebra.
Example 6 (see [13]). Let  and  be defined by the following: 
							
						Then  is a BN-algebra.
Example 7. Let  be an abelian group. If we define , for all , then, by Theorem 2.15 of [13],  is a BN-algebra.
Proposition 8 (see [13]).  If  is a BN-algebra, then, for all , (i),(ii),(iii),(iv),(v).
From [13] we obtain the following relation: .
From now on,  always denotes a BN-algebra . We introduce the notion of an ideal in BN-algebras.
Definition 9. A subset  of  is called an ideal of  if it satisfies ,
								 and  imply  for any .
We will denote by  the set of all ideals of a BN-algebra .
Example 10. Let  be the BN-algebra given in Example 5. Observe that . Indeed, let  be an ideal of  and suppose that . Then  for some . Let . Obviously,  and hence . Therefore, .
Proposition 11.  Let  and . If  and , then .
Proof. Let  and . Then  and . Hence .
A nonempty subset  of  is called a subalgebra of  if  for any . It is easy to see that if  is a subalgebra of , then .
Example 12. Let , where  is the set of all integers. We know that  is a BN-algebra (see Example 7). Obviously, a nonempty subset  is a subalgebra of  if and only if  for all ; that is,  is a subgroup of the group of integers. Therefore, 
							
Remark 13. Consider the BN-algebra  given in Example 6. We have . Observe that the ideal  is not a subalgebra of  and  is a subalgebra of  but it is not an ideal.
Remark 14. It is easy to prove that the intersection of an arbitrary number of ideals of a BN-algebra  is an ideal of . It is also not hard to show that the union of an ascending sequence of ideals of  is an ideal of .
A nonempty subset  of  is said to be normal in  if 
						
					for any . We say that an ideal  of  (resp., a subalgebra  of ) is normal if the set  (resp., the set ) is normal. We will denote by  the set of all normal ideals of .
Remark 15. It is easy to see that , . The ideal  is normal, but  is not normal in general (see the example below).
Example 16. Consider the set  with the operation  defined by the following:
						It is easily seen that  is a BN-algebra. The ideal  is not normal because , but .
Proposition 17.  If  is a normal ideal of , then  is a subalgebra of .
Proof. Let . Since  is normal, we conclude that ; that is, . From the definition of an ideal we have . Thus  is a subalgebra of .
Remark 18. The BN-algebra  given in Example 16 shows that the converse of Proposition 17 does not hold. Indeed,  is a subalgebra of  but it is not a normal ideal.
Proposition 19.  Every ideal of a Coxeter algebra is normal.
Proof. Let  be a Coxeter algebra and let  be an ideal of . Let  and suppose that . Since  is a subalgebra, we have . From Remark 1 it follows that . Thus  is normal.
Lemma 20.  Let  be a normal ideal of a BN-algebra  and . Then (a),(b).
Proof. (a) Let . Then . Since  is normal, . Hence, .
(b) Let . By (a), . Applying Proposition 8(ii) we have .
Proposition 21.  Let  be a BN-algebra and let . Then  is a normal subalgebra of  if and only if  is a normal ideal.
Proof. Let  be a normal subalgebra of . Clearly, . Suppose that  and . Then . Since  is normal, we have . By (B1) and (B2), . Therefore , and thus  is an ideal. The converse follows from Proposition 17.
Remark 22. Let  be a normal ideal of a BN-algebra . For any , we define
							
						Then  is a congruence of  by the proof of Theorem 3.5 of [13].
Definition 23. Let  be a congruence of a BN-algebra . One says that  is normal if 
							
						for arbitrary .
Example 24. Let  and  be defined by the following:
						It is easy to check that  is a BN-algebra and  is a normal congruence of .
By  we denote the set of all normal congruences of .
Remark 25. Let  be a BN-algebra. It is easily seen that , where  is a normal ideal of . In particular, .
Proposition 26.  In BM-algebras all congruences are normal.
Proof. Let  be a BM-algebra and let  be a congruence of . Let  and suppose that  and . Hence, . Observe that 
							
						Indeed, we have
							
						Therefore,  and thus  is normal.
Remark 27. Let  be the BN-algebra from Example 16. Observe that the least congruence on , namely, the identity relation , is not normal. Indeed, we get  and  but .
Let  be a BN-algebra and let  be a congruence on . For , by  we denote the congruence class containing ; that is, .
Proposition 28.  Let  be a congruence on . Then  if and only if  is a normal ideal of .
Proof. Set  and let . It follows easily that . Let  and  be elements of  such that . Then,  and . Since , we obtain  and hence . Consequently,  is an ideal. Now, suppose that , where . Then,  and . By the definition of a normal congruence, ; that is, . Thus,  is normal.
The converse is obvious.
Theorem 29.  There is a bijection between the set of normal ideals and the set of normal congruences of a BN-algebra.
Proof. Let  be a BN-algebra. We consider functions  and  given as follows: 
							
						Since  and , we conclude that  and  are well-defined. Next, note that . Indeed,
							
						Hence,
							
						Further, observe that 
							
						and from this we obtain
							
						We deduce from 13 and 15 that  and . Thus,  and  are inverse bijections between  and .
Let  and  be BN-algebras. A mapping  is called a homomorphism from  into  if  for any .
Observe that . Indeed, . We denote by  the subset  of  (it is the kernel of the homomorphism ).
Lemma 30.  Let  be a homomorphism from  into . Then  is an ideal of .
Proof. Obviously, ; that is, () holds. Let  and . Then . Consequently, . Therefore, () is satisfied. Thus  is an ideal of .
Remark 31. The kernel of a homomorphism is not always a normal ideal. Let  be the algebra given in Example 16. Clearly,  is a homomorphism and the ideal  is not normal.
Proposition 32.  Let  be a BN-algebra and let  be a BM-algebra. Let  be a homomorphism from  into . Then  is a normal ideal.
Proof. By Lemma 30,  is an ideal of . Let  and . Then . From Proposition 3(ii) it follows that . Similarly, . Consequently, , and hence, .
Let  be a normal ideal of . For , we write ; that is, . We note that 
						
					Denote  and set . The operation  is well-defined, since  is a congruence of . It is easy to see that  is a BN-algebra. The algebra  is called the quotient BN-algebra of  modulo .
Example 33. Let  and  be given as in Example 24. We know that  is a BN-algebra and  is a normal congruence of . Since , from Proposition 28 we see that  is a normal ideal of . We have  and . Then . Clearly,  and .
Theorem 34.  Let  be a BN-algebra and let  be a BM-algebra. Let  be a homomorphism from  onto . Then  is isomorphic to .
Proof. By Proposition 32,  is a normal ideal of . Define a mapping  by  for all . Let . Then, ; that is, . Hence, . By Proposition 3(ii) we have . Consequently, . This means that  is well-defined. It is easy to check that  is a homomorphism from  onto . Observe that  is one-to-one. Let . Then  and hence ; that is, . Therefore,  and consequently, . Thus  is an isomorphism from  onto .
3. Fuzzy Ideals
We now review some fuzzy logic concepts. First, for  we define  and . Obviously, if , then  and . Recall that a fuzzy set in  is a function .
For any fuzzy sets  and  in , we define
						
					A trivial verification shows that this relation is an order relation in the set of fuzzy sets in .
Let  and  be any two sets,  any fuzzy set in , and  any function. Set  for . The fuzzy set  in  defined by 
						
					for all , is called the image of  under  and is denoted by .
Let  and  be any two sets,  any function, and  any fuzzy set in . The fuzzy set  in  defined by 
						
					is called the preimage of  under  and is denoted by .
Now, we give the definition of a fuzzy ideal in a BN-algebra.
Definition 35. A fuzzy set  in  is called a fuzzy ideal of a BN-algebra  if it satisfies, for all , ,
								. 
								
Proposition 36.  Let  be a fuzzy ideal of . Then, for any , if , then .
Proof. If , then . From Proposition 8(iv) we obtain . Hence, by (d2) and (d1), we have .
Denote by Id the set of all fuzzy ideals of a BN-algebra .
Example 37. Let  be the BN-algebra given in Example 6. Let . Define a fuzzy set  in  by
							
						It is easily checked that  satisfies (d1) and (d2). Thus .
Example 38. Let  be an ideal of a BN-algebra  and let  with . Define  as follows: 
							
						We denote . Since ,  for all . To prove (d2), let . If , then . Suppose now that . By the definition of an ideal,  or . Therefore, . Thus  is a fuzzy ideal of .
In particular, the characteristic function  of : 
							
						is a fuzzy ideal of .
Proposition 39.  A fuzzy set  in  is a fuzzy ideal of  if and only if it satisfies  and for all , if , then .
Proof. Let  and let . Suppose that . Since  is a fuzzy ideal, we have  and . Therefore, .
Conversely, let  satisfy (d3). From (B1) we have . By (d3), . Then  satisfies (d2) and hence .
Theorem 40.  Let  be a fuzzy set in . Then  if and only if its nonempty level subset 
							
						is an ideal of  for all .
Proof. Assume that . Let  and . Then  for some . Since , we have . Let  such that . Then  and . It follows from (d2) that
							
						so that . Therefore  is an ideal of .
Conversely, suppose that, for each  or  is an ideal of . If (d1) is not valid, then there exists  such that . Then  and, by assumption,  is an ideal of . Hence  and consequently . This is a contradiction and (d1) is valid. Now assume that (d2) does not hold. Then there are  such that . Taking
							
						we get  and . Therefore  but . This is impossible, and  is a fuzzy ideal of .
By Theorem 40, we have the following.
Corollary 41.  If  is a fuzzy ideal of a BN-algebra , then the set 
							
						is an ideal of .
The following example shows that the converse of Corollary 41 does not hold.
Example 42. Let  be a BN-algebra. Define a fuzzy set  in  by 
							
						Then  is the ideal of  but  (because  does not satisfy (d1)).
Example 43. Consider the BN-algebra  given in Example 6. Let  be defined as in Example 37. It is easy to check that for all  we have 
							
						Since  and  are ideals of , this is another proof (by Theorem 40) that  is a fuzzy ideal of .
Lemma 44.  Let  be a strictly ascending sequence of ideals in a BN-algebra  and let  be a strictly decreasing sequence in . Let  be the fuzzy set in  defined by
							
						where . Then  is a fuzzy ideal of .
Proof. Let . By Remark 14,  is an ideal of . Obviously,  for all ; that is, (d1) holds. Now we show that  satisfies (d2). Let . We have two cases.
Case 1   . Then  or . Therefore . 
Case 2    for some . Then  or . Hence  or . Therefore .
Thus (d2) is also satisfied and consequently  is a fuzzy ideal of .
Let  be a nonempty set of indexes. Let  for . The meet  of fuzzy ideals  of  is defined as follows: 
						
Theorem 45.  Let  for . Then .
Proof. Let . Then, by (d1),
							
						for all . Let . Since , we have . Hence
							
						Consequently,  and therefore .
Let  be a fuzzy set in . A fuzzy ideal  of  is said to be generated by  if  and, for any fuzzy ideal  of ,  implies . The fuzzy ideal generated by  will be denoted by . The fuzzy ideal  can be defined equivalently as follows: 
						
For  let  denote the join of  and ; that is, , where  is the fuzzy set in  defined by  for all .
From Theorem 45 we obtain the following theorem.
Theorem 46.  Let  be a BN-algebra. Then  is a complete lattice.
The following two theorems give the homomorphic properties of fuzzy ideals.
Theorem 47.  Let  and  be BN-algebras and let  be a homomorphism and . Then .
Proof. Let . Since  and , we have , but . Thus we get  for any ; that is,  satisfies (d1).
Now let . Since , we obtain 
							
						and hence . Consequently, .
Lemma 48.  Let  and  be BN-algebras and let  be a homomorphism and . Then, if  is constant on , then .
Proof. Let  and . Hence 
							
						For all , we have . Hence ; that is, . Thus . Therefore, . Similarly, . Hence . Thus
							
						that is, .
Theorem 49.  Let  and  be BN-algebras and let  be a surjective homomorphism and  such that . Then .
Proof. Since  is a fuzzy ideal of  and , we have 
							
						for any . Hence
							
						for any . Thus  satisfies (d1). Suppose that 
							
						for some . Since  is surjective, there are  such that  and . Hence
							
						Therefore
							
						Since ,  is constant on . Then, by Lemma 48, we get 
							
						which is a contradiction with the fact that  is a fuzzy ideal. Thus, we obtain .
4. Fuzzy Characterizations of Noetherian and Artinian BN-Algebras
In this section we characterize Noetherian BN-algebras and Artinian BN-algebras using some fuzzy concepts, in particular, fuzzy ideals.
A BN-algebra  is called Noetherian if for every ascending sequence  of ideals of  there exists  such that  for all . A BN-algebra  is called Artinian if for every descending sequence  of ideals of  there exists  such that  for all .
Theorem 50.  Let  be a BN-algebra. The following statements are equivalent: (a) is Noetherian,(b)for each fuzzy ideal  of ,  is a well-ordered set.
Proof. (a)  (b): Assume that  is Noetherian and  is a fuzzy ideal of  such that  is not a well-ordered subset of . Then there exists a strictly decreasing sequence , where . Let  and . Then, by Theorem 40,  is an ideal of  for every . So  is a strictly ascending sequence of ideals of . This is a contradiction with the assumption that  is Noetherian. Therefore  is a well-ordered set for each fuzzy ideal  of .
(b)  (a): Assume that (b) is true. Suppose that  is not Noetherian. Then there exists a strictly ascending sequence  of ideals of . Let  be a fuzzy set in  such that 
							
						where . By Lemma 44, , but  is not a well-ordered set, which is impossible. Therefore  is Noetherian.
Corollary 51.  Let  be a BN-algebra. If, for every fuzzy ideal  of ,  is a finite set, then  is Noetherian.
Theorem 52.  Let  be a BN-algebra and let , where  is a strictly decreasing sequence in . Then the following conditions are equivalent: (a) is Noetherian,(b)for each fuzzy ideal  of , if , then there exists  such that .
Proof. (a)  (b): Assume that  is Noetherian. Let  be a fuzzy ideal of  such that . From Theorem 50 we know that  is a well-ordered subset of . Then, since  and , there exists  such that .
(b)  (a): Assume that (b) is true. Suppose that  is not Noetherian. Then there exists a strictly ascending sequence  of ideals of . Define a fuzzy set  in  by
							
						where . By Lemma 44,  is a fuzzy ideal of . This is a contradiction with our assumption. Thus  is Noetherian.
Theorem 53.  Let  be a BN-algebra and let , where  is a strictly increasing sequence in . Then the following conditions are equivalent: (a) is Artinian,(b)for each fuzzy ideal  of , if , then there exists  such that .
Proof. (a)  (b): Suppose that  is a strictly increasing sequence of elements of . Let  for . It is immediately seen that  is a strictly descending sequence of ideals of . This contradicts the assumption that  is Artinian.
(b)  (a): Assume that (b) is true. Suppose that  is not Artinian. Then there exists a strictly descending sequence  of ideals of . Define a fuzzy set  in  by 
							
						Obviously,  for all ; that is, (d1) holds. Now we show that  satisfies (d2). Let . We have three cases.
Case 1   . Then  or . Therefore .
Case 2    for some . Then  or . Hence  or . Therefore . 
Case 3   . It is obvious.
Thus  is a fuzzy ideal of . This contradicts our assumption. Thus  is Artinian.
Corollary 54.  Let  be a BN-algebra. If, for every fuzzy ideal  of ,  is a finite set, then  is Artinian.
The following example shows that the converse of Corollary 54 does not hold.
Example 55. Let  be a prime number. Set  for some . It is known that  is the -quasicyclic group. Define  for all . By Example 7,  is a BN-algebra. Let  for . It follows easily that  is an ideal of  if and only if  or  for some . We have  and hence  is Artinian. Define  by
							
						where . Since ,  is a fuzzy set in . By the proof of Lemma 44, . However,  is not a finite set.
5. Conclusions
This paper begins by considering the notion of ideals in BN-algebras. We give its characterizations and introduce the concept of normal ideals investigating its properties. We also define the notion of normal congruences proving that there is a one-to-one correspondence between normal ideals and normal congruences of a BN-algebra. Moreover we obtain the isomorphism theorem for BN-algebras. Next, we define the notion of fuzzy ideals of BN-algebras giving its characterizations and providing conditions for a fuzzy set to be a fuzzy ideal. We give the relationships between ideals and fuzzy ideals of a BN-algebra and also provide the homomorphic properties of fuzzy ideals. Finally, we display characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals.
The next step in studying fuzzy ideals in BN-algebras may be introducing and investigating the notions of fuzzy maximal ideals and fuzzy prime ideals of BN-algebras.
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